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ABSTRACT
In this paper we introduce a mathematical model that cap-
tures some of the salient features of recommender systems
that are based on popularity and that try to exploit social
ties among the users. We show that, under very general
conditions, the market always converges to a steady state,
for which we are able to give an explicit form. Thanks to this
we can tell rather precisely how much a market is altered by
a recommendation system, and determine the power of users
to influence others. Our theoretical results are complemented
by experiments with real world social networks showing that
social graphs prevent large market distortions in spite of the
presence of highly influential users.

1. INTRODUCTION
Recommender systems (RS’s) are a paradigmatic example

of the interaction between humans and algorithms in the
cultural arena. From YouTube videos to books on Amazon
and movies on iTunes or Netflix, online choices are increas-
ingly mediated by such algorithms. RS’s are popular for
their ability to conjure up non-trivial relationships between
products or news stories, and as such they are becoming
powerful economic actors. It is this economic dimension of
RS’s that we intend to explore in this paper.
A fundamental question in this context, and the one we

intend to tackle in this paper, is the following: to what extent
can a market be altered by a RS? For instance, assume that
an online bookstore starts adopting a RS. Will unknown
books become hits and vice-versa? How and how much will
the habit of the typical reader change? A large body of work
has investigated questions of this kind at the individual, user
level [8, 25, 26, 35]. For instance, a nice experiment described
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in [25] suggests that even a simple type of feedback, such as
providing the ranking based on the number of downloads,
may significantly boost market shares. Studies such as these
provide precious insights but it is di�cult to derive from them
quantitatively accurate predictions about markets in the long-
run. Also, it is entirely conceivable that the amplification
e↵ects observed be temporary, or not transferable to markets
whose sheer size and complexity dwarfs that of artificial
settings. Other studies have tried to draw conclusions from
behavioural data of real markets [11, ?, 10, 23], but the
paucity of available data makes them tentative.

In this paper we try a di↵erent approach by introducing a
natural model for markets that are governed by a RS. Our
model is simple enough to allow for a precise mathematical
analysis of long-term behaviours, while at the same time it
captures some of the relevant features of RS’s. Specifically,
there are two ingredients that are known to play an important
role in RS’s and that we want our model to represent. The
first is popularity, i.e. the degree of success of an item in
its market. Several studies indicate that popularity feedback
(e.g. number of downloads, user ratings, number of views, etc)
can be a powerful determinant of online behaviour [25, 5, 35].
The second ingredient is, for lack of a better terminology, the
“web of kinship”among users. Social ties are the paradigmatic
example here. They are recognized to be an important factor
that shape user choices, and recommenders try to leverage
them in a variety of ways [22, 31, 33, 6]. More generally RS’s
try to exploit di↵erent types of similarities between users,
such as explicit links in an online social network, similarity
between patterns of consumer choice, or even the result of
complex computations like matrix factorization. All these
diverse situations can be simply and usefully represented,
as we show in this paper, by assuming the existence of a
(weighted) network connecting the users.

In simplified form, our mathematical model of market
evolution is as follows. In the market we have users (or
buyers), connected via a network, and products. When a
user buys a product, it either follows its personal inclinations
(mode led by a private probability distribution over the
products) or it follows a recommendation with a certain
probability. When it does, it consults a random neighbour
in the network, the recommender node. The recommender
node picks a random product from its own list of products
purchased so far, with a probability that is proportional to
the popularity of the product in that moment, and the item
so selected is bought by the current buyer.
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The main theoretical result in this paper is that this type of
system, encompassing a large class of recommenders, always
converges to a unique, stationary limit. The result holds
under very general conditions. First, users can buy products
at di↵erent rates. User u, say, can be ten times faster than
user v and one thousand times slower than user w etc. Second,
the probability of following the recommendation may change
from person to person – each buyer can have his/her own
personal level of trust in recommendations, and also trust
his/her friends to di↵ering degrees. Third, the probability
with which a product is recommended does not need to
be uniform, but it can depend on time. For instance, we
could recommend only the last ten items bought, or skew
the probability with which an item is recommended in many
other ways. Finally, the graph can be any directed graph (so
u could follow v’s recommendations but not vice versa) and
users can have their own personal history of purchases before
the recommendation mechanism starts operating. None of
these a↵ects the result– the market always converges to a
unique limit.

It is natural to think of the network connecting the users
as a social network, but it can in fact be used to model many
more scenarios. For instance, we can make the popularity of
an item directly proportional to its number of sales in the
whole market by assuming the network to be a clique, or
we can represent a powerful super-user that influences the
entire network without being a↵ected by it by assuming the
network to be an oriented star.
A nice feature of our result is that the limit is given ex-

plicitly, in closed form. This makes it possible to explore
important properties of the steady state both analytically
and computationally. For instance, we can answer easily our
motivating question– can the recommendation mechanism
alter the market in a significant way? We can easily tell
the distance, in whatever norm, between the initial market
shares of every product and those at steady state. We can
gain insight into what type of topologies amplify or dampen
distorting e↵ects, and we can also carry out a fine grained
analysis that tells, for each user, how much it a↵ects the final
outcome. A by-product of our analysis is a quantitative no-
tion of user influence that pinpoints exactly how much each
user a↵ects the market at the limit. Interestingly, this notion
turns out to be a generalization of Personalized PageRank
(PPR) and it is related to the Shapley values of a coalition
game that can be defined in our model.
Our limit theorems provide a rich landscape for compu-

