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Abstract. Conventional methods for tie prediction analysis in social media 
networks are often code-intensive and encompass complex steps. Against this 
backdrop, we used design science research to develop a no-code tie prediction 
analysis platform. Our evaluation indicates that the platform significantly reduces 
tie prediction analysis complexity and, depending on the network size, also total 
prediction time. Moreover, it maintains a prediction accuracy similar to that of 
conventional, code-intensive methods. Thus, our artifact substantially facilitates 
tie prediction analysis for social media network researchers and practitioners. 

Keywords: Social Media Networks, Tie Formation Concepts, Tie Prediction 
Algorithms, Tie Prediction Analysis Platform, Social Media Analytics 

1 Introduction 

Humans, as social beings, naturally strive for social embeddedness [1]. Thus, social 
networks, such as friendship and communication networks, have been commonplace 
since the emergence of mankind [1]. What is new, however, is the proliferation of 
public and enterprise social media, such as Twitter and Yammer, and their novel 
potentials to achieve social embeddedness [2]. Nowadays, social networks based on 
social media (more briefly “social media networks”) have become ubiquitous [3]. 

Social media networks are a subset of social networks and have their own distinct 
characteristics [2]. They confront researchers and managers with novel questions and 
challenges. In this context, a fundamental challenge is the social media tie prediction 
problem, which is concerned with inferring future or missing ties among actors – such 
as friends, employees, or students – from given social media network snapshots [4–6]. 
Addressing this problem provides major benefits, as would an eventual solution to it. 

 For instance, one application domain that benefits from research on social media tie 
prediction is the development of contact recommender systems for employees [6, 7]. 
Such systems can guide community emergence [8, 9] and prevent information overload 



[10]. Another domain is the detection of anomalies, such as crucial missing ties [7, 11], 
which can indicate conflicts that harm communication and knowledge transfer or 
collaboration [12, 13]. Further domains are the detection of influential communities [6, 
7, 9] and the modeling of network evolution processes [6, 7, 14]. 

Driven by the tie prediction problem relevance induced by the various application 
domains, several studies have contributed to its solution [5–7, 9, 15, 16]. However, a 
review of these studies indicates that social media tie prediction research is complex 
and prone to errors, and it often relies on code-intensive methods [16–21]. This 
situation is particularly caused by the large number of prediction approaches [4, 5, 22] 
as well as the interdependencies [23] and large sizes [9] of network data samples. 

Against this backdrop, our goal is to develop a no-code analysis platform – that is, a 
platform that enables analysis without programing – to facilitate common tie prediction 
analysis tasks in social media networks. This would support researchers (and perhaps 
practitioners) in the generation of new insights into the tie prediction problem. More 
specifically, our platform should facilitate three common tasks. First, it should simplify 
comparing the accuracy of various fundamental tie prediction approaches (Section 2) 
with reference to a given social media network [5–7, 9, 16, 21, 24]. Second, it should 
facilitate evaluating the accuracy of specific fundamental tie prediction approaches 
across various (types of) social media networks [15, 21, 24]. Lastly, it should simplify 
combining different tie prediction approaches into strong overarching predictors [5, 9, 
15, 18, 19]. Thus, the following research question is addressed [25]: 
 

How can we implement a no-code platform for tie prediction analysis in social media 
networks that facilitates the three aforementioned common tie prediction tasks?  

 
To answer the research question, we followed the methodology by Peffers et al. [26], 

best practices from Gregor and Hevner [25], and guidelines from Hevner et al. [27]. 
First, we defined the problem, motivations for solving it, and objectives of a suitable 
solution. Then we designed and developed the platform, alias “artifact”, based on the 
problem statement and solution objectives. Finally, we demonstrated and evaluated the 
platform and communicated the findings.  

In line with Gregor and Hevner [25], the paper is structured as follows. The next 
section provides a concise literature review on tie prediction analysis in social media 
networks. It moreover provides a literature review on tie formation concepts and tie 
prediction algorithms in social media networks and on further tie prediction artifacts 
relevant for the development of our platform. This is followed by a detailed description 
of the applied methodology, after which the developed no-code analysis platform is 
demonstrated. The next section describes our evaluation of the platform, followed by a 
discussion of the main findings. The last section concludes and summarizes the paper. 

