17 research outputs found

    How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility

    Full text link
    Recommendation systems are ubiquitous and impact many domains; they have the potential to influence product consumption, individuals' perceptions of the world, and life-altering decisions. These systems are often evaluated or trained with data from users already exposed to algorithmic recommendations; this creates a pernicious feedback loop. Using simulations, we demonstrate how using data confounded in this way homogenizes user behavior without increasing utility

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    The Limits of Popularity-Based Recommendations, and the Role of Social Ties

    Get PDF
    In this paper we introduce a mathematical model that captures some of the salient features of recommender systems that are based on popularity and that try to exploit social ties among the users. We show that, under very general conditions, the market always converges to a steady state, for which we are able to give an explicit form. Thanks to this we can tell rather precisely how much a market is altered by a recommendation system, and determine the power of users to influence others. Our theoretical results are complemented by experiments with real world social networks showing that social graphs prevent large market distortions in spite of the presence of highly influential users.Comment: 10 pages, 9 figures, KDD 201

    When personalization is not an option: An in-the-wild study on persuasive news recommendation

    Get PDF
    Aiming at granting wide access to their contents, online information providers often choose not to have registered users, and therefore must give up personalization. In this paper, we focus on the case of non-personalized news recommender systems, and explore persuasive techniques that can, nonetheless, be used to enhance recommendation presentation, with the aim of capturing the user’s interest on suggested items leveraging the way news is perceived. We present the results of two evaluations “in the wild”, carried out in the context of a real online magazine and based on data from 16,134 and 20,933 user sessions, respectively, where we empirically assessed the effectiveness of persuasion strategies which exploit logical fallacies and other techniques. Logical fallacies are inferential schemes known since antiquity that, even if formally invalid, appear as plausible and are therefore psychologically persuasive. In particular, our evaluations allowed us to compare three persuasive scenarios based on the Argumentum Ad Populum fallacy, on a modified version of the Argumentum ad Populum fallacy (Group-Ad Populum), and on no fallacy (neutral condition), respectively. Moreover, we studied the effects of the Accent Fallacy (in its visual variant), and of positive vs. negative Framing

    Inequality and Inequity in Network-based Ranking and Recommendation Algorithms

    Get PDF
    Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms. Our main findings suggest that (i) inequality is positively correlated with inequity, (ii) inequality is driven by the interplay between preferential attachment, homophily, node activity and edge density, and (iii) inequity is driven by the interplay between homophily and minority size. In particular, these two algorithms reduce, replicate and amplify the representation of minorities in top ranks when majorities are homophilic, neutral and heterophilic, respectively. Moreover, when this representation is reduced, minorities may improve their visibility in the rank by connecting strategically in the network. For instance, by increasing their out-degree or homophily when majorities are also homophilic. These findings shed light on the social and algorithmic mechanisms that hinder equality and equity in network-based ranking and recommendation algorithms.Comment: 23 pages, 7 figures and 3 tables in main manuscript. Includes supplementary materia

    Estimating attention flow in online video networks

    Full text link
    © 2019 Association for Computing Machinery. Online videos have shown tremendous increase in Internet traffic. Most video hosting sites implement recommender systems, which connect the videos into a directed network and conceptually act as a source of pathways for users to navigate. At present, little is known about how human attention is allocated over such large-scale networks, and about the impacts of the recommender systems. In this paper, we first construct the Vevo network — a YouTube video network with 60,740 music videos interconnected by the recommendation links, and we collect their associated viewing dynamics. This results in a total of 310 million views every day over a period of 9 weeks. Next, we present large-scale measurements that connect the structure of the recommendation network and the video attention dynamics. We use the bow-tie structure to characterize the Vevo network and we find that its core component (23.1% of the videos), which occupies most of the attention (82.6% of the views), is made out of videos that are mainly recommended among themselves. This is indicative of the links between video recommendation and the inequality of attention allocation. Finally, we address the task of estimating the attention flow in the video recommendation network. We propose a model that accounts for the network effects for predicting video popularity, and we show it consistently outperforms the baselines. This model also identifies a group of artists gaining attention because of the recommendation network. Altogether, our observations and our models provide a new set of tools to better understand the impacts of recommender systems on collective social attention
    corecore