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Abstract 

This thesis studies the problem of assigning programs onto parallel processor sys- 

tems. It develops a generic simulation environment to model parallel systems and 

uses this environment to assess various assignment techniques. 

Graphs are used in modelling programs, and based on these program models, a 

taxonomy for assignment schemes is proposed. Assignment schemes are broadly 

classified into schemes dealing with dependency graphs and schemes dealing with 

interaction graphs. Desirable properties for efficient assignments under different 

program models are discussed. 

In contrast to the assignment of an interaction graph, an assignment of a de- 

pendency graph, in general, can be proved to be close to the optimal assignment. 

Moreover, the explicit temporal information made available by dependency graphs 

helps in establishing better assignment heuristics. The thesis thus focuses on the 

assignment of dependency graphs. 

Most of the published schemes for assigning dependency graphs are work-greedy. 

Their heuristics is based on satisfying the following rule of thumb: keeping the 

processors busy will lead to a -good' assignment. These schemes do not let a 

processor idle if there is a task the processor could execute. New analytical results 

bounding the performance of work-greedy assignment schemes are derived. It is 

shown that, when communication costs cannot be ignored, work-greedy assignment 

schemes may not perform well. An alternative assignment scheme which has a 

time-complexity lower than those of the work-greedy schemes is proposed. 



Abstract - ii 

A generic object-oriented simulation platform is developed in order to conduct 

experiments on the performance of assignment schemes. The simulation platform, 

called Genesis, is generic in the sense that it can model the key parameters that 

describe a parallel system: the architecture, the program, the assignment scheme 

and the message routing strategy. Genesis uses as its basis a sound architectural 

representation scheme developed in the thesis. 

The thesis reports results from a number of experiments assessing the performance 

of assignment schemes using Genesis. The comparison results indicate that the 

new assignment scheme proposed in this thesis is a promising alternative to the 

work-greedy assignment schemes. The proposed scheme has a time-complexity 

less than those of the work-greedy schemes and achieves an average performance 

better than, or comparable to, those of the work-greedy schemes. 

To generate an assignment, some parameters describing the program model will 

be required. In many cases, accurate estimation of these parameters is hard. It is 

thought that inaccuracies in the estimation would lead to poor assignments. The 

thesis investigates this speculation and presents experimental evidence that shows 

such inaccuracies do not greatly affect the quality of the assignments. 
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Chapter 1 

Introduction 

Execution of a program on a parallel processing system requires the program to 

be decomposed into several modules that can be executed concurrently by the 

processors. Such modules are called tasks. Most of the parallel languages - for 

example, Occam, Concurrent C or Modula 2+ - leave such decomposition to the 

user; the user should `think in parallel' and explicitly decompose the program into 

parallel tasks. Other languages - for example, SISAL, IBM Parallel Fortran or 

Concurrent Prolog - do not support explicit decomposition; they depend on a 

compiler for decomposition. 

Assume that the program has already been decomposed into tasks either by the 

user or by a compiler. The tasks comprising the program model must then be 

assigned to the set of processors so as to minimize the total completion time of 

the program. This is known as the assignment problem. 

Let T be the set of n tasks {T1, T2, ... , Tn} and P be the set of m processors {P1, 

P2, ..., Pm} onto which T is to be assigned. Assignment is then defined to be a 

function 

M:T -+P 

that maps the set of tasks onto the set of processors. M is defined for each task 

of T. The total time the set of tasks T takes to execute on the set of processors 
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P is called the makespan. The objective of the assignment is to minimize the 

makespan. 

The number of possible assignments is exponential in n. Thus, enumerating all 

the possible assignments and choosing the optimal one will be enormously time 

consuming (except for very small values of n). It is very unlikely that there could 

be a cleverer scheme to find the optimal assignment, since even the restricted 

versions of the assignment problem have been proved to be NP-complete [GJ79, 

U1176,AP91]. Automating the assignment procedure is therefore hard. 

Given the difficult nature of automated assignments, some parallel languages that 

leave the decomposition to the user require the user to specify the assignment as 

well. Languages such as Occam and POOL take this approach. For instance, Oc- 

cam forces the user to map processes to processors and communication channels to 

physical links. These languages trade off portability of programs for the simplicity 

of compilers (and run-time systems). 

Portable parallel programs require automated assignment schemes. Such auto- 

mated assignment schemes, in general, use some heuristics and produce a near- 

optimal solution in a reasonable amount of time. 

This thesis is a treatise on automated assignment schemes. It discusses the tech- 

niques and schemes for automated assignments. Throughout the thesis abstract 

program models, rather than specific programs, are assumed in order to maintain 

generality. Based on these abstract program models, the thesis presents a taxo- 

nomical framework for assignment schemes that broadly classifies the assignment 

schemes into schemes dealing with dependency graph models and schemes deal- 

ing with interaction graph models. The thesis then focuses on the assignment of 

dependency graphs, shows the impact of task ordering on the makespan and dis- 

cusses the factors on which task ordering should depend. It derives new analytical 

results bounding the performance of a class of assignment schemes and presents a 

new scheme that is easy to implement. 
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Comparison of different assignment schemes requires extensive experiments. It is 

decided to carry out these experiments on a simulated parallel processor system 

so that the parameters of the system can be varied easily during the experiments. 

To this end, the thesis develops a generic object-oriented simulation environment 

for parallel processor systems. The simulation environment is generic in the sense 

that it can model different architectures, assignment schemes and message routing 

strategies on a single platform. The environment uses as its basis an architectural 

representation scheme developed in the thesis. 

Performance of assignment schemes are assessed through experiments conducted 

using the simulation environment. The thesis reports results of many such exper- 

iments. 

Thesis Outline 

The rest of this thesis is organized as follows. 

Chapter 2 discusses the models and schemes used by automated assignment sche- 

mes. Graphs are used in modelling parallel programs. Based on these program 

models, a taxonomy for assignment schemes is proposed. Assignment schemes 

are broadly classified into schemes dealing with dependency graphs and those 

dealing with interaction graphs. Desirable properties for efficient assignments 

under different program models are discussed. Since these desirable properties 

are model-specific, the approaches taken by assignment schemes under different 

models are seen to be distinct. Some examples from recent literature are mentioned 

and are related in the light of the proposed taxonomy. 

As opposed to the assignment of an interaction graph, an assignment of a de- 

pendency graph, in general, can be proved to be close to the optimal assignment. 

Moreover, the explicit temporal information made available by dependency graphs 

helps in establishing better assignment heuristics. 
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Chapter 3 thus focuses on the assignment of dependency graphs. Since even the 

restricted versions of the assignment problem are NP-complete, it is hard to find 

optimal assignments in a reasonable amount of time. Practical assignment schemes 

thus go for some heuristics that picks up a near-optimal assignment in polynomial 

time. 

The heuristics most of the current assignment schemes for dependency graphs use 

is based on satisfying the following rule of thumb: keeping the processors busy 

leads to a `good' assignment. Such schemes are said to be work-greedy. Work- 

greedy assignments are important since most of them provide a solution with 

a guarantee. It is proved that, when communication costs can be ignored, any 

work-greedy assignment would be close to the optimal assignment by no more 

than a small constant factor. It is also proved that this does not hold, should the 

communication costs be taken into account; that is, with communication costs, 

a work-greedy assignment can perform worse than the optimal assignment by a 

large factor that depends on the communication costs along some path in the task 

graph. 

A non-work-greedy assignment scheme whose heuristics is not based on keeping 

the processors busy is proposed. The scheme is based on satisfying two desirable 

properties put forward in chapter 2: assigning independent tasks to different pro- 

cessors, and assigning dependent tasks to the same processor. The new scheme 

has a time-complexity at least an order less than the work-greedy schemes. 

Performance assessment of these assignment schemes is the goal of the remain- 

der of the thesis. Performance of a parallel system depends on the architecture, 

program, the assignment scheme and the message routing strategy. We develop 

a generic modelling approach that lets us specify and model these parameters 

and use this approach to simulate program execution on some processor topolo- 

gies under different assignment schemes. These simulations aid the performance 

assessment of the assignment schemes. 

The development of a generic modelling approach requires the following. 
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1. A representation scheme based on an abstraction level that integrates most 

of the possible architectural schemes. 

2. Representing software in an architecture-independent way. 

3. Providing the means to specify the assignment scheme and the routing strate- 

gies. 

Chapter 4 develops a structural framework for representing parallel architectures. 

A set of functional units forming the basic blocks of architectures is identified. 

These functional units serve as building blocks in constructing architectures. Struc- 

tural diagrams are used in representing the architectures thus constructed. Gen- 

esis, a generic modelling environment for parallel systems, is based on the repre- 

sentation scheme developed in this chapter. 

Chapter 5 discusses the design and implementation aspects of Genesis. Genesis 

takes an object-oriented view of the entire parallel system, viewing both the ar- 

chitecture and the software as sets of objects. Every single functional unit of the 

architecture is modelled by an object; software entities - tasks, task graphs and 

messages, for instance - too are modelled by objects. In addition, there are means 

to specify various assignment and routing schemes. Genesis is thus a tool to de- 

scribe and model the key parameters determining the performance of a parallel 

system: the architecture, program, assignment method and routing scheme. It is 

a good laboratory for carrying out experiments in performance analysis. 

Chapter 6 uses Genesis as a modelling platform to analyse the performance of the 

work-greedy assignment schemes and the proposed non-work-greedy scheme. Us- 

ing Genesis, processor topologies are constructed and the execution of a number of 

task graphs is simulated under different assignment schemes. Optimal assignments 

are found for small task graphs and these are compared against those assignments 

generated by the chosen assignment schemes. The schemes are then tested with 

random task graphs as well as task graphs obtained from real programs. The 
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possibility of testing the assignment schemes on a real multiprocessor system is 

also investigated in chapter 6. 

Static assignment schemes assume that the task graph parameters - task execution 

times, volumes of information transfer, etc. - are known at compile time. However, 

in practice, run-time dependencies prohibit accurate measurement of these param- 

eters. One would expect that such inaccuracies would lead to poor assignments. 

Chapter 6 thus investigates this speculation and presents experimental evidence 

that shows the impact of measurement or estimation inaccuracies on the quality 

of assignments is small. 

The final chapter concludes with a summary. 

Contributions of the Thesis 

The specific contributions of this thesis are as follows: 

1. A taxonomy for assignment schemes [Man91]. 

2. Performance guarantees for the work-greedy assignments of 

independent tasks [MT90] 

dependency graphs ignoring communication delays, and 

dependency graphs with communication delays. 

3. A non-work-greedy assignment scheme [MT91]. 

4. Performance and error-sensitivity analyses of assignment schemes for depen- 

dency graphs. 

5. A structural representation scheme for parallel architectures. 
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6. An implementation of an object-oriented environment - Genesis - to model 

and simulate parallel systems [Man92]. 



Chapter 2 

Models and Schemes for Assignment 

A parallel program can be best viewed as a graph: the vertices represent the 

tasks and the edges represent the dependencies or interactions between the tasks. 

This gives rise to two models that represent parallel programs: a dependency 

graph and an interaction graph. See figure 2-1. In dependency graphs, the edges 

dictate a temporal dependency on the tasks they connect, i.e. the simultaneous 

execution of the tasks connected by an edge is prohibited. In interaction graphs the 

edges simply represent the interactions between the tasks they connect. Temporal 

dependencies are not explicit in an interaction graph: two tasks connected by an 

edge are thus simultaneously executable. 

(a) A dependency graph (b) An interaction graph 

Figure 2-1: Program models: dependency and interaction graphs. 

Both dependency and interaction graphs may have weights associated with their 

vertices and edges: the weight on a vertex indicates the amount of computation 



Chapter 2. Models and Schemes for Assignment _ _ 9 

the corresponding task performs, and the weight on an edge indicates the amount 

of communication between the tasks the edge connects. 

Many assignment schemes are based either on dependency graph models or on 

interaction graph models. That is, they assume that the program has already 

been transformed into one of these graph forms and work their way forward to 

find a mapping of the task set onto the set of processors. 

Some models of computation, for instance CSP [Hoa78] or CCS [Mi189], are well 

suited to the interaction graph forms whilst some other models of computation, 

for instance a dataflow computation model [GPC88,Sar89], are well suited to the 

dependency graph forms. The ease of transformation of the program into a suitable 

graph form thus depends on the user's model of computation. Programs written in 

Occam, for instance, are easy to model as an interaction graph whereas programs 

written in SISAL can be easily modelled as a dependency graph. 

2.1 Assignment of Dependency Graphs 

Tasks in a dependency graph have computation times associated with them. The 

graph edges, in addition to specifying temporal dependencies and thus a partial 

order on the task set, specify the volumes of information transfer that take place 

between the tasks they connect. Tasks receive information on their input edges and 

send information on their output edges. A task becomes ready to execute when 

all its input information is received, and finishes execution when it has produced 

all the required outputs. It is assumed that the task produces no output whilst it 

executes and then produces all outputs instantaneously when it finishes executing. 

Dependency graphs are assumed to be acyclic, since this assumption makes their 

assignment simpler. When a program contains loops and conditional branches, 

this model does not seem to be realistic. However, there are techniques to convert 
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cyclic dependency graphs (which correspond to programs containing loops and 

conditional branches) into acyclic ones: 

Probabilistic techniques associate with every task graph edge a nonzero prob- 

ability [ME67,Tow86]. If there is a directed edge from task T; to task T;, 

then associated with this edge is the probability that task T; will be executed 

following the execution of Ti. 

Conditional branches can be collapsed into single tasks [RG69]. 

Conditional branches introduce exclusive solution paths. Directed acyclic 

graphs for each of these paths could be obtained and mapped onto the same 

set of processors [SWP90]. 

Loops can be unrolled [ERL91] or collapsed into single tasks. Loop-unrolling 

is briefly discussed in section 6.3.2. 

The acyclicity constraint on dependency graphs is assumed throughout this thesis. 

2.1.1 Preemptive and Nonpreemptive Assignments 

Depending on whether a task's execution can be suspended or not, assignment 

strategies for dependency graphs take two forms: preemptive and nonpreemptive. 

In the nonpreemptive case, a task is executed continuously from start to finish 

on the same processor. In the preemptive case, execution of a task can be inter- 

rupted under the assumption that it will be resumed at a later time on some (not 

necessarily the same) processor. 

Preemptive assignments may have makespans shorter than those of nonpreemptive 

ones. Consider the assignment of three independent tasks To, Tl and T2 each of 

execution time 2 on two identical processors Po and P1. The Gantt charts in fig- 
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PO 

PI 
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PI TI T2 

TO 
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0 1 2 3 

Time -s 
(a) Preemptive 

TI TO 
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Time 

(b) Nonpreemptive 

Figure 2-2: Preemptive assignments may be better than nonpreemptive ones 

ure 2-2, adapted from [Cof76], demonstrate that the makespan of the preemptive 

assignment is shorter than that of the nonpreemptive one. However, not all tasks 

can be preempted. If a task is atomic, i.e. indivisible, then it cannot be preempted. 

Besides, preemption is not free: it involves some context-switching overheads. It 

is also hard to decide whether and when to preempt a task. 

2.1.2 Work-greedy Assignments 

Most of the known nonpreemptive assignment schemes for dependency graphs are 

work-greedy. The heuristics used by a work-greedy assignment scheme is based on 

satisfying the following rule of thumb: keeping the processors busy leads to a `good' 

assignment. That is, a work-greedy assignment does not let a processor idle if there 

is a task it could execute. Work-greedy schemes, in general, generate assignments 

with a guarantee: the assignments can be provably close to the optimal assignment. 