2 Related Work 

In line with recommendations by Gregor and Hevner [25], we built our literature review 
on descriptive (Ω) and prescriptive (Λ) knowledge. Descriptive knowledge is the 



“what” knowledge that sharpens the understanding of the problem, including its context 
and relevance, and how our proposed artifact may solve this problem [25]. Prescriptive 
knowledge is the “how” knowledge of relevant developed artifacts, such as concepts, 
algorithms, metrics, architectures, and system instantiations, which contribute to the 
development of our intended artifact [25]. Against this backdrop, this section contains 
four subsections. The first subsection contains a description of the relevant descriptive 
knowledge (Ω). The second subsection addresses fundamental tie formation concepts 
[23] in social media networks (Λ1), meaning concepts that explain common drivers of 
tie formation in social media networks, which in turn can be used to predict ties. The 
third subsection deals with fundamental tie prediction algorithms [4] in social media 
networks (Λ2), meaning algorithms that were explicitly developed for tie prediction 
purposes and which have been applied to social media networks. The fourth subsection 
describes further relevant artifacts for the development of our artifact (Λ3). 

To derive the aforementioned descriptive (Ω) and the prescriptive knowledge (Λ), 
we conducted a systematic literature search. More specifically, we used the search 
string “TITLE-ABS-KEY((“link” OR “tie”) AND (“prediction” OR “formation”) AND 
(“social media” OR “social network”))” to query the basket of journals and conferences 
named by [28] with the help of the Scopus database. We then studied the identified 
literature sources relevant to our topic, including their references and citations, to 
collect descriptive (Ω) and prescriptive knowledge (Λ) and further relevant sources. 
The findings derived from these literature sources constituted the knowledge base for 
the development of our platform (Section 4). 

2.1 Tie Prediction Analysis in Social Media Networks (Ω) 

Building on the definition provided by Wasserman and Faust [1], a social network, and 
thus also a social media network [2], consists of a finite set of actors (e.g., friends, 
employees, or students) and the ties (e.g., friendship, collaboration, or communication 
ties) defined on them. A fundamental challenge in such social media networks is the 
social media tie prediction problem, which is concerned with inferring future or missing 
ties among actors [4–6]. Several studies have contributed to its solution, leading to 
benefits for theory (e.g., novel insights into social media network evolution) and 
practice (e.g., techniques to enhance contact recommender systems) [5–7, 9, 15, 16]. 
However, social media tie prediction research is complex and prone to errors, and often 
relies on code-intensive methods, which may mitigate scientific progress [16–21]. 

To solve this problem, our goal is to develop a no-code platform with the objective 
to facilitate common tie prediction analysis tasks in social media networks by reducing 
complexity (e.g., coding complexity) while at the same time achieving a tie prediction 
velocity and accuracy comparable to those of conventional analysis methods [16–21]. 
More specifically, our platform should facilitate three common tasks derived from our 
literature review. First, the platform should simplify comparing the accuracy of various 
fundamental tie prediction approaches with reference to a given social media network 
[5–7, 9, 16, 21, 24]. Second, it should facilitate evaluating the accuracy of specific 
fundamental tie prediction approaches across various (types of) social media networks 
[15, 21, 24]. Third, it should simplify combining different tie prediction approaches 



into strong overarching predictors [5, 9, 15, 18, 19]. This would support researchers 
(and perhaps practitioners) in the generation of new insights into the social media tie 
prediction problem. We could not identify any no-code platform for tie prediction 
analysis in social media networks in the existing literature, which facilitates these tasks. 

2.2 Tie Formation Concepts in Social Media Networks (Λ1) 

Homophily: This concept implies that actors tend to form ties with other similar actors 
[29]. Homophily is often described with the idiom “birds of a feather flock together” 
[29]. Several types of homophilous tendencies can be observed in various types of 
social media networks [15, 30], indicating that this concept is relevant in such networks. 
For instance, past research has determined that tie formation in social media networks 
is driven by homophily in status [31], gender [32], function [30], topic [15], location 
[30], and hierarchy [32]. 