tational explorations with real-world social networks. We
explore the distorting e↵ects of various graph topologies and
the extent to which a user can influence the market. What
emerges is a rather nuanced landscape that is spelled out in
full in the rest of the paper. Perhaps the most interesting
outcome is that real social networks prove themselves to be
a bulwark against market distortion, in spite of the presence
of celebrities in their midst.
To summarize, this paper is a step in the direction of a

systematic investigation of the long-term e↵ects of recom-
mender systems on the markets in which they are operating.
This is an important and fascinating topic that deserves
more attention that it has gotten so far. We hope that this
paper provides some actionable insight into this important
problem.
The paper is organized as follows. In § 2 we discuss the

relevant literature, in § 3 we define our model and analyse its

properties mathematically. We conclude with experiments
in § 4.

2. RELATED WORK
Product popularity is known to have powerful feedback

e↵ects on user behaviour and choices, and is leveraged by
many existing RS’s. In one of the most eloquent demon-
strations, [25] shows that, in a digital cultural market, just
reporting the ranking based on the number of downloads
significantly a↵ects user choices and increases the market’s
inequality and unpredictability. Another telling illustra-
tion, [35], proves that users are likely to change their mind
and reverse their previous choices when given information
about the popularity of items. A study of friend recom-
mendation in Twitter, [28], shows that recommendations
of popular users are much more likely to be accepted than
recommendations of “average” users. Several existing online
marketplaces make use of popularity-based recommendations
– for instance Amazon1, Yelp2, TripAdvisor3, SoundCloud4

and Last.fm5 all suggest items that are currently trending.
Social ties are also understood to play a key role in the

recommendation and purchase processes, and are increas-
ingly exploited by modern RS’s. A study on the Epinions6

network [7] finds that a large part of the items adopted by a
user are also adopted by his/her friends. Similarly, a study
on the Yahoo! Pulse network [30] shows that a user’s inter-
ests are highly correlated with, and can be predicted by, the
interests of his/her social ties – and vice versa. An emblem-
atic example of RS based on social ties is [31], which uses a
generative influence model where users probabilistically pick
items according to both their and their friends’ preferences.
Another study, [6], builds a recommendation algorithm as-
suming that the two forces driving a user’s actions are latent
preferences and the influence of friends. Several other works
show or propose that recommendations take place over some
social network structure [16, 17, 33, 15, 34].

On the other hand, investigations on the long-term market
e↵ects of RS’s are scarce; as long as mathematical models
are concerned, existing work seems confined to the economic
literature. To the best of our knowledge, the only theoret-
ical investigation on the market e↵ects of RS’s is [12]. In
their work, a single user repeatedly buys one of two products
according to either his/her personal taste or to a recom-
mendation consisting in the most-bought product so far;
depending on the choice of parameters, the process can lead
to a concentration of sales. There are many di↵erences be-
tween their model and ours – in particular, our model allows
users to influence each other. Two earlier studies, [9] on con-
sensus reaching and [13] on opinion formation, investigated
the convergence of personal beliefs of users interacting in
a social group, similarly to how we investigate convergence
in a market with social ties. Their models are however far
from ours in many aspects; for instance, ours is stochastic
and allows for complex dependences on past events. Another
paper, [14], studies the e↵ects of word-of-mouth on product
sales, but focusing on equilibrium strategies for maximizing
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user satisfaction. Finally, a few other works have analysed
the interactions between RS’s and markets, but either with
di↵erent aims [18, 24] or by simulation instead of analysis [32].

3. A MODEL FOR RECOMMENDER SYS-
TEMS

Let us begin with the formal definition of our model.

Products.

We have a set P of m products; each product can be bought
multiple times during the purchasing process. Products are
bought one at a time in an infinite sequence of time steps
t = 1, 2, . . .. The purchasing process is specified below.

Users (or Buyers).

We have a set U := {1, . . . , n} of n users. To each user u
is associated:

• a fixed purchasing rate fu 2 (0, 1) representing the rate
at which u buys products. The fu’s form a probability
distribution, i.e.

P
u2U fu = 1. The precise role of fu is

clarified below when the purchasing process is defined

• a probability distribution Bu over the set of products
P reflecting its personal preferences. The probability
Bu(p), p 2 P is u’s personal preference for p.

• a fixed probability ↵u 2 [0, 1); when u buys a product it
follows a recommendation with probability ↵u (see the
definition of the purchasing process below)

• a list of products purchased in the past (before time
0), initially containing ku > 0 items. This list can be
arbitrary

The graph.