It can be shown analytically that no work-greedy assignment can be worse than 

the optimal assignment by more than a constant factor. When the communi- 

cation costs are fixed, this constant factor is small. Assignment of independent 

tasks [MT90], assignment of dependency graphs with arbitrary computation costs 

but zero communication costs [Gra76], and assignment of dependency graphs with 

unit computation and unit communication costs [RS87] are some cases where the 

existence of the small constant factor has been proved. In all these cases, it can 

be shown that 

-<2 
w - 
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where w' is the makespan of a work-greedy assignment and w is the makespan of the 

optimal assignment. However, poor assignment strategies may have greater impact 

on the makespan when the communication costs are arbitrary [BMRS88]. The next 

chapter looks at this issue in detail and proves tighter bounds on makespans. 

Given the varying nature of communication costs, it is not always easy to guarantee 

that a processor will not idle when there is a task it could execute. For instance, 

a work-greedy assignment may, at compile-time, assign a task T to a processor 

P such that the start time of T is the earliest when T executes on P. This also 

ensures that P will be kept busy as much as possible. However, at run-time, due 

to routing decisions and contention in the network, T may not be able to start 

on P at the predicted time. It may also be possible, under the prevailing network 

conditions, that there could be a processor P on which T would have started 

earlier than it would have on P. That is, processor P may be idling even though 

there is a task T in the system that it could execute. 

2.1.3 Non-work-greedy Assignments 

Keeping the processors busy is not the prime goal of non-work-greedy assignment 

schemes. That is, a non-work-greedy assignment may have a processor idling even 

when there is a ready task that the processor could execute. This may seem 

inefficient at first sight. The following example illustrates that, in fact, a non- 

work-greedy assignment may perform better than a work-greedy assignment. See 

figure 2-3. The task graph is assigned to two identical, connected processors Po 

and P1. Note that, under the non-work-greedy assignment, processor PO idles 

during the time interval (0, 1) although task T3 is executable during this interval. 

The work-greedy assignment shown in figure 2-3(b) is the best any work-greedy 

assignment can generate. The makespan of this assignment is larger than that of 

the non-work-greedy assignment. The existence of non-critical, ready tasks make 

work-greedy assignment schemes fair poorer than the non-work-greedy schemes. 
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(a) Task graph (b) A work-greedy assignment (c) A non-work-greedy assignment 

(Numerals in parenthesis denote task execution times. 

Number of processors is two. 

Communication delay is assumed to be zero) 

Figure 2-3: A comparison of work-greedy and non-work-greedy assignments 

However, predicting whether or not it is desirable to delay the execution of a 

non-critical task is not easy. Therefore, non-work-greedy schemes may be more 

complicated than the work-greedy schemes. 

2.1.4 Assignment of Independent Tasks 

An important and well-studied class of program graphs arises when all the tasks are 

independent, that is, when there are no dependencies or interactions between the 

tasks. Since the execution times of these tasks carry all the temporal information 

required by dependency graph models, the assignment of independent tasks is 

indeed a special case of the assignment of dependency graphs. 

2.2 Assignment of Interaction Graphs 

Tasks in an interaction graph have an average computational load associated with 

them. Each graph edge specifies the volume of information transfer that takes 

place between the tasks that it connects. 
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Tasks execute simultaneously by going through a series of compute and communi- 

cate steps. The completion time of a task in an interaction graph is indeterministic. 

Therefore, the makespan of an assignment of an interaction graph is indetermin- 

istic. It can be neither calculated nor expressed in terms of the interaction graph 

parameters. Thus, assignment schemes for interaction graphs set their objective 

to satisfy a set of desirable properties that can be expressed in terms of the graph 

parameters, rather than to achieve the minimum makespan. An objective func- 

tion that satisfies the set of desirable properties is formulated and used by the 

assignment schemes. The objective function evaluates the quality or the cost of 

an assignment. An optimal assignment refers to the assignment that optimizes 

this objective function rather than the assignment that minimizes the makespan. 

Several objective functions have been used in the literature. They can be classified 

into three groups. The first group of functions aims to balance the computation 

costs among the processors and the second group aims to minimize communication 

costs. The third group of functions aims to balance the computation costs whilst 

minimizing communication costs. 

Just balancing the computation costs will result in an assignment that has all 

its task distributed across the available processors. Therefore, when the inter- 

task communication costs are large, the first group of objective functions may 

not do well. Similarly, just minimizing the communication costs will result in a 

trivial assignment that clusters all the tasks into a single processor (or a group 

of processors). Thus, the second group of objective functions, used alone, cannot 

be a reasonable goal for assignment. Good assignment schemes, therefore, use 

objective functions of the third group. 

A naive approach to arrive at the optimal assignment is through an exhaustive 

search for the assignment that minimizes the objective function. Unfortunately, 

given n tasks and m processors, the number of possible assignments is m". Thus 

the naive approach will be time consuming. 

A straightforward way of reducing the search time is to use established search 
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improvement techniques, such as branch-and-bound search with underestimates 

or the A* search [Win84]. These techniques reduce the best-case search time. Yet, 

the worst-case time remains exponential. 

Another technique widely employed by assignment schemes is iterative improve- 

ment. These schemes start from an initial assignment and improve its quality by 

iteratively moving tasks between processors. The improvement is measured by 

the objective function. Iterative improvement methods may not work always, for 

there are chances of getting stuck at a local optimum of the objective function. 

Probabilistic jumps to nearby solutions may permit further improvement in such 

cases. Simulated annealing [K+83] is a technique to get around the local optima 

in a systematic way. In the worst-case, all iterative improvement techniques take 

exponential time. But in practice, by choosing appropriate improvement mecha- 

nisms, speedy solutions are possible. 

2.2.1 Assignment of Regular Graphs 

The above discussions apply for any arbitrary interaction graph. However, simpler 

assignment techniques can be used for those interaction graphs that are regular. 

In a regular graph, all the tasks have the same characteristics and all the inter- 

task communications are of the same volume. Regular graphs form the models of 

iterative parallel programs in which the computation and communication patterns 

are regular and identical during each iteration. The regular nature of the graphs, in 

most cases, permits one to consider assignment as a simple geometric partitioning 

problem. 
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2.3 A Taxonomy for Assignment 
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Based on the discussion in the previous section, a taxonomy for assignment schemes 

is proposed here. The related earlier works on taxonomies for assignment schemes 

include [CK88], [WM85] and [SE87]. 

The taxonomy presented by Casavant and Kuhl is based primarily on solution 

techniques [CK88]. By `solution technique', we mean the methods and ways of 

arriving at a solution. Optimal, heuristic and graph-theoretic methods are some 

examples. The taxonomy is partly hierarchical and partly flat. The characteristics 

that do not fit uniquely under any particular branch of their hierarchical taxonomy 

are placed in the flat part of the taxonomy. In fact, the characteristics forming 

the flat part could be branches beneath several leaves of the hierarchy. 

Since similar solution techniques apply to different assignment schemes, the base 

of their hierarchical taxonomy is filled with many identical leaves. Most of the 

known solutions to the assignment problem are heuristic sub-optimals. Thus the 

taxonomy of Casavant and Kuhl places most of the assignment schemes in the 

heuristic sub-optimal class. A taxonomy based solely on solution techniques often 

groups assignment schemes that are not particularly related. 

Wang and Morris present a taxonomy for load balancing [WM85]. Load balancing, 

however, is just one criterion for efficient assignment of certain program models. 

Thus their taxonomy cannot categorize most of the assignment methods. 

Sadayappan and Ercal mention a taxonomy based partly on program models 

[SE87]. However, the structure of their taxonomy is not sufficiently expressive. 

For instance, assignment of independent tasks is not classified under the assign- 

ment of dependency graphs; rather, it is treated as special, at the top level of the 

taxonomy. 
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Assignment 
Interaction graph 

--F-Dependency graph 

Figure 2-4: A broad classification for assignment based on program models 

Figure 2-4 illustrates our broad taxonomy based on program models. Assignment 

schemes for dependency graphs are classified further: figure 2-5 illustrates the 

taxonomy. 

Nonpreemptive 
Dependency graph 

L_ Preemptive 

Work-greedy 

Non-work-greedy 

Figure 2-5: A broad taxonomy for dependency graph assignment 

Task graphs can be generated either at compile time or at run time. Static assign- 

ment schemes use task graphs generated at compile time; dynamic schemes use 

the graphs generated at run time. Thus the taxonomy classifies both static and 

dynamic assignment schemes in the same framework. 

2.4 Desirable Properties for Efficient Assign- 

ments 

The heuristics used by most of the assignment schemes are based on satisfying two 

desirable properties: balancing the computation costs among the processors and 

minimizing the communication costs. To balance the computation costs needs an 

even distribution of tasks across the available processors; and the minimization 

of communication costs requires to cluster tasks together onto a single processor. 

These two are contradictory goals. The efficiency of an assignment scheme depends 

on how well the scheme exploits the graph structure to arrive at an assignment 

that achieves both these goals. It involves trade-offs between satisfying the two 
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stated desirable properties. This section discusses some desirable properties for 

efficient assignments in the light of the program models that have been described 

earlier. 

The desirable properties depend also on the parallel system onto which the pro- 

gram is assigned. In particular, the properties that relate to the minimization 

of communication costs may vary according to the type of the parallel system. 

In distributed-memory systems communication between any two tasks executing 

on two different processors depends on the distance between the two processors. 

In most of the shared-memory systems, where the tasks are held in a common 

pool and communication is via a shared address space, communication cost be- 

tween any two tasks is independent of where the tasks execute. This commu- 

nication cost depends upon the architectural characteristics and the workload of 

the memory system and the interconnects. Resource contentions and conflicts in 

the memory and interconnects may increase the communication cost. However, if 

the shared-memory systems exploit local storage (caches, registers, etc.) for local 

communication, then communication cost between the tasks placed in the same 

processor can be substantially less [Squ90]. 

Therefore, the desirable properties that aim to minimize communication costs 

must take into account the properties of the parallel system. 

2.4.1 Interaction Graphs 

In order to exploit the potential parallelism in an arbitrary interaction graph, 

the processors need to be equally loaded. This property is often referred to as 

load balancing. This is essentially the distribution of the tasks evenly across the 

processors so that each processor has an equal share of the total computational 

load. 

To minimize the communication costs in a distributed-memory system, tasks with 

heavy interaction must be assigned to the same processor (or adjacent processors). 
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In addition, in systems where the interconnection is a topology, mapping of the 

task graph edges onto single processor links will minimize communication costs. 

In shared-memory systems, if some local storage (registers, cache, etc.) is used for 

local communication, then it is desirable to assign those tasks that interact heavily 

to the same processor; otherwise communication costs are irrelevant as far as the 

assignment is concerned. 

Regular Interaction Graphs 

Regular graphs, by their very nature, permit simpler assignment techniques to 

be employed. For example, in systems comprising identical processors with reg- 

ular communication network (regular topologies and shared-memory systems, for 

instance), assignment of regular graphs can be viewed as a simple geometric par- 

titioning problem. Each partition generated by the assignment scheme is assigned 

to a suitable processor (chosen by the assignment scheme) for execution. In gen- 

eral, partitions and processors are so chosen that the communication is restricted 

to the nearest neighbours. 

As an example, consider the regular interaction graph of figure 2-6(a). Tasks 

in this graph represent iterative processes that communicate with their nearest 

neighbours. For the processor topology of figure 2-7(b), the partition of figure 2- 

6(b) would suit best; for the processor topology of figure 2-7(c), the partition 

of figure 2-6(c) would suit best. In both these cases both the computation and 

communication loads are balanced. For the processor topology of figure 2-7(a), 

the partition of figure 2-6(c) is more suitable than that of figure 2-6(b); even 

though both partitions balance the computation costs, the communication cost 

per processor graph edge is less in the case of partition 2-6(b). 

The computation time of a partition is proportional to the area of the partition; 

and the inter-partition communication time is proportional to the perimeter of the 

partition. Here `area' means the number of task vertices within the partition, and 
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E:. 

(a) (b) (c) 

Figure 2-6: Partitioning regular graphs: Task graph and partitions. 

PO 

(a) 

PO P1 P2 P3 

Figure 2-7: Partitioning regular graphs: Processor topologies. 
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P1 

`perimeter' means the number of vertices along the partition boundary. The task 

vertices along the partition boundary are responsible for the inter-partition com- 

munication (and, since each partition is assigned to a processor, inter-processor 

communication). The partition can be of different shapes: square, strip, rectan- 

gular, etc. (see figure 2-6). The processor topology and communication pattern 

will determine the exact shape of the partition [RFS7]. 

Since both the computational load and the communication load need to be bal- 

anced, the following desirable properties apply for regular graphs: 

The sizes of the partitions need to be the same. 

P1 

The shapes of the partitions need to be the same. 
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2.4.2 Dependency Graphs 

The temporal dependencies present in a dependency graph dictate a partial order- 

ing on the tasks. This partial ordering does not permit equal loading of processors 

without either increasing the makespan or wasting processor resources. Therefore, 

load balancing makes little sense for dependency graphs. Assignment schemes 

for dependency graphs should thus employ a different criterion to minimize the 

computation costs. 

Assume a dependency graph in which communication costs are negligible compared 

to the computation costs. The following desirable property that minimizes just 

the computation costs is thus adequate for such a graph: 

Processors must be kept as busy as possible. 

The heuristics used by work-greedy assignment schemes is based on satisfying this 

property. Under this property tasks are executed at the earliest possibility. 

When the communication costs vary, approaches that minimize the communication 

costs while balancing the computation costs are needed. One such approach is to 

extend the above desirable property to take communication costs into account. 

Work-greedy schemes that consider communication costs take this approach. 

Another approach is to start with a different set of desirable properties that aims 

to balance computation costs and minimize communication costs. Such a set of 

desirable properties is stated as follows: 

Assignment of independent tasks to different processors. 

Independent tasks are concurrently executable. To minimize the 

makespan requires the concurrent execution of these independent 

tasks. Thus these tasks should be assigned to separate processors. 

Assignment of dependent tasks to the same processor. 
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Dependent tasks can only be executed in sequence. They would 

gain nothing by being assigned to separate processors; and, more 

importantly, they could incur extra communication delays if they 

are executed in separate processors. Thus the dependent tasks 

should be assigned to the same processor. 

2.5 Examples from the Literature 

In this section, some recent literature on assignment is briefly reviewed and clas- 

sified according to the proposed taxonomy. The distinctions and relationships 

between the published assignment schemes will then be easy to appreciate. Some 

of these schemes are dynamic and the rest are static. 

Note that an extensive survey is not intended. Only a few typical examples are 

cited. 

2.5.1 Interaction Graphs 

Shen and Tsai view the assignment of interaction graphs as a type of graph match- 

ing problem called weak homomorphism [ST85]. If a graph GT can be mapped 

onto another graph Gp such that there is a many-to-one mapping of the edges of 

GT onto the edges of Gp, then there is a weak homomorphism from GT to Gp. 

They use the A* algorithm [Win84] to find the minimum cost weakly homomorphic 

mapping. 

Most of the heuristic assignment schemes for arbitrary graphs use a two step 

procedure: an initial assignment and an iterative improvement. Some schemes 

minimize the communication costs in the first step, and in the second step balance 

the computational load. Others balance the computational load first and then 

iteratively exchange tasks to minimize communication. 
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The scheme proposed by Efe first clusters heavily-communicating tasks together 

to form an initial assignment and then uses a task reassignment algorithm to 

obtain iteratively an assignment with balanced computational load [Efe82]. Sa- 

dayappan and Ercal address the problem of assigning non-uniform, irregular finite 

element meshes onto processor graphs [SE87]. The initial assignment is improved 

by boundary refinement to balance the computational load. 