Dyadic Social Balance: This concept was first described by Heider [33] and explains 
(inter alia) tie reciprocation tendencies between two actors who are embedded in a dyad. 
Heider argued that unreciprocated ties in a dyad may lead to cognitive dissonance or 
social imbalance, which in turn may lead to uncertainty and instability [34]. Thus, 
actors embedded in such dyads naturally strive for reciprocity to establish cognitive 
consistence or social balance [33]. Research has shown that reciprocity drives tie 
formation in various types of social media networks [5, 30, 35, 36], suggesting that 
dyadic social balance is a relevant concept in social media networks. 

Triadic Social Balance: The aforementioned social balance concept can be extended 
to the triadic level. Heider argues that, analogously to the dyadic level, actors embedded 
in triads tend to strive for cognitive consistence, which in turn influences triadic 
formation tendencies [33]. For instance, to avoid cognitive dissonance in a triad, a focal 
actor’s alters (i.e., actors connected with him) may form a common tie, thus leading to 
a transitive triadic closure [37]. Colloquially, this social balance tendency is often 
expressed as “a friend of my friend should be my friend” [23]. Studies have determined 
that transitive triadic closure drives tie formation in various types of social media 
networks [8, 30, 38], indicating that triadic social balance is a relevant concept in social 
media networks. It seems to be slightly more relevant in public than in enterprise social 
media networks [14]. 

Rich-get-Richer: The rich-get-richer concept implies that the tendency of an actor to 
form a tie with a potential alter is proportional to the alter’s tie “richness” (i.e., number 
of his pre-existing ties). Hence, rich actors become even more central over time [39]. 
This concept is also often referred to as cumulative advantage [39] or preferential 
attachment [14]. Ultimately, it may lead to scale-free networks that follow a power-law 
distribution [40]. Research has shown that tie formation in social media networks may 
often – yet not always [30] – be explained by this concept [14, 39, 41, 42]. 



In summary, tie formation in social media networks can be conceptualized using the 
homophily, dyadic social balance, triadic social balance, and the rich-get-richer 
concepts. As shown in past studies, the accuracy of tie prediction artifacts in social 
media networks can be enhanced when these formational concepts are considered [5, 
8, 15]. Therefore, our intended artifact considers these concepts. The above list may not 
be exhaustive; for example, structural hole closing and transaction memory may also 
be relevant [23]. However, based on our systematic literature search, we are confident 
that the list reflects the most fundamental concepts [23] for developing our artifact. 

2.3 Tie Prediction Algorithms for Social Media Networks (Λ2) 

Common Neighbors: This is a fundamental algorithm for predicting ties in various 
types of social networks [5, 9, 16, 22]. It is described in equation (1): 

 Common neighbors (x,y) = |Γ(x) ∩ Γ(y)| (1) 

The rationale behind this algorithm is that the more structurally similar two focal 
actors (x and y) are, as expressed by the number of their common neighbors (i.e., |Γ(x) 
∩ Γ(y)|, where Γ(x) is the neighborhood of x, or in other words, his alters), the greater 
the odds of the actors establishing a common tie. Several social media network studies 
have applied the common neighbors algorithm for tie prediction purposes. Depending 
on the underlying social media network, the algorithm has achieved low [5, 9], medium 
[6, 7, 16, 21], or high [15, 21, 24] prediction accuracy. 

Jaccard Coefficient: This is another fundamental algorithm for predicting ties in 
various social network types [5, 9, 16, 22, 43]. It can be defined as shown in (2). 

 Jaccard coefficient (x,y) = 
|Γ(x) ∩ Γ(y)|

|Γ(x) ∪ Γ(y)|
 (2) 

It operates similarly to the common neighbors algorithm, but additionally divides 
the number of common neighbors across two focal actors by the number of actors that 
are neighbors of at least one of the focal actors (i.e., |Γ(x) ∪ Γ(y)|) . This enables 
addressing structural dissimilarities between the two focal actors more precisely, 
resulting in a more accurate representation of structural similarity. Several studies have 
applied this algorithm to predict ties in social media networks and have demonstrated 
low [9, 24], medium [5, 15, 16, 21], or high [6, 21, 24] prediction accuracy. 

Adamic-Adar Index: This algorithm was originally used to predict ties between 
personal homepage networks [44]. Over time, it has evolved into a fundamental tie 
prediction algorithm that is applicable in various social network types [5, 9, 16, 22]. 
The algorithm is described in equation (3). 