Users are connected via a directed, weighted graph G =
(U , E), possibly with self-loops. Intuitively, an edge vu de-
notes the fact that v can influence u when u decides to follow
a recommendation, or alternatively, that u “trusts” v. The
arc has weight wvu which gives the strength of this trust
relationship. The weights are normalised: the weights of the
arcs entering each vertex u (if any) sum up to one.
It is natural to think of this graph as a social network

among the users, but it is in fact a very versatile tool with
which we can model several di↵erent situations. For instance,
when the graph is a clique and the weights are uniform
we have the traditional popularity feedback – an item is
recommended with a probability that is proportional to the
number of sales in the whole market. Or, the graph could
embed similarities between users, with the weights reflecting
the degree of similarity, and so on so forth. The graph is a
flexible tool thanks to which several situation can be cast in
our framework and network e↵ects be explored.

The purchasing process.

At each time step t = 1, 2, . . ., a user u is chosen with
probability fu and buys a product in one of two ways:

• With probability 1 � ↵u, it chooses a product at ran-
dom according to its own distribution Bu of personal
preferences.

• Alternatively, with probability ↵u, it follows the recom-
mendation:

– First, u picks a recommender node v at random among
those pointing to him (if u has no entering arcs then
↵u = 0). The recommender node v is picked with
probability wvu, the weight of the arc vu.

– Once the recommender node v is chosen, a product p
is selected at random from the multiset of products
acquired by v up to that moment. Let us denote for
now this probability simply as xt

v(p) and postpone to
later its precise definition.

– The product p so selected is bought, i.e. it is added
to the multiset of products purchased by the current
buyer u.

Note that even if we say for convenience that the i-th purchase
takes place at “time” i, we make no assumptions about time
itself (i.e. the wall clock time between any one purchase and
the next can be arbitrary). The process simply stipulates
that items are bought one after the other, in an infinite
sequence.

The weight of history.

To conclude the description of the model we need to define
the probability distribution, that we denoted as {xt

v(p)}p2P ,
with which the products of the recommender node are picked.
A reasonable choice to model popularity-based recommen-
dations would be simply to select a product uniformly at
random from v’s multiset of past purchases. In this way pop-
ular items have a higher probability of being recommended.
But we want to take a more general approach by allowing
time-dependent weights. For instance, we would like to be
able to deal with a situation in which, say, only the ten most
recent purchases matter, or where the influence of purchases
fades away with time in a specific way, and so on so forth.
To this end, focus on a vertex u and recall that we allow
users to have made ku purchases before starting the system.
Suppose now that we are at time t > 0, and let Itu ✓ [t� 1]
denote the set of times when u previously made a purchase.
We denote the weight of a purchase made by u at time i < t
as ht,i

u . First, we assume these weights to be normalised,
that is, for all t > 0,

kuX

i=1

ht,�i
u +

X

i2Itu

ht,i
u = 1,

For a given product p, let J t
u,p ✓ {�ku, . . . ,�1} [ Itu be the

set of times when u bought p. Then, given that u is the
recommender node at time t, product p will be recommended
by u and purchased by the buyer with probability

xt
u(p) :=

X

i2Jt
u,p

ht,i
u .

This formalization captures a large spectrum of natural sce-
narios. For example, if the recommendation consists in
picking from u’s past purchases uniformly at random, this
amounts to setting ht,�i

u = ht,i
u = 1/ku+|Itu| for all i. Picking

one at random among the 10 most recent purchases cor-
responds instead to setting ht,i

u = 1/10 for all i such that
|Iiu| � |Itu|� 10 and ht,i

u = 0 otherwise. Note that the values
of the weights ht,i

u depend on the outcome of the process,
thus the ht,i

u are random variables themselves.



While our theorems will be given for the full model, it
may help the intuition to consider the following simplified
version, to which we will sometime refer in the remainder of
the paper.

Definition 1. [The Basic Scenario] The special case
where users buy at the same rate (i.e. fu = 1/n, u 2 U),
follow recommendations with the same probability (i.e. ↵u =
↵, u 2 U), pick the recommender with uniform probability (i.e.
wvu = 1/indeg(u), u 2 U), and recommend items by picking a
random product from their list with uniform probability (i.e.
ht,�i
u = ht,i

u = 1/ku+|Itu|, u 2 U), is called the basic scenario.

Remarks. Our model only considers products that can be
bought multiple times. Food items are a natural example,
but there are very many cultural products that fall into this
category: going out to a specific club, attending sport events,
or participating to concerts at specific venues are just a few
examples. The case of items for which multiple purchases
make little sense, such as books or movies, is also of great
interest but is left for future work. It is worth noting that our
model can capture to a certain extent repeat consumption,
the empirical principle that people tend to re-purchase a
product they recently bought [1, 2]. More precisely, our
model can mimic the one in [1], where a user buys a product
that is either new or drawn from a distribution over his/her
purchasing history. We can mimic this model by allowing
self-loops in the graph: a user can then pick itself as the
recommender node and, with properly defined weights, re-
purchase a product he bought in the near past.