Bokhari presents a heuristic algorithm that improves an initial assignment through 

pairwise interchanges, the objective function being the number of task graph edges 

that fall on processor graph edges [Bok8l]. He uses probabilistic jumps to guide 

the objective function out of local optima. Lee and Aggarwal propose a similar 

assignment scheme [LA87]. Unlike Bokhari, they examine only selected pairs for 

interchange; although, in the worst case, all the pairs could be selected. They also 

take the possibility of network contention into account. 

Simulated annealing is a technique that generalizes the probabilistic jump ap- 

proach to get around local optima. Donnet et al. show results indicating the effec- 

tiveness of simulated annealing over other iterative improvement methods [DSS88]. 

However, simulated annealing is time consuming. Parallel versions of simulated 

annealing are thus being employed by some assignment schemes [HMS]. 

Lin and Keller propose a dynamic scheme for assignment based on the so-called 

gradient strategy: a local, demand-driven load balancing method [LK87]. They 

assume locality of interactions among the task vertices, and thus aim to achieve 

a global load balance by successive localized balances. Kale proposes a similar 

dynamic assignment scheme called Contracting Within a Neighbourhood (CWN) 

[Ka187]. 

Regular Interaction Graphs 

Most of the assignment schemes published for the parallel numerical solutions 

of partial differential equations are good examples of this category [RF87]. The 
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solution domain of a partial differential equation (PDE) can be discretized into a 

`grid' of points. The value at each grid point is updated in each iteration using 

the values at neighbouring points. These points can be updated in parallel. The 

computational work associated with each point is the same throughout the grid. 

Each of these grid points is a task to be executed; and these tasks interact with 

their neighbours. Hence the PDE grid forms a good example of a regular graph. 

Vrsalovic et al. consider the assignment of regular graphs onto a shared bus multi- 

processor [V+85,V+88]. They define speedup in terms of computation and commu- 

nication decomposition functions. The computation (communication) decompo- 

sition function is the ratio of processing (data access) time for a single processor 

system to the processing (data access) time for a multiprocessor system. They 

consider three different partition shapes. For three different combinations of de- 

composition functions, they derive speedup considering both exclusive global data 

access and data access with local copying. In [Cve87], Cvetanovic extends the 

work done by Vrsalovic et al. Her analysis is not limited to shared buses. She 

defines speedup in terms of the bandwidth of the interconnection network and the 

computation and communication decomposition functions. 

Reed et al. consider the assignment of a PDE solution grid onto both shared 

memory and message passing architectures [RF87,RAP87]. Their analysis differs 

from [V+85,V+88,Cve87] in that they consider the effect of stencils (the number 

of neighbours with whom a grid point interacts) on the speedup. They conclude 

that stencils, partition shape and architecture must be considered together for 

generating optimal assignments. In [NW88], Nicol and Willard derive expressions 

for optimal speedup and optimal number of processors for the assignment of PDE 

solution grids. 

In [Bok88], Bokhari considers the problem of assigning a chain-structured parallel 

or pipelined program onto a chain of processors. Both the task and processor 

graph have nearest-neighbour communications. With the constraint that each 

processor should be assigned a contiguous subchain of tasks, Bokhari develops a 
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simple algorithm for finding the optimal assignment. The algorithm uses a layered 

graph to search for the optimal solution. 

Regular graph structures may as well arise at an intermediate stage during the 

assignment process. For example, chain-structured graphs arise as an intermedi- 

ate form in some of Bokhari's assignment schemes [Bok88]. The schemes generate 

optimal assignments of some classes of programs onto host-satellite processor sys- 

tems with certain constraints. Program transformation techniques that transform 

classes of programs into pre-defined regular graph structures have been proposed 

elsewhere as well [Co189]. 

2.5.2 Dependency Graphs 

Optimal polynomial time assignments of dependency graphs are available only for 

restricted cases. For example, in [Cof76] two such restricted cases are given: when 

the task graph is a forest, and when there are only two processors available. In 

both these cases task execution times are fixed at unity and communication costs 

are assumed to be zero. 

Many of the assignment schemes use heuristics to arrive at near-optimal solutions. 

Work-greedy Assignments. Most of the published work-greedy assignment 

schemes assume that the communication costs can be ignored. Coffman gives 

a good account of such work-greedy assignment schemes that ignore communi- 

cation costs [Cof76]. Shirazi et al. [SWP90] and Adam et al. [ACD74] present 

comparative analysis of such assignment schemes. Work-greedy schemes that ig- 

nore communication delays have been used in scheduling dataflow graphs onto 

dataflow architectures [GKS87] and scheduling instruction streams onto pipelined 

processors [Kri90]. 

Rayward-Smith considers work-greedy assignments of dependency graphs with 
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unit execution and unit communication times [RS87]. Lee et al. [LHCA88], Wu 

and Gajski [WG88], Hwang et al. [HCAL89] and El-Rewini and Lewis [ERL90] 

propose work-greedy assignment schemes taking arbitrary communication costs 

into account. The next chapter will briefly describe these schemes. 

Kruatrachue and Lewis introduce a work-greedy assignment scheme called Dupli- 

cation Scheduling Heuristics (DSH) that replicates execution of some of the tasks 

so as to minimize the communication costs [KL87]. If a task T's execution on a 

processor P is delayed due to communication from a predecessor task Tp of T, 

then DSH examines if replication of Tp (and possibly Tp's predecessors and Tp's 

predecessors' predecessors and so on) on P will make T start earlier. The so- 

lutions that DSH generates are very good if the communication costs are large 

compared to computation costs. The trade-off here is the high time-complexity of 

the algorithm'. 

All the above assignment schemes are static. Chou and Abraham describe a dy- 

namic assignment scheme [CA82]. They introduce probabilistic fork and join 

points in the task graph in order to model the probabilistic nature of the pro- 

gram. Partitions of the task graph are found using results in Markov decision 

theory. Communication costs are assumed to be zero in this scheme. 

Non-work-greedy Assignments. Kim [Kim88] and Sarkar [Sar89] propose al- 

gorithms for non-work-greedy assignments and show that they perform well for 

task graphs with heavy communication. These algorithms follow a two step ap- 

proach. The first step assigns the tasks onto an unbounded number of virtual 

processors. These virtual processors are completely connected and have equal 

interprocessor communication costs. The second step maps the virtual proces- 

'The time-complexity of DSH is O(n4m), where n is the number of tasks and m is 

the number of processors. 
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sors onto the real processors. Yang and Gerasoulis propose a non-work-greedy 

algorithm called Dominant Sequence Clustering (DSC) for the first step [YG91]. 

The two-step non-work-greedy schemes are complex and involve large time-com- 

plexities. They do not provide any analytical performance guarantee as do the 

work-greedy schemes. Moreover, no experimental comparison between these sche- 

mes and work-greedy schemes have been reported. 

Preemptive Assignments. Sahni [Sah84] and Blazewicz et al. [BDW86] ad- 

dress preemptive assignment of independent tasks. Sahni assumes the context- 

switching time to be non-zero and develops an algorithm to obtain a sub-optimal 

solution of known accuracy. Blazewicz et al. present a scheme for a system where 

tasks may need more than one processor at a time for their processing. 

2.6 Summary 

The models and schemes used for the solution of the assignment problem have 

been discussed. Graphs are used in modelling parallel programs. Based on these 

program models, a taxonomy for assignment is proposed. Assignment schemes 

are broadly classified into schemes dealing with dependency graphs and those 

dealing with interaction graphs. Desirable properties for efficient assignments 

under different program models are discussed. Since these desirable properties 

are model-specific, the approaches taken by assignment schemes under different 

models are seen to be distinct. Some examples from recent literature are mentioned 

and are related in the light of the proposed taxonomy. 

The distinction between assignment techniques brought to light by the taxonomy 

is important. It aids research to take the right path in choosing a proper technique 

and not spending too much time over the others. 
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As opposed to interaction graphs, a dependency graph permits finding an assign- 

ment with a guarantee: the assignment can be proved to be close to the optimal 

assignment. Moreover, the explicit temporal information made available by depen- 

dency graphs helps in establishing better assignment heuristics. We thus choose 

to analyse in detail the problem of assigning dependency graphs. 

The next chapter is a treatise on the assignment of dependency graphs. The impact 

of task ordering on the partitions of dependency graphs is shown. The factors that 

should determine the ordering are discussed. Work-greedy assignment schemes, 

particularly those that take the communication costs into account, are discussed. 

Solution guarantees are proved for work-greedy schemes. A single-step non-work- 

greedy assignment scheme, whose heuristics is based on satisfying the desirable 

properties put forward in section 2.4.2, is proposed. 



Chapter 3 

Assignment of Dependency Graphs 

The previous chapter classified assignment schemes broadly into those dealing 

with interaction graphs and those dealing with dependency graphs. As opposed 

to interaction graphs, a dependency graph permits finding an assignment that 

can be provably close to the optimal. Besides, the temporal dependencies made 

available by dependency graphs help in finding better assignment heuristics. Thus, 

this chapter chooses to examine in detail the assignment of dependency graphs. 

During its course, it shows the impact of task ordering on the makespan and 

discusses the factors on which task ordering should depend. It presents some 

new results bounding the performance of work-greedy assignment schemes and 

proposes a new non-work-greedy assignment scheme. The time-complexity of the 

new scheme is at least an order less compared to the work-greedy schemes. 

Some notations that need to be used subsequently are defined first. Other nota- 

tions will be defined in context. 
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Notations. 

n number of tasks 

m number of processors 

T set of tasks { To, T1, . . . , Tn_1 } 

P set of processors { Po, P 1 ,- .. , P._1 } 

Tj execution time of Ti assumed common on all P; 

Si memory space requirement of Ti 

vjj volume of information transfer between Tj and Tj 

cjj amount of information that can be transferred between Pi and P; 

per unit time 

yj memory capacity of Pi 

GT task graph depicting tasks and the dependencies among them 

Gp processor graph depicting processors and their interconnections 

w the total execution time of GT on Gp (i.e. the makespan) 
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The primary architectural considerations are the set of processors and the topology 

in which the processors are connected. The processor topology is modelled as a 

graph with vertices representing the processors and weighted edges representing 

the interconnections between the processors. All the processors are assumed to be 

capable of doing the functions required by the tasks. 

Task graphs are assumed to be acyclic. A dataflow execution model is assumed 

for the execution of task graphs. That is, a task can begin its execution when 

all its inputs are available, and finishes only when it has produced all the re- 

quired outputs. Communication delay may occur when a task sends its output to 

its successor tasks. This delay is dependent on the volume of information being 

transferred and the distance the information needs to travel. Tasks, once sched- 

uled, cannot be preempted. Task replication is not considered, that is, no task 

can execute on more than one processor. 

See figure 3-1 for example task and processor graphs. Figure 3-1(a) shows the 

task dependency graph corresponding to the evaluation of an expression z = 



Chapter 3. Assignment of Dependency Graphs 31 

(b) 

Figure 3-1: Example task and processor graphs. 

F(f (x), g(y)). Figure 3-1(b) shows a three-processor system where all processors 

are equidistant' from each other. 

3.1 On the Assignment of Dependency Graphs 

An assignment divides the task set T into in, some possibly empty, ordered subsets 

or partitions. The objective of the assignment is to minimize the makespan of T 

on P. 

The following example illustrates the effect task ordering has on the makespan. 

Consider the assignment of the task graph of figure 3-3(a) on a two-processor 

system {Po, P,} with zero interprocessor communication delay. The assignment 

{To, T3, T4 } Po; {T1, T2, Ts } P1 

gives rise to a makespan of 3 units; whereas the assignment 

{To, Ts, T4} Po; {T2, T1, Ts} P1 

gives rise to a makespan of 4 units. An increase in makespan is observed by 

changing the ordering of tasks belonging to the task partition mapped to P1. 

1Two processors, P= and P2, are equidistant from a processor Pk if cik = Cjk = cki = 

Ckj. 
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Let p(T, A) be the processor to which the task T is assigned under assignment A. 

Two assignments Al and A2 are said to be equivalent if p(T;, Al) = p(T;, A2) Vj. 

In the example above, Al and A2 are equivalent. Equivalence of two assignments 

implies that the processors are assigned the same subsets of tasks under both 

assignments; yet the task orderings within these subsets are different. 

Now consider a set of equivalent assignments S = { A1, A2, ..., AZ }. Let 

the makespans of these assignments be w1, w2, ... , and wZ respectively. Let 

wmin = mini=1...Z wi and wmax = maxi=1...z wi. Assume that the processors are 

never left idling intentionally, i.e. they idle only if there is no task they could 

execute. The following bound then holds. 

Theorem 3.1. 
wmax < m 
Wmin 

Furthermore, this bound is tight. 

Proof. This theorem follows as a special case of a theorem Jaffe [Jaf8O] (and Liu 

and Liu [LL78]) proved. For a heterogeneous system with k types of tasks and mi 

processors to execute tasks of type i, Jaffe proved that 

w' 
1 <k+1- 

w maxi mi 

where w is the length of the optimal makespan; and w' is the makespan of any 

arbitrary assignment that assumes that the processors do not idle if there are tasks 

that they could execute. He also proved that this bound is tight. 

Since each task of partition i of A, belonging to the set of equivalent assignments 

S, can be considered to have type i, our theorem can be seen as a special case of 

Jaffe's theorem where k = m and mi = 1 Vi. 

0 

Theorem 3.1 establishes that an assignment with a poor task ordering can perform 

m times worse than an equivalent assignment with a good task ordering. Thus an 
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assignment scheme should not only determine to which processor the tasks are to 

be assigned but also determine the ordering of tasks assigned to each processor. 

This ordering is determined by giving suitable priorities to the tasks. 

An obvious candidate for the top priority is the critical task. If a task's execution 

cannot be delayed without increasing the makespan, then the task is said to be 

critical. Experimental results have shown that choosing the critical task first 

leads to good assignments when the communication costs can be ignored [ACD74]. 

However, it is hard to find the critical task if communication delays are to be taken 

into account, since these communication delays depend on the assignment that is 

yet to be determined. Besides, giving the critical task top priority is not sufficient 

to guarantee an optimal assignment [SWP90]. 

We now identify those tasks that should be given priority. 

1. Tasks with long execution times must get priority - 

Consider a fixed makespan. Assigning short-length tasks first leads to a state 

where there is no processor with enough time to fit a long-length task. Such 

temporal fragmentations increase the makespan. (See figure 3-2. A poor 

assignment results, if long-length tasks are not given priority.) 

Thus task Tt should be given priority proportional to Ti. 

2. Tasks with large communication requirements must get priority - 

This again is due to the possible temporal fragmentation that may occur if 

priority is not given to tasks with large communications. 

Thus task Ti should be given priority proportional to 

E vtj where succ(T) denotes the set of successors of task T. 
T) E succ(T; ) 

3. Tasks with large numbers of successors must get priority - 
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Figure 3-2: Priority for long tasks. 

By executing tasks with large numbers of successors first, task dependencies 

can be resolved as quickly as possible [KN84]. Thus, more tasks may become 

executable, reducing processor idle time and the makespan. (See figure 3-3. 

A poor assignment results, if tasks with large numbers of successors are not 

given priority.) 

Thus task Ti should be given priority proportional to 

E 1 

Ti E succ(T; 
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(Numerals in parenthesis denote task execution times. 

Number of processors is two. 