 Adamic-Adar index (x,y) = �
1

log (|Γ(z)|)z ∈ Γ(x) ∩ Γ(y)
  (3) 



As in the common neighbors algorithm, the Adamic-Adar index algorithm counts 
the number of common neighbors between two focal actors. However, unlike the 
common neighbors algorithm, it assigns less connected common neighbors a greater 
weight (note that log (|Γ(z)|) resembles the logarithmic degree centrality of a common 
neighbor z ∈ Γ(x) ∩ Γ(y)). The reasoning for the weighting approach is that two focal 
actors with ties to common neighbors having low connectivity are relatively likely to 
share unique characteristics, which in turn can increase the chance of a common tie 
emerging [44]. This algorithm has been used in various studies to predict ties in social 
media networks. Depending on the underlying social media network, the accuracy of 
prediction was low [5], medium [16, 21], or high [6, 21, 24]. 

Preferential Attachment: This is another fundamental tie prediction algorithm used 
in various social network types [5, 9, 16, 22]. It can be described as in (4). 

 Preferential attachment (x,y) = |Γ (x)| ∙ |Γ(y)| (4) 

Building on the rich-get-richer concept (Section 2.2), research has shown that the 
probability of a tie occurring between two focal actors is correlated with the product of 
their degree centrality (i.e., |Γ (x)| ∙ |Γ(y)|) [4]. The preferential attachment algorithm 
has been used to predict ties in various types of social media networks, and has achieved 
low [6, 9, 16], medium [5, 21], or high [21] prediction accuracy. 
 
The aforementioned list is not exhaustive. Nevertheless, after reviewing the various 
literature sources derived from our systematic literature search, we are confident that 
the list encompasses the most fundamental tie prediction algorithms [22] that should be 
considered in our artifact. 

2.4 Further Relevant Tie Prediction Artifacts (Λ3) 

The literature review indicated that researchers often combine different tie prediction 
concepts and algorithms with the help of classification machine learning algorithms, 
such as the decision tree [5, 9, 15, 18, 19], random forest [18, 19], k-nearest-neighbors 
[18, 19], and logistic regression algorithm [5], to achieve a higher prediction accuracy. 
Moreover, studies often rely on the AUC (area under curve) metric to evaluate their 
achieved prediction accuracy, expressed by a value between 0 (lowest accuracy) and 1 
(highest accuracy) [9, 11, 16, 22]. These artifacts were also considered for our platform. 

Lastly, we could not identify any no-code platform for tie prediction analysis in 
social media networks in the existing literature, which addressed the aforementioned 
descriptive (Ω) and prescriptive knowledge (Λ). This lack was underpinned by the fact 
that, as far as evident, the aforementioned social media tie prediction studies derived 
from our systematic literature search have all relied on more complex methods (e.g., 
code-intensive methods [16–21]). The most similar derived artifact is the tie prediction 
architecture by Schall [24]. However, it lacks relevant complexity reduction features, 
such as an analysis preparation component, which allows translating the complete 



architecture into an integrated no-code platform. Nonetheless, it supplied a sound basis 
for our artifact and was therefore incorporated. 

3 Methodology 

The goal of this research was to develop a no-code platform to facilitate tie prediction 
analysis in social media networks (Section 1). This objective is congruent with design 
science research, which aims to create and evaluate artifacts, such as constructs, 
models, methods, and – as in this paper – system instantiations, to solve relevant 
problems [27]. Thus, we adopted the design science research guidelines, best practices, 
and methodology proposed by Hevner et al. [27], Gregor and Hevner [25], and Peffers 
et al. [26], respectively. Figure 1 illustrates the applied design science research 
approach. 