3.1 Analysis of the model
To analyse the evolution of the process we focus, from now

on, on a particular product p⇤ 2 P, and look at all the others
as aggregated into a second product.
Let us begin with some necessary notation. Recall that

xt
u(p) is the probability with which p is recommended and

bought given that u is the recommender node at time t.
To simplify notation, let xt

u(p
⇤) be denoted simply as xt

u.
Similarly, let bu be u’s personal preference for p⇤, and let
b = (b

1

, . . . , bn). We want to study the evolution of xt :=
(xt

1

, . . . , xt
n) as t grows. We define A = diag(↵

1

, . . . ,↵n)
and denote by M the weighted transposed adjacency matrix
of G, i.e. Muv = wvu (which is 0 if vu /2 G). For any
random vector y = (y

1

, y
2

, . . .) we denote by E[y] the vector
(E[y

1

],E[y
2

], . . .) of the expectations of its components.
With the notation pinned down, we can now address our

main question: does the market share of p⇤ converge? The
theorem below states that this happens if the weights ht,i

u

satisfy the following condition.

The past fades away, i.e. limt!1 E[ht,i
u ] = 0.

This condition is very natural. It states that past purchases
will eventually be forgotten. For instance it is satisfied when
the recommended product is chosen uniformly at random
or when only the last few purchases have non-zero weight.
We can now give our main result, which is proven in the
appendix.

Theorem 1. If the past fades away, then

lim
t!1

E[xt] = x

1 (1)

where x

1 = (I �AM)�1(I �A)b. Otherwise E[xt] might
not converge, or converge but not to x

1.

Let us discuss a few interesting consequences of this result.
First, notice that since the network and the values ↵ =

(↵
1

, . . . ,↵n),f = (f
1

, . . . , fn), and b, stay put and only x

t

changes, the theorem gives a complete characterization of
the market at the limit. The limit vector x1 has a natural
and quite useful interpretation, given in the next corollary.

Definition 2. The fraction of times that a user u has
bought p⇤ at time t 2 N+

[ {1} is called the local market
share (LMS) of p⇤ w.r.t. u at time t.

Corollary 1. For every user u, x1
u is the local market

share of p⇤ w.r.t. u at the limit.

The proof of this corollary in the general case is slightly
technical but in the basic scenario (see Definition 1) follows
immediately from Theorem 1. In this scenario, by definition
of the model, xt

u is the fraction of times that u has bought
p⇤ up to time t, i.e. it is p⇤’s LMS w.r.t. u, and Theorem 1
states that this value converges to x1

u .
Consider now the matrix

L := (I �AM)�1(I �A) (2)

This matrix contains a lot of information about the steady
state. Now, since x

1 = Lb we have that x1
u =

P
v Luvbv.

We can think of x1
u as consisting of a set of “slices”, each of

size Luvbv, v 2 U . Each slice is the contribution of v to x1
u

which is, as we have seen, p⇤’s LMS w.r.t u at the limit. We
thus have a measure of how much each user can influence
every other user.

If Lvu is how much u influences v then
P

v Lvu quantifies
u’s influence on the entire market. We can collect these
individual market influences in an influence vector :

�

T := f

T
L (3)

where f = [f
1

, . . . , fn]. The vector � is stochastic (its entries
sum up to one), and its element �u is the relative weight
of u’s personal distribution in the overall sales distribution
at equilibrium. The larger the value of �u the greater the
influence of u on the final market share of p⇤. We thus define
the maximum influence of any user as,

�(G) := max
u2G

�u = k�k1 (4)

For instance, in the basic scenario, when G is a star �u =
⇥(1) if u is the centre and �u = ⇥(1/n) otherwise, so that
�(G) = ⇥(1), while when G is a clique �(G) = �u = 1/n for
every u.
Thanks to Theorem 1 we can now easily answer our mo-

tivating question– how much can the market be distorted?
By combining � and the vector b of personal preferences we
can quantify how much the recommender system distorts (i.e.
increases or decreases) the overall market share of p⇤.

We define the market distortion as:

� :=
f · x

1

f · b

=
� · b

f · b

, (5)

where · denotes the dot product. This is the ratio between
the market share of p⇤ at the limit and that without the
recommender.

Influence, PageRank and Shapley Values.

The influence vector � has a natural interpretation in
terms of personalized PageRank. Consider the graph GT



obtained by transposing G, the graph among the users, and
suppose it has no dangling nodes (i.e. no node with outdegree
zero). Let W be the normalised adjacency matrix of GT ,
i.e. Wuv = 1/outdeg(u) with the outdegree measured in GT .
Finally, pick any ↵ 2 [0, 1) and any n-entry stochastic vector
r. The personalized PageRank vector p with respect to r

with damping factor ↵ on GT is defined as (see e.g. [19]):

p

T = r

T (I � ↵W )�1(1� ↵) (6)

Compare the above expression with that of �

T given by
Equation 3 and the definition of L:

�

T = f

T (I �AM)�1(I �A) (7)

The vector �T is the perfect analogue of pT . Indeed, the two
coincide by choosing r = f if each node u in G has ↵u = ↵
and has a nonempty set of incoming arcs all with the same
weight. Our notion of influence is thus a generalization of the
standard personalized PageRank, allowing for personalized
values of ↵, graphs with dangling nodes, and arbitrary arc
weights. In fact, our model o↵ers an intuitive interpretation
similar to that of PageRank: the influence of nodes can be
seen as the stationary distribution of a “reverse” random walk
on G which at each step, from the current node u, either
moves to an incoming neighbour v with probability ↵uwvu or,
with probability 1�↵u, moves to a random node in G chosen
according to the distribution {fv}v2G. This walk can be
seen as propagating the “credit” for the choice of a purchased
product back to the incoming neighbours, the neighbours
of the incoming neighbours and so on, recursively. The
purchasing rates play the intuitive role of the personalization
vector: the more a user buys, the more the users who influence
him are influential overall (and they are indeed reached more
often by the random walk).