Communication delay is assumed to be zero) 
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Figure 3-3: Priority for tasks with more successors. 
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4. Tasks with long-length successors must get priority 

The reason for this is the combination of the reasons given for 1 and 3 above. 

Thus task Tj should be given priority proportional to 

E rj 
T1 E succ(T; ) 

5. Tasks with large memory space requirements must get priority - 

Assigning small-sized tasks first will lead to a situation where there will not 

be any processor with enough free memory to hold large tasks, though the 

total free memory space is large enough. Such spatial fragmentations can be 

reduced by assigning tasks with large space requirements first. 

Thus task T, should be given priority proportional to si. 

Assigning priorities to tasks is important even if the tasks are independent. The 

task selection mechanism in any assignment scheme should take these priorities 

into account. However, once an assignment is determined, task ordering becomes 

irrelevant in the case of independent tasks. Tasks within the partitions of an 

assignment can be executed in any order and this will not have any effect on the 

makespan. In other words, equivalent assignments of independent tasks have the 

same makespan. 

Solving the assignment problem. A naive approach to solve the assignment 

problem is to enumerate all the possible assignments and choose the assignment 

that gives the minimum makespan. However, this approach will take exponential 

time. It is very unlikely that there would be any cleverer scheme to find the optimal 

assignment in polynomial time, since even the restricted cases of the assignment 

problem have been proved to be NP-complete [U1176,RS87]. Practical assignment 

schemes thus settle for heuristics that find sub-optimal assignments in polynomial 

time. 
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Most of these heuristic assignment schemes are work-greedy. The next section 

analyses work-greedy assignments in detail. 

3.2 Work-Greedy Assignments 

An assignment is work-greedy if no processor remains idle when there is a task 

the processor could execute. Work-greedy assignments are time-driven: tasks and 

processors are selected at specific time instances, i.e. when a processor becomes 

free or when a task finishes its execution. 

Work-greedy assignment schemes, in addition to finding where to execute a task, 

attempt to find when to execute a task. That is, they always predict the start and 

finish times of the tasks. This permits computation of bounds on the makespans 

of work-greedy assignments. 

3.2.1 Brief Reviews of Some Work-Greedy Assignments 

Many work-greedy assignment schemes ignore communication delays. These sche- 

mes follow a common basic algorithm. 

Tasks are kept in a priority list. A free processor scans the list from left 

to right to find the first ready task to be executed. If there is a ready 

task, the processor executes the task until completion. Otherwise the 

processor idles until a task becomes ready. 

This procedure ensures that the assignment is work-greedy. See [Cof76] for a good 

account of assignment methods not involving communication delays. 

This section reviews some work-greedy assignment schemes that do take commu- 

nication delays into account in arriving at an assignment. All assignment schemes 
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considered here are static, that is, the characteristics of the task dependency graph 

are assumed to be known at compile time. 

Scheme ETF 

The ETF (Earliest Task First) [HCAL89] algorithm uses two sets called the ready 

task set, A, and the free processor set, I. A task is said to be ready when all its 

predecessors are scheduled. The algorithm calculates the earliest start time es of 

every task that belongs to A on every processor belonging to I. The tasks are 

assigned in the ascending order of their earliest start times. Let the minimum of 

these earliest start times be es, and the task and processor corresponding to this 

minimum be T and P respectively. It is worth noting here that the sets A and I 
change as each task finishes its execution - more tasks may become ready and at 

least one processor becomes free. 

The algorithm uses two instances of an event clock to mark the current moment 

(CM) and the next moment (NM). An event is the termination of an executing 

task. The event clock advances with the completion times of the tasks. NM 

specifies the time instant to which the event clock would next advance. It is 

essentially the earliest time after CM at which one or more currently executing 

tasks finish execution. When a task finishes execution at NM, it may cause new 

tasks to become ready. It is possible that a newly ready task could have an e3 less 

than es. In that case, it is this new task that should be scheduled first. The reason 

for using NM is simply to take these newly ready tasks into account. In essence, 

a task is scheduled at CM, if NM > es. Otherwise the decision is postponed until 

the instant NM. 

The time-complexity of the ETF scheme is 0(n2m), where n is the number of 

tasks and m is the number of processors. 
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Scheme ERT 

ERT (Earliest Ready Task) [LHCA88] selects a task and processor combination so 

that the selected task is the earliest ready at a given moment. That is, the selection 

criterion in ERT is the minimum earliest ready time (not the earliest start time 

as in ETF). Thus, ERT does not postpone any scheduling decision until a further 

moment as ETF often does. As in ETF, task and processor selection methods are 

inseparable. ERT does not maintain a set of free processors. All the processors 

are checked against each task of the set of ready tasks to determine the best task 

and processor combination. 

The time-complexity of the ERT scheme is O(n2m). 

Scheme MH 

MH (Mapping Heuristic) [ERL90] selects for assignment the maximum priority 

task from the set of ready tasks at a given time. A task's priority is calculated 

from the task's level (the length of the longest path from this task to any end-task) 

and the number of successors the task has. The selected task is then assigned to 

the processor that can execute it earliest. Compare this with ERT, in which task 

and processor selection methods are inseparable. 

In calculating communication delays, MH assumes an adaptive shortest path rout- 

ing policy to deliver the messages. This takes network contention into account. 

The time complexity of the MH scheme is O(n2m3). 

There is a restricted version of MH that does not use any adaptive routing in 

determining the communication delays. This scheme is called RMH. 
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Scheme MCP 

MCP (Modified Critical Path) [WG88] is similar to RMH except for the choice of 

task priorities. In MCP tasks are given priority according to their latest start time. 

When two tasks have the same priority, the latest start times of their successors 

(and latest start times of successors' successors, and so on) are used to break the 

tie. 

The time-complexity of the MCP scheme is O(n2 log n + n2m) of which O(n2 log n) 

is spent on calculating the task priorities. 

3.3 General Bounds on the Makespan of Work- 

Greedy Assignments 

A work-greedy assignment does not guarantee optimality. Yet, it is possible to 

prove that the makespan of a work-greedy assignment is within a constant factor 

of the makespan of the optimal assignment. This section presents some new results 

bounding the makespans of work-greedy assignments. The bounds are general in 

the sense that they apply for any task ordering employed. Implications of these 

bounds are discussed in section 3.3.5. 

For the purpose of notational convenience, a work-greedy assignment is character- 

ized as an ordered triple W = (01, 02, 03), where ji are defined as follows. 

1. th characterizes the execution times of the tasks involved in the assignment. 

It depends solely on the dependency graph. 

01 E {arbitrary, unit} 

2. N2 characterizes the communication time between two tasks assigned to dif- 

ferent processors. It depends on the dependency graph, the architecture onto 
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which the dependency graph is to be assigned and the assignment itself. 

/32 E {arbitrary, unit, nil} 
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3. /33 characterizes the precedence relation between the tasks. It depends solely 

on the dependency graph. 

/33 E {arbitrary, nil} 

Graham et al. [GLLK79] and Veltman et al. [VLL90] have used similar notational 

characterizations. 

3.3.1 Independent Tasks 

Assignments of independent tasks are characterized by W = (arbitrary, nil, nil). 

Let w and w' denote makespans of any two work-greedy assignments. Graham 

[Gra76] proved that 
w' maxi T= <1+(m-1) 
W E Ti 

It can be readily seen that for large values of in, this bound is not tight. In 

particular it is known that as m -4 oo, w'/w should reach unity. The following 

theorem presents an improved bound that more accurately reflects the behaviour 

of work-greedy assignment algorithms for large values of in. 

Let T be the execution time of the longest task, i.e. maxi r=; and let ir = E r1/T. 

Then we have 

Theorem 3.2. 

w'/w<1+(m-1)/ir ifm<7 
w'/U.; <1+(ir-1)/m ifm>7r 

where w is the length of the optimal makespan, that is not necessarily work-greedy; 

and w' is the makespan of any arbitrary work-greedy assignment. 
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Proof. Consider a work-greedy assignment of makespan w'. Let the last task to 

finish be T,z (i.e. T,z finishes execution at the instant w'). The rule of work-greedy 

assignments dictates that no processor can remain idle before the instant w' - Ti 

and that at least one processor will be busy until the instant w'. Hence, 

Ti> (m-1)(W'-Ti)+w' 

Since-r,, <T Vz (z=1...n), 

ETi>(m-1)(W'-f)+W' 
i 

This gives 
W,<ETi+(m-1)T 

(3.3.1) 

For any (and thus, the optimal) assignment with a makespan of W, the following 

inequality holds true: 

w > max (3.3.2) 
m 

When E Ti /m > T, from (3.3.1) and (3.3.2) we get the bound: 

W' m - 1 -<1+ 
W 7r 

When T > E Ti/m, from (3.3.1) and (3.3.2) we get the bound: 

W 7r-1 -<1+ 
W m 

(3.3.3) 

(3.3.4) 

Both (3.3.3) and (3.3.4) always hold true. However, when m > 7r the bound of 

(3.3.4) is tighter, otherwise the bound of (3.3.3) is tighter. 

11 

Examples can be constructed to establish that the bound of theorem 3.2 is the 

best possible when m = 7r. See [Gra76] example 3. 

From (3.3.3) and (3.3.4) we get the following loose bound: 

w' 
< 2 (3.3.5) 

W 
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When m > n, each processor is assigned at most one task. In this case, the 

makespan is the length of the longest task. Thus, the makespan remains constant. 

That is, 
w' -=1 ifm>n 
w 

It may be possible to find tight bounds that are independent of ir for some special 

cases. The following theorem presents such a bound for the case m = n - 1. 

Theorem 3.3. If m = n - 1, then w'/w < 3/2. Furthermore, there exist task sets 

for which w'/w equals the above bound. 

Proof. Without loss of generality, it can be assumed that 

Tl < 72 ...... < Tn-1 < -r.- 

Since m = n - 1, all the tasks except one will start execution at instant 0. Let 

the last task to be executed (i.e. the task that starts execution at an instant > 0) 

be Ti. Ti will be assigned to a processor that is assigned the shortest task in the 

set T - {T,}. Let the makespan of this assignment be w;. 

Now, if T1 is the last task to be executed, it will be assigned to the processor that 

is assigned T2, for T2 is the first task to finish out of the tasks already assigned. 

Therefore, 

wl = max[r,, r1 + r2] (3.3.6) 

If T, (i > 1) is the last task to be assigned, then T1 will be the first task to finish 

execution. Ti will be assigned to the processor that is assigned T1. Therefore, 

w; = max[Tr, Tl + Ti] (3.3.7) 

From (3.3.6) and (3.3.7) it is observed that, 

1. wl = w2 
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2. Wn = Ti + T. 

3. w, _1 > W.-2 ...... > w2 (since Ti > Tj_1 V j > 1) 

4. W,i, > w,,_1 (since Wn = Ti + T,i, and T. Ta_1) 

From these observations we obtain 

Wn > W.-1 > Wn_2...... > W2 = W1 

The best-case makespan is thus w1, and the worst-case makespan is 

Wworst Wn Ti + T. 

Wbest W1 
= 

max[Tn, Ti + T2] 

We now find the maximum possible value of W,,/W1. 

wn. 

(3.3.8) 

Hence, 

(3.3.9) 

When Ti and T2 are relatively small such that Ti + T2 < Tn, the denominator of 

the ratio wn/w1 is Tn. Now let us increase T1 keeping Tn constant so as to increase 

Wn/w1. Let Tn = 2k (k > 0) and T2 = Ti + 2E (e > 0). The numerator of Wn/W1 

increases but the denominator remains constant at 2k. However, when Ti becomes 

greater than k -c (i.e. Ti + T2 becomes greater than Tn) the denominator starts to 

increase. Now two cases need to be considered: 

1. Ti < k - e. Let Ti = k - e - S (0 < S < k - e). By substituting for Ti in (3.3.9), 

wn 3k-e-S 
L01 2k 

2. T1 > k - e. Let Ti = k -c + S (0 < 6 < k + e). By substituting for Ti in (3.3.9), 

wn 3k-e+S 
w1 2k + 26 

Since we are interested in (wn/W1)may, we let e - 0. Thus we have 

w 3k-6 n if <k 10) (3 3 Ti . . 

W1 2k 

Wn 3k + rS if Ti > k (3.3.11) 
w1 2k + 25 
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From (3.3.10) and (3.3.11) we get 

Wnl 3 

Cwl/max 2 

If w and w' are any two makespans, then 

(!L'Jworstbest 

J max 

Thus, 

W - 2 
(3.3.12) 

As an example, consider a set of three tasks for which execution times are given 

by rl = T2 = r3/2 = 1. With two processors, the best-case makespan is 2, and 

the worst-case makespan is 3. This example establishes that the bound stated in 

theorem 3.3 is the best possible. 

3.3.2 Dependency Graphs with Zero Communication Times 

Assignments of dependency graphs with zero communication times are character- 

ized by W = (arbitrary, nil, arbitrary). 

Let w and w' denote makespans of any two work-greedy assignments. Graham 

[Gra69,Gra76] proved that 

<2-1/m 

The following theorem improves this bound by incorporating into it the so-called 

degree of average software parallelism. Informally, the degree of average software 

parallelism is a measure of parallelism in a task dependency graph. 

Let T* be the execution time of the longest chain of the dependency graph; and 

let r = E z;/z*. Then we have 
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Theorem 3.4. 

w'/w<1+(m-1)/7r ifm<7r 
w'/w<1+(7r-1)/m ifm>7r 

where w is the length of the optimal makespan, that is not necessarily work-greedy; 

and w' is the makespan of any arbitrary work-greedy assignment. 

Proof. 

For any (and thus, the optimal) assignment of makespan w, the following inequality 

holds true: 

w>max[ETi,T*] (3.3.13) 
M 

Let -< be the partial order on T. The rule of work-greedy assignments dictates 

that for any arbitrary work-greedy assignment of makespan w' there exists a chain 

of tasks 

Tcl - < Tc2 --< ... --< Tay 

such that at every time instant t E [0, w'] some Tj is being executed. 

Let the sum of all the processor idle times in this assignment be I. Then, 

y 

I<(m-1)Erj 
j=1 

But for any chain in an assignment, the following inequality holds true: 

y 

ET,j < T* 
j=1 

Now since 

w'= 1 FTi+I 
m 

using (3.3.14) and (3.3.15) we get, 

w' < m {ri+(m_1)r*] - [: I 

(3.3.14) 

(3.3.15) 

(3.3.16) 
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When F_7-{/m > 7-*, from (3.3.13) and (3.3.16) we get the bound: 

``'l <1.m-1 
LO 7r 

When 7-* > F_ 7-{/m, from (3.3.13) and (3.3.16) we get the bound: 

LO' <1+7r-1 

LO m 

(3.3.17) 

(3.3.18) 

Both (3.3.17) and (3.3.18) always hold true. However, when m > 7r the bound of 

(3.3.18) is tighter, otherwise the bound of (3.3.17) is tighter. 

7r is defined to be the degree of average software parallelism. It is a lower bound 

on the amount of parallelism within a task dependency graph. 

If --< is empty, then 7r becomes equal to E 7-t/T and thus the results of theorem 3.4 

and theorem 3.2 match. 

Note that, from (3.3.13) and (3.3.16), we get the following loose bound: 

w' -<2 (3.3.19) 

According to theorem 3.4, as m -i oo, w'/w reaches unity (rather than 2 as 

Graham's bound suggests). This highlights the fact that with unlimited processing 

resources, any work-greedy assignment is optimal. In practical terms, a work- 

greedy assignment is optimal if m > n. 