 

Figure 1. Design science research approach (adapted from [26]) 

In the first activity, we collected descriptive knowledge (Ω) [25] to specify the 
research problem, namely the high complexity of conventional tie prediction analysis 
methods in social media networks; we also used this knowledge to motivate why 
solving this problem would be valuable (Section 2.1) [26]. Next, we further used this 
knowledge [25] to infer a solution to the problem and the main objective of that 
solution. The solution was a platform with the objective to facilitate tie prediction 
analysis via a no-code paradigm (Section 2.1) [26]. In the third activity, we collected 
prescriptive knowledge (Λ) [25] (Sections 2.2 to 2.4) and used it to translate the solution 
into an artifact, namely the proposed platform. This activity involved defining the 
artifact’s requirements and architecture as well as actually creating the artifact (Section 
4.1) [26]. Next, we demonstrated how the artifact could be used to solve the specified 
research problem. We did so by conducting an experimental [27] tie prediction analysis 
in an empirically derived social media network (Section 4.2) [26]. In the fifth activity, 
we evaluated the artifact’s complexity, velocity, and accuracy (as three common 
performance metrics [27] also relevant for our artifact (Section 2.1)) compared with a 
conventional, code-intensive method [17]. We used two social media networks for this 
task and repeatedly returned to activity 3 until the evaluation results were satisfactory 
(Section 5) [26], thus incorporating the iterative build-and-evaluate paradigm of design 
science research [27]. The last activity was communicating the research findings to 



diffuse the created body of knowledge and the artifact. The communication process 
explains the specified problem and its relevance, and indicates how – and how well – 
the artifact solves the problem [26]. This paper represents the fulfilment of this step. 
Moreover, we published the created artifact into a public software repository to make 
it publicly available for use and refinement1. 

Following the logic of Merwe et al. [45], we mapped each activity to the 
corresponding sections proposed in the design science research publication schema by 
Gregor and Hevner [25]. This paper’s structure has thus been defined, and more 
detailed insights regarding each activity appears in the relevant sections (Figure 1). 

4 Artifact 

This section has two subsections. The first describes the development procedure of the 
artifact, starting from a requirements definition and progressing to the architectural 
conception and ending with the actual artifact creation [26]. The second subsection 
demonstrates the developed artifact [26], namely our no-code platform to facilitate 
social media tie prediction analysis by reducing complexity (e.g., coding complexity). 

4.1 Development 

Requirements: Based on the research question (Section 1) and the review of the 
relevant descriptive (Ω) and prescriptive (Λ) knowledge (Section 2), we defined ten 
requirements for our artifact. These are as follows: First, the artifact should enable the 
use of (1) the derived tie formation concepts (Section 2.2) and (2) prediction algorithms 
(Section 2.3) as tie prediction approaches. Moreover, it should enable (3) comparison 
of various approaches with reference to a given social media network and (4) evaluation 
of a specific approach across several social media networks (Section 2.1). In addition, 
the artifact should enable (5) combining different approaches into a strong predictor 
(Section 2.1) via the determined (6) machine learning algorithms (decision tree, random 
forest, k-nearest-neighbors, and logistic regression algorithm) (Section 2.4). Lastly, the 
artifact should meet all the above requirements while also (7) following a no-code 
paradigm, thus rendering programing obsolete (Section 2.1). This no-code paradigm 
should (8) substantially reduce analysis complexity compared to conventional tie 
prediction analyses, while achieving a tie prediction (9) velocity and (10) accuracy 
comparable to those of conventional analyses (Section 2.1). 

Architecture: To conceptualize the architecture of our artifact, we relied on the 
literature review findings and adapted the modular tie prediction architecture proposed 
by Schall [24] (Section 2.4). Our artifact architecture is presented in Figure 2. 

 
1 Public repository link: https://github.com/social-media-analytics-research/tie-prediction-tool 



 

Figure 2. Artifact architecture (adapted from [24]) 

The data layer contains an import library that enables migrating social media networks 
into the network database, which is also situated in this layer. The stored networks can 
then be loaded from the tie predictor in the prediction layer. 

The tie predictor is the main component of the prediction layer. In the first step, the 
tie predictor loads a network N selected from the database and extracts from it a random 
tie subset of specified size, while maintaining the same actor set as in N, resulting in a 
test network NTE. This process is then repeated using the network NTE to derive a 
training network NTR [24], such that NTR ⊆ NTE