The influence vector � also has an interpretation in terms
of the classical notion of Shapley value, which is a mechanism
to determine payo↵s in coalition games. Shapley values have
been proposed as a mechanism to determine fair compen-
sation for user’s participation to recommendation systems
[18]. Let bu denote, as usual, u’s personal preference for
p⇤. Consider now the following game: each user can either
participate to the market with bu or set its preference to 0;
the value assigned to the coalition is the total market share
of p⇤. Then, the following holds.

Fact 1. The Shapley value of each user u in the above
game is exactly �ubu.

It is worth pointing out that, uncharacteristically, this Shap-
ley value can be computed in polynomial-time.

Speed of convergence.

Theorem 1 does not tell how much time it takes for the
market to reach the steady-state; in fact, this depends on
how fast the weights decay with t. In the case of the simple
uniform random recommendation, one can prove that the
system converges to the steady state reasonably fast:

Theorem 2. If the recommender node recommends an
item picked at random from its purchasing history, then

kE[xt]� x

1
k = O

�
t↵�1

�
(8)

where ↵ is the maximum ↵u over all users.

The proof is omitted from this extended abstract.

Computing �.

Clearly, computing � e�ciently is a crucial task to the aims
of the present paper. Doing this directly through Equations 2
and 3 requires to explicitly invert the matrix (I�AM), which
can be prohibitively expensive is the inverse is dense (which is
the case if G is well-connected). We instead follow a standard
alternative approach. Rewrite (I �AM) as

P
+1
i=0

(AM)i,
plug it into Equation 3 and obtain:

�

T = f

T
+1X

i=0

(AM)i(I �A) (9)

Now, if G is sparse, so is M and thus all the terms of
the summation in Equation 9. We can then approximate
� e�ciently by truncating the series, which only requires
to keep trace of a sparse matrix and vectors. To be more
precise, computing all entries of � up to an additive error
O(✏) requires time O

�
(|V |+ |E|) log( 1✏ )/ log(

1

↵ )
�
and space

O(|V |+ |E|), where ↵ = maxu2G ↵u. We use this technique
throughout our experiments.

4. EXPERIMENTAL RESULTS
In this section we discuss a series of experiments where the

underlying graph of our model is a real world social network.
Theorem 1 says that xt converges to x

1 in expectation.
A first set of experiments shows that the expectation does
captures what happens at the limit, i.e. the variance is small.
We then investigate the question of market distortion – for a
given product p⇤, how much does its market share change at
the limit? A related question concerns so-called influencers.
What is their influence and how much can they change the
market? We show that when the underlying network is
a real world social network market distortion is negligible
and even “celebrities” cannot have significant impact. Vice
versa, there are other realistic situations, such as the presence
of a super-node acting as a “media tycoon”, where certain
nodes can conquer a significant share of the market thanks
to the recommendation mechanism. We also give a rule
of thumb to identify top influencers on the basis of their
2-hop neighbourhood. Finally, we explore recommenders
not covered by our theoretical results, in which products are
recommended with super-linear probabilities. We find that
the results vary widely from graph to graph, and depend also
heavily on the starting share of products.

Let us now describe the experimental setup.

4.1 Experimental setup
We run our experiments on six following real-world graphs.

Google+ The ego-Gplus graph from SNAP Datasets [21].
It contains 107, 614 nodes (users) and 13, 673, 453 arcs
representing a follower-to-followed relationship in the
Google+ social network.

Twitter SNAP The ego-Twitter graph from SNAP Datasets.
It contains 81, 306 nodes and 2, 420, 766 follower-to-
followed arcs crawled from Twitter.

Twitter LAW The twitter-2010 graph by the Laboratory
for Web Algorithmics, Univ. Milan [4, 3]. It con-
tains 41, 652, 230 nodes and 1, 468, 365, 182 follower-
to-followed arcs from Twitter.

Slashdot The soc-sign-Slashdot090221 graph from SNAP
Datasets. It contains 82, 144 users and 549, 202 signed



(i.e. “friends” or “foes”) arcs between users. We kept
only the 425, 072 “friend” arcs.

Yelp A social graph extracted from friendships in the Yelp
Dataset Challenge dataset.7 The graph is undirected
and contains 365, 759 users and 1, 288, 031 edges.8

Facebook The graph from the “List of links” Facebook
dataset by MPI-SWS [29].9 The graph is undirected
and contains 63, 731 users and 817, 090 edges.

When the graphs are directed we reverse the edges (except
for Twitter LAW that was already oriented correctly). This
is because in social graphs an edge uv denotes the fact that
u “trusts” or “follows” v, while in our model the meaning is
that u influences v.