We can also express in terms of 7r a lower bound on the number of processors 

required to execute the task graph in the minimum possible time. 

A bound on the number of processors. The number of processors required 

to finish executing all the tasks in the minimum possible time is bounded below 

by the ratio of the total execution time requirement of the tasks and the minimum 
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makespan [McN59]. The total execution time requirement is 2 T; and the mini- 

mum possible makespan is T'. A lower bound on the number of processors is thus 

given by 

r i '_ TD [7r] 
T" 

That is, any (not necessarily work-greedy) assignment will require at least 17rl 

processors, if it is to execute the task graph in the minimum possible time. 

Tighter lower bounds on the number of processors can be found in [FB73,AM90]. 

3.3.3 Dependency Graphs with Unit Computation and 

Communication Times 

Assignments of dependency graphs with unit computation and unit communication 

times are characterized by W = (unit, unit, arbitrary). For this characterization, 

Rayward-Smith [RS87] proves the following upper bound on the makespan w of 

an arbitrary work-greedy assignment: 

w<(3_)w'_(1_) 
m 

3.3.4 Dependency Graphs with Arbitrary Computation 

and Communication Times 

Assignments of dependency graphs with arbitrary computation and arbitrary com- 

munication times are characterized by W = (arbitrary, arbitrary, arbitrary). The 

assignment schemes ETF, ERT, MH and MCP fall under this characterization. 

Hwang et al. [HCAL89] and Lee et al. [LHCA88] proved bounds on the makespans 

of ETF and ERT. They have proved that 

W'<(2_!)wi+c 
m 
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where w' is the makespan of the work-greedy assignment (either ETF or ERT), 

w` is the makespan of the optimal assignment without considering communication 

delays, and Cx is the communication delay along some chain in the task graph. 

Expressing w' in terms of w` does not reveal much. When giving a guarantee for 

the makespan of a certain assignment, one would want to give it in terms of the 

corresponding optimal makespan. It is more useful to give a guarantee in terms of 

w, the optimal makespan not ignoring the communication delay. 

As in theorem 3.4, the degree of average software parallelism can be incorporated 

into this bound so that the bound will be tighter. 

Moreover, we note that the bound can be generalized for all the assignments 

characterized by W = (arbitrary, arbitrary, arbitrary). We thus present in the 

following theorem a generalized bound. 

Let r* be the sum of execution times of tasks along the longest chain (ignoring 

communications) of the dependency graph and T+ be > Ti; and let ir = T+/T 

Then we have 

Theorem 3.5. 

w' <1+(m-1)+m Ccomm ifm<7r 
W 7C T+ 

i 
W <1+(1C-1 +7r Ccomm ifm>7r 
W M T+ 

where w is the length of the optimal makespan, that is not necessarily work-greedy; 

and w' is the makespan of any arbitrary work-greedy assignment. Ccomm is the 

maximum communication delay along some chain of tasks. 

Proof. 

The proof is similar to the one presented for theorem 3.4. 
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For any (and thus, the optimal) assignment of makespan w, the following inequality 

holds true: 

W > max I , T*, 
m 

(3.3.20) 

Let -< be the partial order on T. The rule of work-greedy assignments dictates 

that for any arbitrary work-greedy assignment of makespan w' there exists a chain 

of tasks 

Tc1 -< Tc2 -< ... -< Tcy 

such that at every time instant t E B some Tcj is being executed or is waiting for 

input from Tcj_1 (that has finished executing) to start its execution. Here B is 

the set of all points of time in [0, w'] for which at least one processor is idle. 

Let proc(T) be the processor that has been assigned the task T; and let mtt(PP, Pj) 

be the maximum time to transfer unit information from processor Pi to processor 

Pj (possibly via other processors). Ccomm is calculated as follows: 

y-1 

Ccomm = E mtt(proc(Tcj), proc(Tcj+l)) v(Tcj, Tcj+1) 
j=1 

Let the sum of all the processor idle times in this assignment be I. Then, 

y \ y I < m E Tcj + Ccomm - E Tcj 
j=1 j=1 

But for any chain in an assignment, the following inequality holds true: 

11Tc3 
< T* 

Now since 

W' = 
1 

[T+ + I ] 

using (3.3.21) and (3.3.22) we get, 

' 
T+ (m - 1)T* 

W _ - + + Ccomm 
m m 

When T+/m > T*, from (3.3.20) and (3.3.23) we get the bound: 

w'<l+m-1+m Ccomm 

7 T+ 

(3.3.21) 

(3.3.22) 

(3.3.23) 

(3.3.24) 
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When r > T-+/m, from (3.3.20) and (3.3.23) we get the bound- 

(A) ' 1+7r -1+7r Ccomm 
(3.3.25) 

w in r+ 

Both (3.3.24) and (3.3.25) always hold true. However, when m > the bound of 

(3.3.25) is tighter, otherwise the bound of (3.3.24) is tighter. 

O 

Construction of the chain. The set of all points in time in the interval [0, w'] 

is divided into two subsets A and B as follows. A is the set of points in time for 

which all processors are busy. B is the set of points in time for which at least one 

processor is idle. 

Let t/ and q; denote respectively the start and finish times of Ti. The following 

algorithm constructs the chain. 

1. Let the chain C be an ordered set of tasks, set to null initially. 

2. Ta E- a task that finishes at time w'. 

3. If yba E B, 

then there exists a processor which for some e > 0 is idle during the time 

interval [c&a -,E, la]. This occurs only when there is a task Tb, an immediate 

predecessor of Ta, such that 

Ob + mtt(proc(Ta), proc(Tb)) v(Ta, Tb) _ VI.- 

Insert Ta into C, Ta +- Tb and go to 3. 

4. Let u = l.u.b.2 {xjx < yea and x E B}. If u is zero, output C and stop. 

2Least upper bound 
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5. Find a task Tb such that 

51 

fib = max{ii; Ti a predecessor of Ta, and i < u}. 
1 

There is a sequence of tasks, Tc, T;1, ... T;-,, such that Tb -< Tc -< T;1 -< ... -< 

T;-, < L. Insert Tc into C, Ta +- Tb and go to 3. 

The maximum time to transfer information between processors depends as well on 

the underlying routing strategy and the network contention. These dependencies 

were ignored in the proof above. 

Note that the communication factor that appears in our bound is smaller than 

those of Hwang et al. and Lee et al. Note also that our bound is applicable to all 

work-greedy assignments - not just ETF and ERT. 

If communication costs can be ignored, then Ccom,m, = 0. The bounds of the- 

orems 3.4 and 3.5 then match. Note that the value of Ccomm depends on the 

assignment. Good assignments will have small values of Ccomm. Now if 

C' = max [mtt(P;, P;)] mT x I E v;j I where T is any chain in GT, 
T;,T;ET; T,,=succ(T;)J 

then 

'-'comm < C" for any chain. 

Thus the bounds of theorem 3.5 become 

<1+ (m-1) 
-gym 

C* 
if m<w 

W 7f 7+ 
(3.3.26) 

<1+(ir-1)+7c* ifm>7 (3.3.27) 
W m T+ 

These bounds are not assignment-dependent. 

3.3.5 Implications of the Bounds on Makespans 

The hardware parallelism, m, and the degree of average software parallelism, ir, 

have a symmetric relation in the bounds of theorems 3.2, 3.4 and 3.5. When m > ir, 
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the makespan may be limited by software `sequentialism'; and when ir > m the 

makespan may be limited by hardware inadequacy. Note that, since ir is only a 

lower bound on software parallelism, we can find cases where m > ir and yet the 

makespan is limited by hardware inadequacy. 

The loose bounds of (3.3.5) and (3.3.19) suggest that, if communication costs can 

be ignored, the maximum speedup an assignment scheme can achieve is no more 

than 2. In other words, no assignment scheme can be worse than the optimal 

scheme by more than a factor of two. The bound by Rayward-Smith suggests 

that, if communication times are assumed to be unitary and if the computation 

times are also unitary, this factor of degradation is no more than 3. Thus it is 

seen that any work-greedy assignment scheme can be used for the assignment of 

1. independent tasks 

2. dependency graphs with zero communication times, and 

3. dependency graphs with unit computation and communication times 

and still a performance not worse than a small constant factor would be guaran- 

teed. 

However, if communication costs are arbitrary, the performance can degrade con- 

siderably with bad assignment schemes. In this case, from (3.3.26) and (3.3.27), 

we have the following loose bound: 

WI C"_ C* - < 2 + Al where A = min(m, ir) = w r 7+/ min(m,lr) 

A signifies the communication to computation ratio along the critical path of the 

(arbitrary) assignment. Bad assignments will have large values of A and thus they 

will have a poor performance compared to the optimal assignment. For instance, 

a work-greedy assignment scheme that ignores the communication costs when the 

dependency graph does have communication requirements may yield a large value 

of A. 
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3.4 A Non-Work-Greedy Scheme for Assign- 

ment 

Work-greedy assignment schemes try not to leave a processor idle if there is a task 

the processor can execute. Tasks are assigned to the processors that can execute 

them the earliest. Ensuring this involves extra search. Yet these schemes permit 

finding assignments with a guarantee. 

When communication costs are taken into account, work-greedy assignment sche- 

mes lose two of their important characteristics. That is, with arbitrary communi- 

cation costs, 

there is no guarantee that a processor will not idle when there is a task it 

could execute (see section 2.1.2), and 

a work-greedy assignment can be worse than the optimal assignment by a 

large factor (determined by the communication costs along some path in the 

dependency graph); hence, a bad work-greedy scheme could generate very 

poor assignments. 

There is thus a case to examine an assignment scheme that moves away from the 

work-greedy heuristics and to see how well this scheme performs compared to the 

work-greedy assignments. To this end, this section proposes a simple non-work- 

greedy assignment scheme which is based on satisfying the desirable properties 

stated in 2.4.2. The scheme is easy to implement and has a time-complexity linear 

in the number of tasks and task graph edges. 

If the goal of an assignment scheme is the minimization of the makespan, then it 

is desirable that the scheme should possess the following properties: 
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DP1. Assignment of independent tasks to different processors. 

DP2. Assignment of dependent tasks to the same processor. 

The first desirable property DP1 ensures that the parallelism available in the task 

graph is fully exploited. An assignment can possess this property only if sufficient 

processors exist. Intuitively, the maximum number of processors needed will be 

equal to the size of the largest set of independent tasks. 

The second desirable property DP2 helps to minimize the communication cost. 

But, not all dependent tasks can be assigned to the same processor. The reason is 

two fold: (1) two independent tasks may have common dependencies (i.e. they may 

share a successor or predecessor), and (2) per-processor memory may be limited. 

We move away from the work-greedy heuristics and propose an assignment scheme 

whose heuristics is based on satisfying the properties DPI and DP2. The scheme 

assumes, as the work-greedy schemes do, that the parameters of the task graph 

are known at compile time. 

Work-greedy assignment schemes find the start and finish times of the tasks as they 

proceed to find the assignment. However, due to network contention and routing 

decisions, these times cannot be predicted correctly at the time of assignment. 

The assignment schemes that claim to take network contention into account have 

their own adaptive routing techniques embedded into their assignment algorithms. 

By doing so, they map the message transfers to certain processor interconnections 

(or links). If this mapping is not preserved during run-time, for instance, by using 

a routing scheme other than the one embedded in the assignment algorithm, the 

start and finish times of the tasks predicted by the assignment scheme may be 

different from the actual times. Thus, it is noted that the start and finish times of 

tasks make sense only as far as determining the partitions of the tasks. Once the 

partitions are determined, each processor will need to perform a local scheduling: 

taking ready tasks one by one from the task partition assigned to the processor and 
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executing them. Our proposed assignment scheme, therefore, does not attempt to 

find the start and finish times of the tasks; it finds only partitions. 

3.4.1 DFBN: The New Scheme 

The scheme uses a combination of the familiar depth-first and breadth-first search 

algorithms to arrive at an assignment. This technique is called depth-first-breadth- 

next (DFBN) search. 

DFBN searches the graph as follows. All start vertices of the graph are entered 

in a queue. An unvisited vertex v is taken from the queue and a function visit 

is called for v. This is repeated until the queue is empty. The function visit 

marks v visited, selects an unvisited successor vertex w for visiting, appends all 

other successors to the queue, and finally calls itself recursively for vertex w. Visit 

returns when it is called for a vertex such that its successor vertices have been 

visited. The traversal of the graph follows a depth-first and breadth-next order. 

Thus the name DFBN. 

The DFBN technique is used in generating assignments for dependency graphs. 

Note that any single call from DFBN to visit for a vertex v marks a chain of 

vertices originating from v visited. Every call from DFBN to visit thus results in 

a traversal of a new chain. Now if the vertices represent tasks and edges represent 

dependencies, then all the vertices of a chain are dependent. Thus they could be 

assigned to a single processor. Since all new chains could be independent of each 

other, these chains are assigned to different processors. See figure 3-4 for the full 

algorithm. 
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procedure FormAssignment() 

Initialize taskQ with all the start vertices in it 

while taskQ not empty do 

task = pop(taskQ) 

if task is not assigned then 
processor = Get Processor( task) 

Assign(task, processor) 

PutProcessor(processor) 

endif 

endwhile 

endproc 

procedure Assign(task, processor) 

Mark task assigned to processor 

if there are no successors of task then 

return 

else 

NewTask = first unassigned successor of task 

endif 

forall other unassigned successors of task do 

Push(successor, taskQ) 

endfor 

Assign( New Task, processor) 

endproc 

Figure 3-4: The assignment scheme DFBN 
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Procedure FormAssignment performs a DFBN search. The function visit has been 

replaced by a function Assign that takes as its parameter a processor in addition to 

a task vertex. Every call from FormAssignment passes a new processor to Assign. 

A new processor is returned by a function GetProcessor. 

The function GetProcessor could simply select the processor with minimum load, 

where the load of a processor is defined to be the sum of the execution times of all 

the tasks that had been assigned to the processor. The load of a processor does not 
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reflect processor idle times due to communication events. Processors can be kept 

in a balanced binary tree [HS781 sorted by their load. The function GetProcessor 

would remove a processor from the tree; and the function PutProcessor would add 

a processor to it. 

This approach of selecting processors according to their loads has a major draw- 

back. It can use more processors than necessary, if sufficient processors exist. 

Consider the task graph of figure 3-5. This graph will be assigned to three pro- 

cessors, if processors are available. For instance, in a three processor system with 

processors Po, P1 and P2, a possible assignment is 

{To,T2iT3,T4} H Po; {T1} H P1; {T5} H P2; 

However, two processors are sufficient for executing this task graph in minimal 

time. 

Figure 3-5: An example task graph 

We get around this problem by letting GetProcessor choose a processor that has 

a Freelnstant just below the latest start time (LST) of the task needing a new 

processor. Freelnstantk of a processor Pk signifies the time instant at which Pk 

can finish executing the tasks assigned to it. If the Freelnstants of the processors 

are larger than the latest start time of the task, then the processor with the 

minimum loading is used. The latest start time, rather than the earliest start 

time, of the task is used so that the execution of non-critical tasks can be delayed 

as much as possible. As before, processors can be kept in a balanced binary tree 

for efficient deletion and insertion by GetProcessor and PutProcessor. 
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The LST can be estimated in time 0(n + e) prior to the assignment. Its exact 

value, however, depends on the assignment that is yet to be determined. The 

LST can also be recalculated during the assignment procedure using the partial 

assignment (so that it can be closer to the exact value), but this will involve 

additional time-complexity. 

