5 research outputs found

    Modeling and optimum time performance for concurrent processing

    Get PDF
    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example

    An intelligent processing environment for real-time simulation

    Get PDF
    The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed

    Task assignment in parallel processor systems

    Get PDF
    A generic object-oriented simulation platform is developed in order to conduct experiments on the performance of assignment schemes. The simulation platform, called Genesis, is generic in the sense that it can model the key parameters that describe a parallel system: the architecture, the program, the assignment scheme and the message routing strategy. Genesis uses as its basis a sound architectural representation scheme developed in the thesis. The thesis reports results from a number of experiments assessing the performance of assignment schemes using Genesis. The comparison results indicate that the new assignment scheme proposed in this thesis is a promising alternative to the work-greedy assignment schemes. The proposed scheme has a time-complexity less than those of the work-greedy schemes and achieves an average performance better than, or comparable to, those of the work-greedy schemes. To generate an assignment, some parameters describing the program model will be required. In many cases, accurate estimation of these parameters is hard. It is thought that inaccuracies in the estimation would lead to poor assignments. The thesis investigates this speculation and presents experimental evidence that shows such inaccuracies do not greatly affect the quality of the assignments
    corecore