Two kinds of experiments are carried out in the following:
simulations and computations. In the first, we simulate the
purchasing process for 10, 000n steps and in the basic scenario
(see Definition 1), unless otherwise specified. The probability
with which users follow a recommendation is set to ↵ = 0.2
for every user. Note that this is a conservative estimate, since
the available evidence suggests both the relative influence of
friends’ recommendations (see e.g. [20, 31]) and the fraction
of sales causally imputable to recommender systems (see [27])
to be significantly smaller. We are thus intentionally putting
the RS in favourable conditions to distort the market.
In computations, we use the adjacency matrix of the un-

derlying graph and the other parameters of the model to
compute explicitly the influence vector � (and related quanti-
ties), using the techniques described at the end of Section 3.
Our code was partly written in C++ using Eigen10 and

the GNU Scientific Library11, and partly in Java using the
WebGraph framework12. We ran it on a distributed-memory
50-node cluster provided by CINECA13, where each node is
equipped with two ten-core Intel Xeon CPUs and 128GiB
of main memory. The source code can be downloaded from
https://github.com/Steven--/recommender.

4.2 Convergence to the equilibrium
The first experiment checks that the purchasing process

unrolls as predicted by our theoretical results. As in § 3.1,
we focus on a single product p⇤, with the remaining products
coalesced into one. Figure 1 shows that xt quickly converges
to x

1 as t grows (the plot follows a power-law).
Figure 2 shows what happens in the short-term setting.

Initially, kxt � xk1 decreases rapidly, as expected, but then
it starts oscillating around the value 0.22. This behaviour
might seem counter-intuitive at first, but it is a natural con-
sequence of the short-memory of the users. As the users only
consider the last 100 purchases when making a recommenda-
tion, small di↵erences in the number of times p⇤ is purchased
may considerably change the probability with which p⇤ is
recommended. This is a setting where E[xt] converges to x

1

but xt does not. Note however the following. If we consider
the vector zt containing the local market shares of p⇤ w.r.t.

7

https://www.yelp.com/dataset_challenge/

8Actually, the original Yelp dataset contains 117 spurious
directed edges that are not reciprocated.
9

http://socialnetworks.mpi-sws.org/data-wosn2009.html

10

http://eigen.tuxfamily.org

11

http://www.gnu.org/software/gsl/

12

http://webgraph.di.unimi.it/

13

http://www.cineca.it/en
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scenario.

every user u (Definition 2) then, as predicted by Corollary 1,
kz

t
� x

1
k1 goes to 0 as t increases (see Figure 3). In con-

clusion, these experiments suggest that the LMS converges
not only in expectation but in high probability. We leave
this as an open problem.

4.3 Market distortion
In this section we try to understand how much the market

can be distorted by the recommendation system. To this
end we consider the quantity � defined by Equation 5 In
the experiments b was instantiated with di↵erent types of
distributions: uniform in [0, 1], exponential of mean 1/2,
a power-law of exponent �0.01 (i.e., p(x) / x�0.01), and
normal of mean 1/2 and standard deviation 1/6 (for distribu-
tions having support wider than [0, 1], the truncated version
was used).

In all cases the value of � was always in the range 1±0.002,
which means that market distortion was negligible for all
networks considered. This is an indication that social graphs
prevent the recommender from distorting the market.
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t keeps track, for
each user, of the fraction of products p⇤ bought since
the beginning of the process.

The next experiment determines how much (of the overall
market share of p⇤) can be ascribed to the most influential
users. Recall from § 3.1 that �(G) = maxu �u is the max-
imum influence of any user. While �(G) can be seen as a
relative measure of the importance of the most influential
user, i.e., as the fraction of the network that a single user can
influence, n·�(G) is an absolute measure: the most influential
user u can be seen as controlling a group of n · �(G) users
that buy p⇤ with probability bu at rate 1/n. Figure 4 shows
the values of n · �(G) and of �(G) for the networks we tested.
Even if there are users whose purchasing power corresponds
to that of more than 80 “average users”, none of them can
influence a significant portion of the network.

In order to understand if the fairness of these social graphs
is an artefact of our model or one of their intrinsic properties,
we investigated a modified version of our model not covered by
Theorem 1. In the modified model, the probability with which
u recommends p⇤ becomes super-linear and is proportional to
x2

u. Intuitively, this should boost the final market share of p⇤

as soon as p⇤ has a small advantage in the user’s preference
distributions. Therefore, we draw the personal preferences
of the users so that the mean of p⇤ is k times larger than the
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Figure 4: Fairness of social ties: values of �(G) (light
grey) and n · �(G) (dark grey) on di↵erent social
graphs.
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Figure 5: The e↵ect of media tycoons: variation of
the market share of p⇤ (i.e., �) for di↵erent graphs
and starting distributions when a super-node is in-
serted.

mean of any other product, where the imbalance k ranges
from 1 to 5. We considered markets having both two and
ten di↵erent products: the corresponding results can be seen
in Figures 6 and 7. The purchasing process was simulated
until the change in the market share of the products dropped
below 0.001, and the experiment was repeated 10 times in
order to compute the standard deviation of �, which was
always smaller than 0.007. Even with this favourable setting
we saw a market distortion e↵ect on social networks that was
always less than the one observed on a Clique. We conclude
that, although the market share of the leading product p⇤

can increase significantly when there are many competing
products, social graphs do not promote, and often damps,
this growth phenomena.