Now consider again the task graph of figure 3-5. Under the second approach of 

processor selection, the task graph will be assigned to just two processors. The 

assignment, in this case, would be 

{TO,T2,T3,T4} H Pa {T1,T5} H P1. 

If a processor does not have enough local memory to hold all the tasks belonging 

to a chain, function Assign could request new processors through GetProcessor 

and split the chain up between these processors. 

When there is a need for arbitration, task and processor priorities are used. The 

need for arbitrating tasks arises when the function Assign scans through the list 

of successor tasks and when the start tasks are added to the taskQ. The need for 

arbitrating processors arises when there are ties in function GetProcessor. 

3.4.2 Processor Ordering 

To order the processors, a `most capable' processor is first chosen; this processor 

could be the one with the maximum computational and communication capability. 

The other processors are arranged in an ascending order of `distance' from the 

`most capable' processor. The `distance' between two directly connected processors 

Pi and P; is defined to be 1/cu. (Thus, two processors connected by a high capacity 

link will be `closer' to each other than those connected by a low capacity link.) 

For processors that are not directly connected, the shortest `distance' is found via 

other processors. To break ties, processors' computational and communication 

capabilities can be used. 
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3.4.3 Task Ordering 

In finding a task ordering, one would want to give top priorities to the critical 

tasks. To determine these critical tasks, inter-task communication times need to be 

known. But, these communication times will not be known before the assignment 

is done. One can only have a guess of the critical path. A poor guess may deprive 

the deserving tasks of top priority and this may result in a poor assignment. Thus, 

instead of giving some tasks absolute priority, it is decided to give priorities to all 

the tasks depending on their critical factors. In other words, there will be no 

explicit discrimination between critical and non-critical tasks. The critical factor 

of a task Tq is defined as follows: 

CFq = max[LCTt - ECTj] - (LCTq - ECTq) 
1=1,n 

Here ECTq and LCTq are the earliest and latest completion times of the task 

Tq. (LCTq - ECTq is sometimes known as the completion interval of task Tq.) 

It should be noted that the values ECT and LCT can only be estimates. Exact 

values cannot be calculated before the assignment is done. 

As has been noted in 3.1, a task's priority depends on other factors as well. Thus 

the overall priority of a task is expressed by a weighted sum of the individual 

priorities based on these factors as well as the critical factor. However, maximum 

weight is given to the critical factor. One can therefore hope that the deserving 

tasks will get at least top range priorities, if not the topmost priority. 

If the set of successors of a task T is denoted by succ(T), the priority pi of a task 

Ti can be expressed as: 

pi = wo(CFi)a + w1T1 + w2 Vii + w3 1: 1 + w4 r + w5si (3.4.1) 
Tj E succ(T,) Tj E succ(Ti) Tj E succ(T; ) 

where w's denote the weights. Prominence is given to large critical factors by 

raising CFi to some power a > 1. Calculation of the priorities of all the tasks can 

be performed in O(n + e) time. 



Chapter 3. Assignment of Dependency Graphs 60 

Polychronopoulos and Banerjee use a similar scheme to assign priorities to tasks 

[PB87]. 

3.4.4 Time-complexity of DFBN 

The total execution time of the forall loop in function Assign is O(e). Assign is 

called n times. GetProcessor and PutProcessor have an execution time of O(log m) 

and are called at most n times along with Assign. Here n is the number of tasks, 

m is the number of processors and e is the number of edges in the task graph 

GT. The initialization of the balanced binary tree takes time O(m. log m). The 

time-complexity of the algorithm is thus O((n + m). logm + e). 

Note that the time-complexity is linear in the number of nodes and edges of the 

task graph. Therefore, DFBN will be a good choice for those applications that 

have a large number of tasks. 

3.4.5, Performance Guarantee 

DFBN is a single-step non-work-greedy assignment scheme. Given a task graph 

and a processor graph, it produces the assignment in a single step involving a 

very low time-complexity. The desirable properties that DFBN aims to satisfy try 

to exploit the parallelism visible in the graph whilst reducing the communication 

costs. 

The makespan of an assignment can never be less than the execution time of the 

critical path in the task graph. The tasks belonging to the critical path are depen- 

dent. DFBN tries to assign the tasks of the critical path to the same processor, 

thereby reducing the inter-task communication cost within the execution of the 

critical path. 
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Since DFBN does not predict when a task must be executed (as all the work- 

greedy assignments do), it is hard to prove any analytical bound on the makespan 

of an assignment generated by DFBN. 

Nevertheless, there is one special case for which an analytical performance guaran- 

tee can be proved for DFBN. If the processor topology is a completely connected 

graph with an unbounded number of processors having the same communication 

costs between any two of them, then DFBN generates a linear clustering of a 

task graph. In a linear clustering no two concurrently executable tasks will be in 

the same partition. Gerasoulis et al. prove that the makespan of any such linear 

clustering is within a factor of two of the optimal makespan, if communication 

costs are small compared to the computation costs [GVY90]. However, in a real 

parallel processor system where the number of processors are bounded and the 

inter-processor communication costs may be arbitrary, this guarantee does not 

hold. 

Chapter 6 thus attempts to provide some experimental performance results. 

3.5 Summary 

The impact of task ordering on the makespan is proved and the factors upon 

which task ordering should depend are discussed. Tasks with long execution times, 

task involving large communication times, tasks with large numbers of successors, 

tasks with long-length successors and tasks with large memory requirements are 

identified to be those that need high priority in a task ordering. 

The heuristics most of the current assignment schemes use is based on satisfying 

the following rule of thumb: keeping the processors busy leads to a `good' as- 

signment. Such schemes are said to be work-greedy. Work-greedy assignments are 

important since most of them provide a solution with a guarantee: it is proved that, 

when communication costs can be ignored, any work-greedy assignment would be 
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close to the optimal assignment by no more than a small constant factor. It is also 

proved that, should the communication costs be taken into account, this factor 

may no longer be small. With communication costs, a work-greedy assignment 

can perform worse than the optimal assignment by a large factor. This factor 

depends on the communication costs along some path in the task graph. 

A non-work-greedy assignment scheme, called DFBN, is proposed. Its heuristics 

is based on satisfying two desirable properties: assigning independent tasks to 

different processors, and assigning dependent tasks to the same processor. The 

time-complexity of DFBN is at least an order less compared to the work-greedy 

schemes. However, there is no analytical performance guarantee for the assign- 

ments generated by DFBN. 

Performance assessment of these assignment schemes is the goal of the remainder 

of this thesis. Performance of a parallel system depends on the architecture, the 

program, the assignment scheme and the routing strategy. We develop a generic 

modelling approach that lets us specify and model these parameters. We then use 

this approach to simulate program execution on some processor topologies under 

different assignment schemes. These simulations aid the performance assessment 

of the assignment schemes. 

The next two chapters deal with the development of a generic modelling approach. 

The development of such an approach requires the following. 

1. A representation scheme based on an abstraction level that integrates most 

of the possible architectural schemes. 

2. Representing the program (or software) in an architecture independent way. 

3. Providing the means to specify the assignment scheme and the routing strate- 

gies. 
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The next chapter proposes a representation scheme for parallel architectures. A 

generic modelling approach, based on this representation scheme, is presented 

in chapter 5. Performance assessment of assignment schemes is the theme of 

chapter 6. 



Chapter 4 

A Structural Framework for the 
Representation of Parallel 

Architectures 

The problem of representation and classification arises when an area of study 

involves many different objects. Representation describes an object according to 

some meaningful rules. Classification partitions the objects into a set of classes. 

The primary goal of having a representation is to describe the functionalities of 

these objects; and the goal of having a classification is to provide a platform to 

compare and contrast the functionalities of the objects. 

A good representation scheme is an aid in learning and modelling the behaviour 

of the objects under study. It is our interest to model parallel architectures in 

a generic way. To this end, this chapter develops a structural framework for 

representing parallel architectures. 

With the proliferation of different parallel architectures, the distinction between 

representation and classification has become thin. In fact, the two terms have 

been used interchangeably [Das90]. Here we critically review some of the architec- 

tural classification schemes to date and build upon them a representation scheme 
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suitable for modelling. This representation scheme becomes an integral part of 

the modelling environment to be developed in chapter 5. 

4.1 A Survey of Some Architectural Classifica- 

tion Schemes 

The sheer diversity of parallel architectures makes it difficult to represent them 

in a unified framework. Nevertheless there have been attempts to approach this 

problem and classify architectures in interesting and useful ways [F1y72,A1m85, 

Hoc85,Hoc87,Ski88,Dun90,Das90,Dad9l]. This section presents a critical review 

of some of these classification schemes. 

4.1.1 Flynn's Scheme 

The most popular classification of architectures is due to Flynn [F1y72]. His classi- 

fication is based upon streams of instructions and data. Depending on the number 

of these streams, architectures are categorized as SISD, SIMD, MISD and MIMD. 

SISD: Single Instruction stream, Single Data stream machines. The 

conventional von Neumann machines come under this category. 

SIMD: Single Instruction stream, Multiple Data stream machines. Mul- 

tiple processors simultaneously execute the same instruction on differ- 

ent data. Array processors come under this category. 

MISD: Multiple Instruction stream, Single Data stream machines. Mul- 

tiple processors simultaneously execute different instructions on the 

same datum. Decoupled architectures come under this category [BPTS91]. 
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MIMD: Multiple Instruction stream, Multiple Data stream machines. 

Multiple processors asynchronously execute different instructions on 

different data items. 

4.1.2 Hockney's Scheme 

The main drawback of Flynn's classification is that it is too broad to describe 

any realistic architecture. For example, Flynn's classification fails to discrimi- 

nate between the various MIMD architectures that now proliferate. There is no 

distinction between a shared-memory machine and a message-passing machine in 

Flynn's classification. They both come under the MIMD class. Hockney [Hoc85], 

thus, provides a structural classification scheme for MIMD architectures (Figure 

4-1). In the top level, MIMD architectures are divided into switched systems and 

networked systems. 

MIMD -I 
Dancehall 

Switched --C 
Boudoir 

L- Network Various topologies 

Figure 4-1: Hockney's classification 

A switched system is one where "there is an identifiable and separate switch unit 

that connects together a number of processors and memory modules". One can 

view a switch as a shared set of interconnections. In general, switches are complex 

and may involve several stages of interconnect. 

These switched systems are sub-divided depending on the way the processors, 

memory modules and the switch unit are organized. In the dancehall configura- 

tion, the processors take up one side of the switch unit and the memory modules 

take up the other side. In the boudoir configuration, processors are linked to their 

own local memory modules and the switch unit is used to connect the processors to- 

gether. The dancehall configuration represents most shared-memory systems and 
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the boudoir configuration represents the distributed-memory or message-passing 

systems (Figure 4-2) [A1m85]. 

(a) Dancehall (b) Boudoir 

Figure 4-2: Shared-memory and distributed-memory systems 

Both shared and distributed memory systems are further divided according to the 

type of switch unit: cross-bar, multistage or bus. 

In a networked system "a number of PEs are connected together into a network 

with an identifiable topology". Here a PE is a processor connected to its own local 

memory. As one would expect, networked systems are further divided according 

to their topology - mesh, cube, tree, etc. The so-called reconfigurable networks, 

in which the interconnection pattern itself can be changed, also come under the 

networked category. 

4.1.3 Skillicorn's Scheme 

Although interesting, Hockney's classification is limited to the MIMD class. Also, 

it fails to categorize novel architectures such as dataflow or graph reduction ma- 

chines that fall under the MIMD paradigm. Skillicorn shows that by separating the 

instruction-oriented and data-oriented functions of processors and memory mod- 

ules, it is possible to arrive at a more general and discriminating classification of 

architectures [Ski88]. 
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At the highest, most abstract level, architectures are classified with respect to the 

number of instruction and data processors, instruction and data memory units, 

and the way they are connected. The processors and memory units are collectively 

termed functional units. 

Instruction processors (IP) are responsible for fetching and decoding the instruc- 

tions; data processors (DP) are responsible for fetching the required data and 

executing the instructions. 

A memory hierarchy is an `intelligent' storage device that provides the instruction 

or data requested by the processor. The ideal von Neumann memory unit does 

not differentiate instructions from data. However, almost all real machines do 

differentiate them, at least from the user's point of view. Thus, memory units are 

divided into instruction memories (IM) and data memories (DM). In other words, 

a distinction between memory hierarchies is provided at the abstract machine level. 

However, in a real implementation the separation normally occurs only at the top 

level of the memory hierarchy and within the virtual memory system. 

The interconnections represent both shared and dedicated connections (cf. switched 

and networked systems in Hockney's classification). Skillicorn names the intercon- 

nections switches. Four types of switches are identified: 

1-to-1: A single functional unit is connected to another single func- 

tional unit. 

n-to-n: The i-th unit of one set of functional units is connected to the 

i-th unit of another set. This is simply a 1-to-1 switch replicated n 

times. 

1-to-n: A single functional unit is connected to all the n units of a set 

of functional units. 
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n-by-n: Every unit of one set of functional units communicates with 

every unit of the second set and vice versa. 

An abstract machine is constructed by wiring the functional units with switches. 

Skillicorn identified 28 classes of architectures (see table 4-1) depending on the 

organization of the functional units and the switches. 

Class IPs DPs IP-DP IP-IM DP-DM DP-DP Name 

3 0 n none none n-n nxn Distributed memory 

Reduct/Dataflow 

4 0 n none none nxn none Shared memory 

Reduct/Dataflow 

6 1 1 1-1 1-1 1-1 none Von Neumann 

uniprocessor 

8 1 n 1-n 1-1 n-n nxn Distributed memory 

array processor 

9 1 n 1-n 1-1 nxn none Shared memory 

array processor 

14 n n n-n n-n n-n nXn Distributed memory 

von Neumann 

15 n n n-n n-n nXn none Shared memory 

von Neumann 

Table 4-1: Some possible architectures under Skillicorn's classification 

The lowest level in Skillicorn's classification is based on the state machine view of 

the functional units. This level is used to distinguish variants more precisely. For 

instance, the sequencing and ordering of operations performed by the instruction 

and data processors can be expressed by a state diagram. These diagrams help to 

distinguish between simple, pipelined and parallel units. 

Flynn's classification is based upon how a machine relates the instructions to the 

data being processed. Hockney's classification is based on the structure of the 

machines. Skillicorn's classification is based on both. 
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4.1.4 Dasgupta's Scheme 

Dasgupta extends Skillicorn's classification in certain ways [Das90]. He identifies 

seven basic functional units called atoms: 

iM - an interleaved memory unit, 

sM - a simple memory unit, 

C - a cache unit, 

PI - a pipelined instruction processor, 

sI - a simple (or non-pipelined) instruction processor, 

pX - a pipelined execution processor, and 

sX - a simple (or non-pipelined) execution processor. 

The instruction processor is functionally identical to Skillicorn's IF. Similarly, the 

execution processor is functionally identical to Skillicorn's DP. Distinction is made 

to differentiate simple processors from pipelined processors. Note that in Skil- 

licorn's scheme such distinctions are made only at the low level. 

There is no distinction made between instruction and data memories. As has been 

noted earlier, Skillicorn provided this distinction since most of the programming 

environments enforce a separation between instruction and data. However, in real 

implementations of memory units instruction and data storage are differentiated 

only at the top level of the hierarchy, for instance, at the cache units. Thus, 

Dasgupta chose not to differentiate instruction and data memories. He rather 

chooses to differentiate caches from memories. 