 ⊆ N [6, 16, 46, 47]. Subsequently, the 
tie predictor uses one of the prediction approaches stored in the concepts (Section 2.2) 
or algorithms library (Section 2.3) to calculate the associated prediction scores for each 
pair of network actors (x,y) in NTR

 and NTE. This step can be augmented by combining 
different tie prediction approaches into a strong predictor via the implemented machine 
learning algorithms. To meet the defined requirements, we decided to implement the 
machine learning algorithms derived from the literature review, namely decision tree, 
random forest, k-nearest-neighbors, and logistic regression algorithms (Section 2.4). 
After calculating these prediction scores, the tie predictor uses the scores derived for 
the network NTR together with NTR itself to train its prediction accuracy. Lastly, the tie 
predictor evaluates its accuracy via the prediction scores derived for the network NTE, 
NTE itself, and the implemented evaluation metric. For this, we relied on the AUC metric 
determined in the literature review, which quantifies the achieved prediction accuracy 
as a value between 0 (lowest accuracy) and 1 (highest accuracy) (Section 2.4). 

The presentation layer contains an analysis preparation component. It is used to 
prepare the tie prediction analysis by selecting the network N from the database, the 
sample sizes of the networks NTR and NTE, the tie prediction approach(es), and further 
tie prediction parameters, if available (Figure 3). This component is further used to start 
the core prediction process. After that process is complete, the network visualization 
component can be used to derive the (correctly and incorrectly) predicted ties in the 
network NTE (Figure 4). Moreover, the metric visualization component can be used to 



determine the AUC metric values for the networks NTR and NTE, including an associated 
AUC graph that visualizes the achieved accuracy (Figure 4). 

We made various adaptations to the baseline architecture to reduce complexity and 
to implement our findings from the literature review. First and potentially most 
importantly, we added an analysis preparation component to unify all necessary 
preparation steps into an integrated no-code dashboard. Next, we adjusted the network 
visualization component to enable displaying the predicted ties. Furthermore, we 
adjusted the concept, algorithm, and machine learning components as per our literature 
review findings. Lastly, we extended the import library so that standard network data 
formats such as GEFX, GML, GraphML, and CSV [20] could be imported easily. The 
residual components underwent only minor or no adjustments. 

Creation: In the data layer, we used PostgreSQL for the network database [48] and 
Python [49] together with NetworkX [20] to develop the import library. In the 
prediction layer, we used Python and NetworkX [20] for the tie predictor, the concepts, 
and algorithms library, and for each prediction score and the AUC evaluation metric 
component. Next, we used the Scikit-learn [50] Python package for the machine 
learning component. We opted for Scikit-learn because it is a well-established package 
both in academia and practice [50] and covers the common machine learning algorithms 
used for social media tie prediction identified by our literature review (Section 2.4). 
Moreover, it is simpler to configure compared to alternatives, such as PyTorch or 
TensorFlow [50], thus facilitating a further development of our platform by other users, 
if required. Although the two aforementioned packages contain more advanced 
machine learning techniques, future implementations of our platform can efficiently 
overcome this limitation with the help of specialized Scikit-learn wrappers, such as 
Skorch (a wrapper that augments Scikit-learn by PyTorch machine learning techniques) 
[51]. In the presentation layer, we used D3.js [52] and AngularJS [53] for the analysis 
preparation and each visualization component. 

4.2 Demonstration 

For the artifact demonstration, we empirically collected an enterprise social media 
network, ND, from a geographically dispersed organization. The network contained 17 
employees, and displayed 160 present and 112 absent directed collaboration ties [9]. 
Moreover, ND contained employee attributes such as business function and location, 
which enabled homophily-based tie prediction analysis. We used the common 
neighbors algorithm and the homophily concept as prediction approaches. The artifact 
enables assigning global relevance weights to the various homophily attributes of the 
embedded employees. As ND was geographically dispersed, we decided to focus solely 
on locational homophily. The analysis preparation is illustrated in Figure 3. The 
predicted ties and achieved accuracies (i.e., AUC values) are presented in Figure 4. 



 

Figure 3. Analysis preparation dashboard: aggregated representation 

We used the preparation dashboard to configure our prediction approach. First, we 
imported, named, and described our network sample ND. Next, we adjusted the 
prediction settings by selecting the prediction approaches, homophily weightings (via 
the button “Weightings”),  and a network split of ���

�  = 85% and ���
�

 = 95%. Then, 
we started the actual prediction process (via the button “Predict”). Figure 3 illustrates 
the analysis preparation dashboard after completion of the tie prediction process. 