In the last experiment of this section we modify the topol-
ogy of the networks by inserting a super-node that points
to every user and always recommends p⇤. This models the
e↵ects of mass media such as television, radio, mass adver-
tising, etc. Perhaps unsurprisingly, we observe that such
“media tycoons” can influence a relevant portion of the mar-
ket. Depending on the graph, �(G) ranges from 3.4% to
13.4%. Market distortion can be significant, with values of
� ranging from 105.3% to 149.7%, as Figure 5 shows.

Figure 6: � for a market with 2 products as a func-
tion of the initial imbalance for product p⇤.



Figure 7: � for a market with 10 products as a func-
tion of the initial imbalance for product p⇤.
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4.4 Looking for the influencers
In this section we look at the distribution of influence in

social networks and give a rule of thumb to identify the most
influential users.

In a clique every vertex has the same influence (�u = 1/n for
each user u). We want to know how far real social networks
are from this perfectly “egalitarian” situation. Figure 8 shows
that real social networks are quite fair in the sense that most
of the users have an influence that is slightly smaller than 1/n,
while only a small elite of users has a very large influence. The
graph where this “oligarchy” is most prominent is Twitter
LAW, where 10% of the overall influence on the market is
due to 0.6% of the users. In all the other networks, at least
4% of all the users are needed to reach the same combined
influence.

Next, we try to give a simple rule of thumb to identify the
most influential users in a network. The bottom of Figure 9
shows the first one hundred nodes ranked by out-degree
from left to right on the x-axis. The y-axis reports their

�-rank (the shorter the bar the higher the rank). The figure
shows that if a node has high out-degree than it will be
influential. The top of Figure 9 shows that the converse is
not true. Among the one hundred most influential users there
are nodes with moderate to low out-degree. Who are these
nodes? To illustrate, consider the case of the user whose
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Figure 9: Top: Outdegree rank for the top-100
ranked users w.r.t. �. Bottom: � rank for the top-
100 ranked users w.r.t. their outdegree. The data
refer to Google+.

�-rank in Google+ is 88. This user lies within the top 1% of
the influential users, but his/her 243 followers place him/her
in position 11, 155 of the out-degree ranking, outside of the
top 10%. This user however has 48 followers each of which
follows 3 users or less and, among these, 34 happen to follow
only him. In other words, this user is highly “trusted” in a
small community. When this happens, the node will have a
high �-rank.

Finally, consider a user u who is trusted by a user v having
high degree. We know already that v will be influential.
Suppose now that v follows a small number of people that is,
u is among the few “confidants” of an influential user. Then,
u too will be influential.
To summarize, we can characterize influential users as

users who have at least one of the following properties:

• A large number of followers.

• A non-negligible group of followers which, in turn, fol-
low few other users.

• Are among the few friends of an influential user.

This rule of thumb gives a heuristic characterization of all
influential users.
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APPENDIX
Proof of Theorem 1.

We make use of the following lemma:

Lemma 1. The matrix (I �AM) is nonsingular, and the
matrix (I � AM)�1(I � A) is row stochastic (i.e. is real,
non-negative, and each row sums to 1).

Proof. Since ↵u < 1 for all u and M is row-stochastic,
then (I � AM) is strictly diagonally dominant; hence it
is invertible by the Levy-Desplanques theorem. Now (I �

AM)�1 =
P

i�0

(AM)i is real and nonnegative, as well as

(I�A), hence so is their product (I�AM)�1(I�A). Finally,
since M ·1 = 1, then also (I�A)·1 = (I�AM)·1, and thus
(I�AM)�1(I�A) ·1 = (I�AM)�1(I�AM) ·1 = 1.

Lemma 1 implies that the vector x1 exists and has compo-
nents in [0, 1]. Let us now turn to prove the main statement.
“if” side. This part is divided in three steps: writing a

recurrence equation for E[xt
u], converting it into a matricial

recurrence equation for E[xt]�x

1, and showing that |E[xt]�
x

1
| tends to the null vector 0.

A recurrence equation for E[xt
u]. The proof makes

use of two additional random variables:  t
u, which indicates

the event that u buys at step t, and �t
u, which indicates the



event that u buys p⇤ at step t. Then xt
u can be written as:

xt
u =

kuX

i=1

ht,�i
u ��i

u +
t�1X

i=1

ht,i
u �i

u (10)

where the ��i
u are actually constants since the initial history

is fixed. Gather the first summation in a single random
variable ht,0

u , and take the expectation of both sides:

E[xt
u] = E[ht,0

u ] +
t�1X

i=1

E[ht,i
u �i

u] (11)

Note that E[ · z] = E[ · |z = 1]E[z] if z is a binary random vari-
able. Also, the weights do not depend on the specific products
bought, so E[ht,i

u |�i
u = 1] = E[ht,i

u | i
u = 1]. Using these facts,

one can easily rewrite E[ht,i
u �

i
u] as E[ht,i

u  
i
u]E[�i

u| 
i
u = 1].