Using formulae inspired by chemical notation, Dasgupta presents a new approach 

to the classification of architectures. There are two basic operators that operate 

upon atoms. A subscript operator replicates an atom. For instance, iM3 and C8 

denote three and eight atoms of interleaved memory and cache respectively. The 

subscript could either be a positive integer constant or an integer-valued variable. 
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Replication represents a potential for multiple atoms to be used in parallel. A repli- 

cated atom is called an atomic radical. An atom can be viewed as a monoatomic 

radical. 

The second operator is the dot operator that links two atomic radicals together. 

The combination is called a complex, or non-atomic, radical. Examples are C.sX, 

(C.pI)n and C.(C2.pI)2. The complex radicals are enclosed in parentheses when 

there is a need to replicate them. 

Using these two operators, an architecture is expressed as a formula. A cache- 

processor (CP) is a combination of a cache radical and a processor radical. An 

example is (C.pI),,. A memory-cache processor (MCP) is a combination of a 

memory radical and a cache-processor radical. An example is (iM)m.(C.pI)n. An 

I-molecule is an MCP-radical that represents a complete instruction preparation 

system. Similarly, an X-molecule is a complete instruction execution subsystem. 

Finally, a macromolecule is a single or replicated combination of an I-molecule 

and an X-molecule; it represents the complete architecture. The symbol string 

describing a particular radical or molecule is referred to as a formula. 

Given a formula, Dasgupta provides construction rules. If W and Z denote two 

radicals, then Wn, W.Z, Wn.Z, W.Zm and Wn.Zm describe all the possible struc- 

tures that can be constructed. W,, represents radical W replicated n times. W.Z 

represents two radicals W and Z connected by a simple link. Wn.Z represents W 

replicated n times and connected to Z by a divergent link (Figure 4-3). W.Zm too 

describes a similar structure. Wn.Zm produces a bidivergent link structure. Note 

that the structures of figure 4-3 do not say whether the connections involved are 

dedicated or shared. 

The path through which atoms combine together to produce the final macro- 

molecule forms a hierarchy in Dasgupta's classification. For instance, the top 

level - the most abstract level - differentiates processor radicals, the second 

differentiates cache-processor radicals and the final level discriminates between 

macromolecules. 
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(a) Wn. Z 

z w 

(b) W.Zm (°) Wn Z m 

Figure 4-3: Structural diagrams for Dasgupta's formulae 
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Dasgupta's scheme, in fact, names architectures rather than grouping them, and 

thus it is more of a representation scheme than a classification scheme. 

4.2 A Representation Scheme for Parallel Ar- 

chitectures 

This section proposes a representation scheme for parallel architectures. The ar- 

chitectural classification schemes of Skillicorn and Dasgupta form the basis of the 

representation scheme. In both Skillicorn's and Dasgupta's schemes, an architec- 

ture is described by a set of functional units interconnected by switches. Depending 

on the organization of the functional units and the switches in an architecture, the 

architecture is classified into some groups. 

We do not intend to classify or group architectures. Rather, we are interested 

in describing or representing an architecture according to some meaningful rules 

so as to model and simulate the behaviour of the architecture. As Skillicorn and 

Dasgupta do, we too find a set of functional units, or atoms, that form the basic 

units of any architecture. We then use these atoms to build and represent an 

architecture of our choosing. 
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4.2.1 A Refined Set of Atoms 

The main drawback of both Skillicorn's and Dasgupta's classification schemes 

is in the representation of interconnections. There is no clear distinction made 

between shared and dedicated connections. The scheme we propose here separates 

interconnections, however trivial they may be, from the processing and memory 

elements, and distinguishes between shared connections and dedicated ones. The 

interconnections themselves can be functional units. Thus, a refined set of atoms 

that serve as building blocks in constructing an architecture is obtained. 

An atom is a black-box that is free to determine its internal functioning orthogonal 

to other atoms. It has an arbitrary number of ports through which it can be linked 

to the ports of other atoms. A port is simply a socket that is used to plug into 

another port. The only way the atoms interact with one another is via these ports. 

Five basic atoms are identified: 

P - a processor, 

C - a cache unit, 

M - a memory unit, 

D - a dedicated connect, and 

S- a shared connect. 

D denotes a dedicated connect that links just two atoms. Thus D is comparable 

to Skillicorn's 1-to-1 switch. D could either be full-duplex or be half-duplex:1 a 

full-duplex link is capable of sending and receiving data in both directions simul- 

taneously; a half-duplex link too is capable of transmitting in both directions but 

'There also can be a simplex link that is unidirectional. But a simplex link is seldom 

used in isolation because the receiver can in no way communicate with the transmitter 

to indicate errors. 
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only in one direction at a time. S denotes a shared connect that links more than 

two atoms. The number of ports of an S atom will be equal to the number of 

atoms it links. S realizes a many-to-many connection. Buses, concentrators and 

switches are some typical S atoms. Note that the connects are also functional 

units - their function is to pass or route the items they receive. 

Processors, caches and memories are collectively termed non-connect atoms in 

order to make a functional distinction between them and the connect atoms. 

Following Skillicorn and Dasgupta, instruction oriented and data oriented func- 

tions of a processor are separated. Two processor types are thus derived: an 

instruction processor and an execution processor. This facilitates modelling the 

concurrency in instruction prefetch and execution, besides enabling abstract rep- 

resentation of exotic architectures. 

Most of the hardware - data paths, registers, caches, etc. - and programming 

environments enforce a separation between instruction and data. This separation 

becomes thin only at the low-levels of the memory hierarchy. It is observed that 

an instruction processor always deals with instruction memories; and an execution 

processor always deals with data memories. Hence, even at the low-levels of the 

memory hierarchy, instruction and data memories get logically separated. Thus it 

is informative to separate instruction and data memories and caches rather than 

having them represented by single atoms. This facilitates a better understanding 

of the logical organization of the system. 

Separating the instruction and data oriented functions of the processor, cache and 

memory units leads to a secondary set of non-connect atoms: 

iP - an instruction processor, 

xP - an execution processor, 

iC - an instruction cache, 

dC - a data cache, 
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iM - an instruction memory, and 

dM - a data memory. 
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The atoms iP and xP have the same meaning and functions as the corresponding 

atoms IP and DP defined by Skillicorn. But iM and dM denote single memory 

units rather than the entire memory hierarchy. If a memory hierarchy is required, 

a number of memory and cache units must be connected together. 

There is no distinction between pipelined and simple processors. Also, there is no 

distinction between interleaved and simple memory units. Pipelining and memory 

interleaving do increase the throughput, but they do not add a new dimension to 

the global abstract view. Particularly, in a parallel system there are other factors 

(for example, number and organization of functional units) that draw more interest 

than pipelining or interleaving. It is thought to be more appropriate to consider 

such details in a low, or concrete, level of the representation. 

4.2.2 The Representation Scheme 

An architecture is described by two levels: (1) the top level pertains to the way 

the atoms are connected, and (2) the bottom level specifies how the atoms work. 

For example, two architectures sharing the same topology but made of different 

processors will be grouped together in the top level but will be differentiated at 

the bottom level. 

The bottom level description of the representation scheme takes the state view of 

every individual atom comprising the architecture rather than the entire architec- 

ture. This is important from a modelling point of view since each atom can have 

its own independent dynamic behaviour, with occasional synchronizations with 

other atoms directly connected to it. Thus, atoms operate locally without causing 

any global side-effects. 
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A non-connect atom, Y. 

Y = { P, M, C, iP, xP, iM, dM, iC, dC } 

Dedicated connect, D. 

Shared connect, S. 

Figure 4-4: Primitives composing structural diagrams 

Architectures are built by connecting together an appropriately chosen set of non- 

connect atoms by a set of connect atoms. See figure 4-4. Structural diagrams 

are used in representing the architectures thus built. A structural diagram graph- 

ically displays the organization and interconnection of the atoms comprising an 

architecture. Use of structural diagrams permits to describe topologies. Neither 

Skillicorn's nor Dasgupta's scheme can describe topologies. Figures 4-5 to 4-7 

depict structural diagrams of some typical architectures. 

iM 

O 
Broadcast Bus 

Interconnection Network 

dM 
UM 

. . . . . . . . 

(a) A shared-memory architecture 

O 
Broadcast Bus 

Interconnection Network 

(b) A distributed-memory architecture 

Figure 4-5: Array processors 

Structural diagrams can be used to represent both the logical and the physical 

organizations of an architecture. The logical organization of an architecture could 

be represented by connecting together the appropriate non-connect atoms of the 

secondary set. Figure 4-8 shows the logical organization of DEC's Firefly multi- 
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I 
Interconnection Network 1 

(a) A shared-memory architecture 

Interconnection Network 

(b) A distributed-memory architecture 

Figure 4-6: Parallel von Neumann processors 

Interconnection Network 

Interconnection Network 

(a) A shared-memory architecture (b) A distributed-memory architecture 

Figure 4-7: Dataflow processors 
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processor workstation [TSS88]. The separation of instruction and data oriented 

atoms may be found only at the logical level. For instance, instruction and data 

memories typically share the same physical unit. Thus, the physical organization 

of a parallel system could be different from its logical organization. As an ex- 

ample, compare the logical organization of Firefly with its physical organization 

(figures 4-8 and 4-9). Depending on what one wants to describe or model, one 

can choose either of the representations. 

.......... 0 
GO -9 

0-9 
Figure 4-8: Logical organization of Firefly 

Both Skillicorn's and Dasgupta's schemes describe an architecture by a set of func- 
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Figure 4-9: Physical organization of Firefly 
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tional units interconnected by switches. In our proposed scheme the switches (or 

connects) themselves are functional units. Thus our scheme describes an archi- 

tecture as a set of interconnected functional units. This is important only from a 

modelling point of view, since it unifies model designs: the entire architecture is 

built using just functional units as building blocks. 

4.3 Summary 

To develop a generic approach that models parallel systems requires a well-formed 

and structured architectural representation scheme. This chapter reviewed some 

of the classification schemes for architectures and, based on them, proposed an 

architectural representation scheme. 

A set of functional units, or atoms, forming the basic blocks of architectures is 

identified. The atoms are broadly divided into a set of connect atoms and a set of 

non-connect atoms. The set of non-connect atoms comprises processors, memories 

and caches; and the set of connect atoms comprises dedicated and shared connects. 

To model the instruction and data oriented functions of the non-connect atoms, 

a secondary set of non-connect atoms is derived. These non-connect atoms have 

their instruction and data oriented functions separated. 

The atoms serve as building blocks to build architectures of one's choosing. This is 

achieved by connecting together the appropriate atoms. Structural diagrams are 
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used in representing the architectures thus built. A structural diagram graphically 

displays the organization and interconnection of the atoms that form the archi- 

tecture. Structural diagrams of some typical architectures under the proposed 

representation scheme are illustrated. 

Genesis, a generic modelling environment for parallel systems, is based on the 

representation scheme developed in this chapter. Genesis takes an object-oriented 

view of the architecture and models each atom of the architecture as an object. 

The next chapter discusses the design and implementation aspects of Genesis in 

detail. 



Chapter 5 

Genesis: A Generic Simulation 
Modelling Environment for Parallel 

Systems 

This chapter discusses the design aspects of Genesis, a generic simulation mod- 

elling environment for parallel systems. The architectural representation scheme 

developed in the previous chapter becomes an integral part of the design of Gen- 

esis. Genesis takes an object-oriented view of the entire parallel system, viewing 

both the architecture and the software as sets of objects. Every single atom of the 

architecture is modelled by an object. Software entities - for example, tasks, task 

graphs and messages - are also modelled by objects. Software objects get mapped 

onto the hardware objects for a simulation of program execution. Mapping tasks 

onto non-connect atoms is the problem of assignment tackled in detail in chap- 

ters 2 and 3; mapping messages and requests (memory requests, input requests, 

etc.) onto connect atoms is the problem of routing. Genesis provides the means 

to specify both assignment and routing. A dynamic model of the entire parallel 

system is thus realized. 
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5.1 On the Design Choices 

Constructing a dynamic model of a given system is called simulation modelling. 

The function of the model, called a simulator, is to mimic the behaviour of the 

system within the limitations of the system description. 

A system consists of several physical entities, or components. At any given time, 

each of these entities has state information associated with it. For instance, a 

server might have two states: busy and idle. Ideally, the state of the simulator 

at a given simulation time should correspond to the state of the system at the 

corresponding real time. The change of state is called an event. An event triggers 

an activity - a unit of work - in the simulator. An activity will typically cause 

the creation of further events. A logically-related set of activities constitutes a 

process. 

As the simulation proceeds, the simulation time advances in steps, depicting the 

changes in states and mimicking the corresponding activities. In a time-based or 

time-driven simulator, the time steps are regular, that is, the interval between 

any two successive time steps stays constant. If the time interval is too large, the 

simulator might miss some state changes. On the other hand, if the time interval 

is too small, the simulator would waste time advancing through time steps during 

which there are no state changes. Thus, in general, a time-based simulator lacks 

either accuracy or efficiency, or both. 

Event-based simulators [MacS7] get around this problem by advancing the simu- 

lation time only to those points where there are state changes. Consequently, the 

time steps here are irregular. These simulators maintain an event list that is a 

diary of all unprocessed events. The simulation proceeds by removing from the 

list the event with the earliest time and modelling the corresponding activities. 

In an event-based simulator, the system is modelled as a collection of events. Cod- 
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ing an event-based simulator is tedious and it is hard to get the code correct. Main- 

taining and updating the simulator is also tedious and time consuming [BLUL85]. 

An easier and more natural approach to model a system is to describe the be- 

haviour of its components and the way they interact. Process-based simulators 

take this approach in which every active component of the system is modelled by 

a process, so that the actions and interactions of the processes correspond to those 

of the system's active components. A process could simply be a description of the 

system component's operation in the simulator's host language. Should the defi- 

nition of a system component change, the simulator is updated by modifying the 

corresponding process that models the component. Process-based simulators are 

modular and thus make the construction and maintenance of large-scale models 

easy. Genesis is process-based; thus, for every system component, there exists a 

process in Genesis. 

In modelling the system components, it is necessary to specify their static and dy- 

namic structures. The static structure of a system component specifies its physical 

framework. The dynamic structure, on the other hand, specifies the way the com- 

ponent accomplishes its work. It is the dynamic structure that contributes towards 

the active nature of a component; thus, components that have no dynamic struc- 

ture are said to be passive. In general, a system has both active and passive 

components. 

Genesis takes an object-oriented approach to represent the system components 

and to describe their static and dynamic structures. The hardware components of 

the system have both static and dynamic structures associated with them; whereas 

software components have just static structures. 
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5.1.1 Object Orientation: Objects, Classes and Hierar- 

chies 

An object represents an entity and its associated behaviour. Related objects are 

grouped into classes. Related classes, in turn, can be grouped into further classes, 

thus resulting in a class hierarchy. An object belonging to a class is said to be an 

instance of the class. The classes forming the top-levels of the hierarchy are, in 

general, abstract. No object can be instanced from an abstract class. An abstract 

class can parent several child classes. A child class inherits most of its parent's 

properties. In addition, a child can have its own properties. That is, in general, 

a child is more `knowledgeable' than its parent. An abstract class expresses a 

general concept, and a child specializes the concept. Classes in the bottom-levels 

of the class hierarchy are, in general, concrete classes. Concrete classes express 

the concepts specifically and completely, and thus they can instance objects. 

Object-oriented programming [Str88] is a paradigm that approaches its solution 

to a programming problem by considering it as a set of objects, their actions 

and interactions. The object-oriented programming paradigm treats objects as 

first-class entities. Compare this, for example, with the functional programming 

paradigm where functions are the first-class entities. 