 

Figure 4. Metric (left) and network visualization dashboard (right): aggregated representation 

The metric visualization dashboard (left panel) presents the achieved ���
�  AUC values 

for the chosen prediction approaches; these were 0.84 for the common neighbors 
algorithm and 0.62 for the locational homophily concept. Both approaches achieved a 



higher-than-random (i.e., > 0,5) accuracy. However, as reflected by the higher AUC 
value, the first approach achieved more accurate predictions. The dashboard augmented 
the values with an AUC graph. Lastly, the network visualization dashboard (right panel) 
allowed for selecting an actor’s (e.g., actor 9’s) egocentric network to examine his 
correctly (orange) and incorrectly (red) predicted ties. Blue ties were already present in 
���

� . Both prediction approaches considered ND to be undirected. 

5 Evaluation 

To evaluate our artifact (“ART”), we compared its performance against an alternative 
tie prediction method (“ALT”). For this, we built upon the alternative method from 
Bojanowski and Chroł [17]. For this, we used RStudio [54], a statistical programming 
tool often used for tie prediction analysis [17], augmented by preprocessing, tie 
prediction, and machine learning features. The methods were compared by assessing 
four performance metrics, collected along two prediction approaches and networks. The 
result was four evaluation cases with four value comparisons in each case (Table 1). 

Table 1: Evaluation results 

Approach 1: Adamic-Adar index algorithm ���
�(�)

 = 80% | ���
�(�) = 95% 

Approach 2: Logistic regression machine learning combining  
the Jaccard coefficient and preferential attachment algorithm 

Network  UCI network (���)  Twitter network (���) 

Approach Approach 1 Approach 2 Approach 1 Approach 2 

Method ART ALT ART ALT ART ALT ART ALT 

Complexity (min:sec) 03:10 12:45 03:31 07:30 00:27 14:25 00:44 09:35 

Velocity (min:sec) 03:46 00:11 05:56 00:27 00:13 00:06 00:24 00:10 

 Total time (min:sec) 06:56 12:56 09:27 07:57 00:40 14:31 01:08 09:45 

Accuracy (AUC) 0.80 0.77 0.91 0.91 0.84 0.83 0.81 0.80 

 
As mentioned earlier, we compared the methods by measuring and juxtaposing their 

achieved prediction performances in two different prediction approaches. For the first 
approach (“Approach 1”), we used the Adamic-Adar index algorithm. For the second 
approach (“Approach 2”), we used logistic regression machine learning to combine the 
Jaccard coefficient and the preferential attachment algorithm into a strong predictor. 

Each approach was applied to two networks. The first network (“UCI network 
(N��)”) comprised 1899 students from a Facebook-like internal social media platform 
at the University of California, Irvine (UCI). It encompassed 20,296 present and 
3,584,006 absent directed communication ties [55]. The second network (“Twitter 
network (N��)”) was derived from Twitter via Gephi [56] and encompassed 745 Twitter 
users as well as 1204 present and 553,076 absent directed communication ties.  

We defined four metrics to quantify the achieved performance of each method in 
each approach-network combination or evaluation case. Complexity represented the 
effort, in minutes, to prepare the analysis. Velocity displayed the minutes of the actual 



prediction calculation process. Total time indicated the cumulated complexity and 
velocity time. Accuracy represented the achieved AUC value. Each performance metric 
was recorded for each method in each evaluation case by a researcher with basic 
experience in both methods. 

Better performance metric values in each evaluation case are underlined twice. The 
artifact achieved better (lower) complexity scores than the alternative method. 
However, the alternative method achieved better (lower) velocity scores, particularly 
in the second approach (“Approach 2”). Nevertheless, the artifact achieved better 
(lower) total prediction time scores in three of the four evaluation cases. Lastly, the 
methods achieved similar accuracy scores, indicating that the prediction approaches 
have been correctly implemented into the artifact; small variances may be attributed to 
the randomness factor in the tie extraction step (Section 4.1). These results are 
discussed in Section 6. 