We can then restate Equation 11 in the following way:

E[xt
u] = E[ht,0

u ] +
t�1X

i=1

E[ht,i
u  i

u]E[�i
u| 

i
u = 1] (12)

Let us now focus on E[�i
u| 

i
u = 1], the probability that u

buys p⇤ at step i given that he buys. By definition of the
purchasing process, we have:

E[�i
u| 

i
u=1] = (1� ↵u)bu + ↵u

X

(v,u)2G

wvu E[xi
v| 

i
u = 1] (13)

However, we can replace E[xi
v| 

i
u = 1] by E[xi

v] as x
i
v only

depends on v’s past purchases. Plugging the resulting ex-
pression for E[�i

u| 
i
u = 1] into Equation 12, we obtain the

following recurrence relation:

E[xt
u] = E[ht,0

u ] +
t�1X

i=1

E[ht,i
u  i

u]((1�↵u)bu+↵u

X

(v,u)2G

wvu E[xi
v])

(14)
A recurrence equation for E[xt]� x

1. We next turn
Equation 14 into an expression for E[xt]. For all t > 0 let ht,0

be the vector [E[ht,0
1

], . . . ,E[ht,0
n ]]; similarly, for all t > i > 0

let Ht,i be the matrix diag(E[ht,i
1

 i
1

], . . . ,E[ht,i
n  i

n]). Finally,
recall the definitions of A,M , b,xi. The following matricial
counterpart to Equation 14 holds:

E[xt] = ht,0 +
t�1X

i=1

Ht,i((I �A)b+AME[xi]) (15)

We now subtract x1 from both sides – but putting the right-
hand side in a convenient form. Indeed, by definition of ht,0

and Ht,i and by the fact that
Pku

i=1

ht,�i
u +

Pt�1

i=1

ht,i
u  i

u = 1,
if we define h0

t,0 as the vector whose u-th component is

E[ht,0
u ]�E[

Pku
i=1

ht,�i
u ]x1

u , one can write:

E[xt]� x

1 = h0
t,0 +

t�1X

i=1

Ht,i((I �A)b+AME[xi]� x

1)

(16)

But by definition of x1 we have (I �A)b = (I �AM)x1;
thus (I �A)b� x

1 = �AMx

1 and Equation 16 becomes:

E[xt]� x

1 = h0
t,0 +

t�1X

i=1

Ht,iAM(E[xi]� x

1) (17)

|E[xt]�x

1
| goes to zero. We finally show that |E[xt]�

x

1
|, the vector of the absolute values of E[xt]�x

1, vanishes

with t. The intuition is that h0
t,0 and some of the first terms of

the summation in Equation 17 go to zero with t by hypothesis,
and the rest is damped by the norm of A which is strictly
smaller than 1; this gives a bound on |E[xt]�x

1
| which can

be plugged in again, proving the thesis by induction.
Hereafter, inequalities are meant component-wise. First,

since Ht,i, A, M are non-negative, Equation 17 implies:

|E[xt]� x

1
|  |h0

t,0|+
t�1X

i=1

Ht,iAM |E[xi]� x

1
| (18)

Suppose now |E[xt] � x

1
|  c1 for all t > ⌧ , for some

constants ⌧, c � 0; this trivially holds for ⌧ = 0 and c = 1.
One can check that, by hypothesis of forgetfulness, each
element of h0

t,0 goes to zero with t, and the same does each
element of Ht,i for any fixed i. Thus for any given ✏ > 0
there exists a t0 � ⌧ such that for all t > t0:

|h0
t,0|+

⌧X

i=1

Ht,iAM |E[xi]� x

1
|  ✏ (19)

and then Equation 18 gives, for all t > t0:

|E[xt]� x

1
|  ✏1+

t�1X

i=⌧+1

Ht,iAM |E[xi]� x

1
| (20)

 ✏1+
t�1X

i=⌧+1

Ht,iAM · c1 (21)

Each row of AM sums to at most ↵ where ↵ = maxv2G ↵v;
while, since

Pt�1

i=1

ht,i
u  

i
u  1, each row of (

Pt�1

i=⌧+1

Ht,i)

sums to at most 1. Each row of
Pt�1

i=⌧+1

Ht,iAM thus sums
to at most ↵. And then for all t > t0:

|E[xt]� x

1
|  ✏1+ ↵c1 (22)

which for e.g. ✏ = 1�↵
2

c gives |E[xt] � x

1
| 

1+↵
2

c1. But
we can then repeat the whole argument multiple times, each
time replacing ⌧ by t0 and c by 1+↵

2

c and tightening the
bound on |E[xt] � x

1
| by a factor 1+↵

2

for all su�ciently
large t. Since ↵ < 1 and thus 1+↵

2

< 1, this implies

lim
t!+1

|E[xt]� x

1
| = 0 (23)

which concludes this part of the proof.
“only if” side. We show a simple counterexample. Pick

a G where all u have incoming arcs and let all ↵u > 0.
Also, let all u buy the same product a at time �1 and set
ht,�1

u = 1 for every t. All nodes thus always recommend a,
so if limt!1 E[xt] exists it must depend on whether or not
p⇤ = a; thus it cannot be x

1. Moreover, one can make the
system never converge by putting two di↵erent products a
and b in the initial purchasing history of all users and making
them periodically recommend only a or only b.