6 Discussion 

The goal was to reduce tie prediction complexity while maintaining a velocity and 
accuracy similar to those attained by conventional methods. For this purpose, we 
developed a no-code tie prediction platform. Our evaluation results indicate that our 
artifact significantly reduces tie prediction complexity while maintaining similar 
accuracy. However, the alternative method (the chosen conventional method) achieved 
better velocity scores, particularly in the machine learning approach. However, for the 
chosen social media networks, the artifact’s lower total prediction time largely 
overcompensated for its slower velocity. However, it is to be expected that this 
compensation effect diminishes proportionally to the network size. Nevertheless, 
various studies (e.g., [21, 57]) have used sizes for which our artifact may perform 
similarly, or better than, the alternative method regarding the total time. Thus, while 
future studies should enhance our artifact’s prediction velocity, it is already suitable for 
tie prediction analysis – even for larger networks, if velocity is not the main priority. 

Due to the iterative nature of the design science research methodology, the 
evaluation step was repeated several times. Here, we determined two further differences 
between the methods. First, the artifact displayed a substantially lower learning curve. 
While the researcher required several hours to perform a first tie prediction analysis in 
the alternative, he only required a few minutes in the artifact. Second, the artifact’s no-
code paradigm guarded the researcher against common pitfalls and errors that occurred 
in the alternative, such as mistakes in the network splitting process. Thus, the artifact 
promotes valid and correct prediction procedures. On the other hand, the no-code 
paradigm may sometimes restrict researchers. For instance, although the artifact allows 
random undersampling, augmenting it through additional sampling techniques could 
improve its accuracy [58]. Another useful addition would be to enable time-variant tie 
prediction analysis [6]. In general, future studies could augment the artifact by various 
additional features, thus aligning its flexibility with that of conventional methods. 

Congruent with our evaluation results, we conclude that our developed artifact 
answers the research question proposed in Section 1. Furthermore, the artifact meets 



the requirements in Section 4.1, apart from (9), which is only partially met due to the 
velocity concerns. Thus, with reference to the tie prediction problem stated in the 
introduction, our artifact reduces tie prediction complexity and facilitates the generation 
of novel insights. For instance, researchers could use the artifact to more easily explore 
formation mechanisms through which communities in social media networks evolve 
[6, 7, 9, 14], and could use the findings in order to develop guidelines to foster fruitful 
community evolution. Moreover, practitioners could use the artifact to more easily infer 
tie formation antecedents in order to develop their own recommender systems [7, 46]. 

7 Conclusion 

Readers should consider the artifact’s limitations, namely the improvable velocity score 
and the room for further tie prediction features. As an outlook, two optimization 
measures could mitigate these limitations. Firstly, to substantially enhance platform 
velocity, realizing artifact compatibility with alternative Python compilers, such as the 
PyPy just-in-time compiler, seems promising [59]. Secondly, to enable even more 
sophisticated tie prediction analyses, exploiting the features of the Scikit-learn package 
more strongly or even implementing a wrapper that augments this package, such as 
Skorch (Section 4.1), should prove valuable [51]. Another limitation is that the artifact 
was created upon literature mainly derived from the social media network domain. 
Although probable, it is not clear whether the artifact is directly applicable to other 
social network types. Lastly, future studies may strengthen the platform evaluation 
using additional prediction approaches, social media networks, metrics, or users [27]. 

Despite its limitations, our artifact extends the current body of knowledge by three 
novel contributions. First, conventional methods for tie prediction analysis in social 
media networks often rely on code-intensive approaches that encompass a set of 
complex steps [16–21]. In this context, our artifact provides the advantage of a no-code 
paradigm to reduce this complexity and to facilitate tie prediction analyses while 
maintaining an accuracy and, depending on the network sample size, total prediction 
time similar to that of conventional methods. Second, another advantage of the no-code 
paradigm is that it reduces the risk of mistakes and leads to a low learning curve, thus 
allowing to achieve valid results rapidly. Lastly, the artifact contains tailored features, 
such as an overview of the predicted ties and homophily type-based prediction analysis 
calibrations, enabling uncomplex but fine-grained analyses. 

From a theoretical perspective, we contribute to research by augmenting Schall’s tie 
prediction architecture [24] with an analysis preparation component. Our evaluation 
results imply that this architectural extension has various positive outcomes for 
resultant system instantiations (e.g., reduction of complexity, lower learning curves, 
and less user mistakes). 
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