The inheritance and abstraction mechanisms provided by object-oriented program- 

ming help in dealing with the development complexities involved in large software 

systems by enhancing software reusability, extensibility and maintainability. Class 

inheritance makes the software reusable and extensible. Data abstraction eases 

software maintenance. 

5.1.2 The Modelling Approach 

Modelling imposes two requirements: representing the system, and representing 

the system's work. The system and its work can be viewed in two different ways. 
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In the first case, the system components are treated as resources that the work 

can reserve and release. Here work is the active object, and the system stays 

passive. In other words, the work operates upon the system. For example, a task 

can reserve a processor for a certain amount of time for its execution. Similarly, a 

message that needs to be transmitted along a link can reserve the link during the 

transmission. 

The second case treats the system components as the active objects. Work is 

considered to be passive and is operated upon by the system. For example, a 

processor can take up a task, execute it and send message packets to the links 

wired to the processor. Similarly, a link can take an incoming message from its 

input port and pass it to the output port after a suitable delay. This point of view 

is more realistic than the first. 

Genesis takes the second point of view and treats the system components to be 

active and the work they do to be passive. Genesis has two main subsystems 

modelling the hardware and software components of the parallel computer. The 

hardware components are the active objects; and the software components stay 

passive. 

The software and hardware subsystems are represented by suitably chosen class 

hierarchies. A software item could be an executable entity such as an instruction 

or a task; or it could be a non-executable entity such as a datum or a message. 

Both executable and non-executable entities are named items. Hardware entities, 

such as processors, memories and connects, are named atoms. An atom functions 

or operates upon items. The nature of an item - whether or not it is executable - is 

revealed only by its usage. This is similar to real systems where both instructions 

and data are represented by strings of bits and differentiated by usage. 
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5.2 Software Representation: The Software Hi- 

erarchy 

An Item is the abstract base class that provides the framework for the software 

hierarchy. It can be either Executable or NonExecutable. 

Executable 
Item H 

DTask 

(Task 

Non Executable Mesg 

Figure 5-1: The software hierarchy 

The class Executable encapsulates the executable objects that are processed by 

processor atoms. These executable objects are to be extracted from programs. 

As has been noted in chapter 2, programs are modelled as task graphs where the 

vertices represent the tasks, or computation activities, and the edges represent in- 

teractions or dependencies between tasks. Depending on what the edges represent, 

task graphs are broadly classified into dependency graphs and interaction graphs. 

The execution model of a task under these two graphs differ. A task belonging to a 

dependency graph can start its execution when all its inputs are ready and finishes 

only when it has produced all its outputs. On the other hand, a task belonging to 

an interaction graph iterates infinitely through a sequence of compute and commu- 

nicate steps. A task, an Executable object, thus takes two forms: a DTask object 

realizing a vertex of a dependency graph and an ITask object realizing a vertex of 

an interaction graph. 

The task graph itself is viewed as an object; task graph objects are encapsulated 

in a class TaskGraph. A TaskGraph object is a collection of Executable objects and 
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represents an entire program. A dependency graph is a collection of DTask objects; 

and an interaction graph is a collection of ITask objects. 

The class Mesg encapsulates the message objects that are passed from one atom 

to another. Message objects are constructed and destructed during the course of 

a simulation run. 

5.3 Hardware Representation: The Hardware 

Hierarchy 

An Atom is the abstract base class that provides the framework for the hardware 

hierarchy. An atom is considered to be a black-box that is free to function in- 

dependently from other atoms. Atoms communicate with each other by passing 

items. Note that, unlike items, atoms are active entities. Thus, in a process-based 

simulation, every atom is represented by an independent process. 

An atom may be busy simulating real work or simulating a delay. Both simulating 

work and simulating delays suspend the process that represents the atom and 

advances the process's simulation clock. An atom may also be busy communicating 

with other atoms. Communication involves the reception and sending of items. 

When an atom has no work or delay to simulate, it awaits the reception of items 

on its input ports. The items it may receive will trigger some work or delay, and 

may engage the atom in some communication, routing the items to other atoms. 

An atom operates on items that represent both executable and non-executable 

objects. This enables an atom to migrate executable objects with as much ease as 

migrating a non-executable object.(This becomes useful when analysing the effect 

of task migration on performance.) 

The class Atom owns properties essential to specify its operational behaviour. 

These properties include: 
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Figure 5-2: Atom: the base class of hardware hierarchy 

- Ports 

An atom has several input and output ports that are used for communication 

with other atoms. An input port of an atom can be wired to an output 

port of another atom. This sets up the path necessary for communication. 

Associated with every atom is a port table that maintains details of the 

atoms directly wired to it. 

- Buffers 

Atoms communicate with each other by passing items. Every input port of 

an atom has a buffer that queues incoming items. 

- Communication 

An atom can send an item to a given output port. The item is placed in 

the buffer of the input port to which the given output port is wired. If the 

buffer is full, the send operation blocks the execution of the atom. 

Similarly, an atom can receive an item from a given input port. The item is 

simply removed from the buffer associated with the input port. If the buffer 

is empty, then the receive operation blocks the execution of the atom. 

An input port is said to be ready when the buffer associated with it is non- 

empty. A receive operation on this port will not block. An output port is 

said to be ready if the input port it is connected to has its buffer non-full. 
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A send operation on this port will not block. Non-blocking send and receive 

can be realized by testing for the readiness of the respective output and input 

ports. 

- Routing 

An atom maintains a route table that can indicate to which output port an 

item must be sent in order to reach a given atom. 

- Busy-waiting 

Every atom owns a watchdog (Appendix A) that can alert the atom when 

one or more of its input ports gets an item. The watchdog simulates busy- 

waiting. If an atom has nothing to do, it can go to sleep after starting up 

its watchdog. 

Processor 

r- NonConnect 

Atom H 

' Connect 

Cache 

I nst P roc 

ExecProc 

InstCache 

DataCache 

L- Memory 
InstMemory 

DataMemory 

Simplex 
DedicatedConnect--C 

HalfDuplex 

t-SharedConnect Bus 

Figure 5-3: The hardware hierarchy 

The complete hardware hierarchy is shown in figure 5-3. Note that there is no sep- 

arate class representing a full-duplex link. A full-duplex link may be constructed 

by having two simplex links connected in parallel but in opposite directions. 
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The abstract classes Connect and NonConnect do not possess any extra properties 

that the class Atom does not. Yet, having them facilitates a better understanding 

of the structural design. 

More classes can be derived from the basic classes as required. As an example, 

consider the class Bus that has the following static properties: a number of ports 

and an inter-port communication delay. No dynamic behaviour is associated with 

Bus since it is an abstract class. Concrete classes IDBus, an interrupt-driven bus, 

and TDBus, a time-driven bus, can be derived from Bus with suitable definition 

of dynamic behaviours. For instance, a high-level specification of the dynamic 

behaviour of a time-driven bus is "wait for something to arrive at one of the ports, 

send that something to the appropriate port after a delay, and go waiting again". 

Instruction prefetch and execution can occur concurrently in most of the proces- 

sors. Such concurrency is modelled elegantly by having instruction and execution 

processors as separate atoms so that they can execute independently and con- 

currently. This concurrency in instruction prefetch and execution needs to be 

modelled for instruction level simulations. 

5.3.1 Building a Hardware Model 

To build a hardware model requires the following three steps. 

1. Deriving new atoms 

The active components of the system to be modelled are identified and 

grouped into classes according to their dynamic behaviours. These classes 

are to be derived from an appropriate class of the hardware hierarchy (fig- 

ure 5-3) and their dynamic behaviours must be defined. However, if the 

default dynamic behaviour of a given atom is satisfactory, there will not be 

any need to redefine it. For instance, the default dynamic behaviour of a 

half-duplex link is sufficiently adequate that it need not be redefined. 
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2. Instancing new objects and wiring them 

A required number of objects is instanced from the appropriate classes. 

These objects are then wired together to resemble the physical framework 

of the system to be modelled. 

3. Setting up route tables 

Route tables of most of the objects in the model must be set up. Some 

classes have a fixed routing scheme. Consider, for instance, a simplex link 

that has a single input port and a single output port: whatever appears on 

its input port gets to its output port after a delay. Objects of such classes 

do not need route tables to be set up. 

As an example, assume that we wish to model the network of four P2 processors 

and two P4 processors shown in figure 5-4. A P2 processor has two ports and a 

P4 processor has four. Assume that their dynamic behaviours are different. 

Figure 5-4: An example architectural model 

P2 and P4 come under different classes. Thus we derive two classes P2 and P4 

from the class Processor and specify their dynamic behaviours. The derivation also 

will specify the number of ports P2 and P4 have. 

Four objects of the class P2 and two objects of the class P4 are instanced. In 

addition we need some connect objects, half-duplex links, for instance, to connect 

them. These objects are then wired together to form the network of figure 5-4. 
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Route tables must then be set up for all the processors. There is no need to set 

up route tables for the half-duplex links. 

5.4 Specifying Assignment and Routing Sch- 

emes 

Task assignment in Genesis is done during a simulation run. In modelling shared- 

memory systems, Executable objects are placed in a global task pool accessible 

by all the processors. In distributed-memory systems they are placed in private 

task pools belonging to each processor. Assignment schemes decide where each 

Executable object needs to be placed. In static schemes such decisions are taken 

before commencing the simulation run; dynamic schemes make decisions during 

the course of the simulation. 

The execution model of an Executable object is determined by its type: DTask 

or ITask. The dynamic behaviour of the processor needs to specify the execution 

model. For instance, in a distributed-memory, message-passing system, the dy- 

namic behaviour of a processor that executes DTask objects will typically be the 

repeated execution of the following steps. 

1. If there exists a ready task in the local task pool, remove it from the pool 

and execute it (by increasing the local simulation clock to the task's finish 

time and suspending the process corresponding to the processor atom). 

2. If there is a task that has just finished execution, send its results to all its 

successors (by forming message packets and passing it along the appropriate 

output ports). 

3. If there is a message awaiting reception at any of the input ports, receive it. 

If it is destined to a task that belongs to the processor's local task pool, then 
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digest it (by updating the task's input record); otherwise route the message 

along the appropriate output port (since the message is destined to a task 

residing elsewhere). 

It is only required to express these steps using the appropriate methods provided 

by the class Processor. Note that most of the methods the class Processor provides 

are properties inherited from the class Atom. Appendix B gives, in terms of these 

methods, a detailed description of the dynamic behaviour of a processor executing 

DTask objects. 

Task preemption is modelled by suitably defining the dynamic behaviour of the 

processor. Preemption is particularly needed for the execution of ITask objects 

which infinitely iterate through a sequence of compute and communicate steps; 

fairness, in this case, can be guaranteed through preemptions. 

Routing strategies are realized by setting up the route tables. For instance, con- 

sider again the distributed-memory, message-passing system. Every processor 

atom maintains a route table that tells to which output port a given message 

has to be routed in order to reach a given processor atom. The entries in the route 

table are thus determined by the routing strategy employed. Whenever there is 

a message that needs to be sent away to another processor, the route table is 

consulted to determine the appropriate output port the message has to be sent 

to. The message can either be one generated locally at the processor (i.e. message 

generated by a task executing locally) or one that is received at an input port for 

routing. 

Dynamic routing strategies can be realized by updating the route tables at run- 

time. 
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5.5 Implementation Notes 

Genesis is implemented in C++ [Lip9l], an objected-oriented evolution of the 

C language. C++ extends C with several features including: 

- A class construct 

The class construct supports data abstraction and encapsulation. A class is 

an aggregate of variables of any type and a set of member functions designed 

to manipulate those variables. The variables can be declared private so that 

they cannot be referenced other than by the member functions of the class. 

The member functions are often referred to as methods. 

Genesis defines a C++ class corresponding to every entity of the software and 

hardware hierarchies (figures 5-1 and 5-3). Each class abstracts the static 

and dynamic structures of the corresponding entity. 

- Class derivation 

New classes may be derived from other class definitions, yielding a hierarchy 

of classes. The old class is the base class, and the new ones are derived 

classes. The public members of the base class become the public members 

of the derived classes; and the protected members of the base class become 

the private members of the derived classes. A derived class cannot access 

the private members of the base class. 

Genesis organizes the classes that represent various hardware and software 

entities in two powerful hierarchies illustrated in figures 5-1 and 5-3. Class 

derivation permits code sharing - code that is common to the children are 

owned by the parent so that the children can inherit them without duplicat- 

ing. 
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- Virtual functions 

These let a derived class provide definitions of functions named in the base 

class. This feature allows multiple classes, all derived from the same base 

class, to provide type-specific implementations of semantically common func- 

tions. Yet, a derived class that does not need a special implementation of 

the virtual function need not provide one. Instead, the function of the base 

class is used. C++ guarantees that the most specific function is invoked at 

run-time. 

Most of the methods in the classes of Genesis come with a default implemen- 

tation. Yet, being virtual, they let the derived classes provide sophisticated 

implementations, perhaps by improving upon the default. 

Genesis uses the simulation engine Awesime [Gru91] that provides the building 

blocks for constructing process-based discrete event simulations. The Awesime 

class Thread implements a process. Several other globally known classes manage 

the set of threads within the simulation. The programmer needs to derive all 

the active entities in the system from the class Thread. Thread provides a virtual 

method called main that needs to be customized by the derived classes. Execution 

of a thread is simply the execution of its method main. 

The class Atom, the base class of the hardware hierarchy, is derived from Thread, 

permitting itself to be an active entity. Thus all the classes of the hardware hi- 

erarchy, being derived from the class Atom, are active entities. Recall that every 

active entity owns a process that simulates its dynamic behaviour. This process is 

defined in the method main of the class the entity belongs to. As has been noted 

earlier, execution of an entity is the execution of the corresponding method main. 

The active entities are placed in an internal scheduler, maintained by Awesime, 

to let them execute. Every active entity is executed in turn, occasionally synchro- 

nizing with other active entities using semaphores. When waiting on a semaphore 

or when simulating a delay, an active entity permits itself to be descheduled by 
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the internal scheduler, paving way for other active entities to execute. When the 

semaphore on which the entity is waiting is acquired, or when the delay is simu- 

lated (i.e. when the global simulation clock advances enough), the scheduler will 

reschedule the entity'. 

5.5.1 Definition of the Class Atom 

Implementations of most of the methods required by the hardware entities are 

provided by the class Atom. Thus this section gives a brief definition of Atom and 

some of its important methods. Figure 5-5 provides a partial definition of Atom. 

The method wait lets the atom wait for one of its input ports to get ready. It 

suspends the process corresponding to the atom until an item is received at some 

input port. The method inReady examines if a given input port has an item. The 

method outReady examines if a given output port is ready to accept an item to 

send it away. It checks if the buffer of the input port it is wired to has room to 

receive an item. 

The method send sends an item to a given output port. It blocks if the buffer of 

the input port the given output port is wired to is full. The method recv receives 

an item from a given input port. If the buffer of the input port has no item to 

offer, then recv blocks. 

Methods add2rtable and getRtable are used in constructing and consulting the 

route table. The method wire wires a given output port to a given atom's input 

port. The virtual method main implements the dynamic behaviour of the atom. 

'Such descheduling and rescheduling involve saving and retrieving the context. This 

may introduce a significant overhead to the simulation time if such context switches 

are many. Thus a process-based simulator may not be suitable for those systems that 

change state at almost every time step. For such systems, a time-based simulator may 

be more suitable. 
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class Atom : public Thread { 

protected: 

void wait(); 

short inReady(const int port-no); 

short outReady(const int port-no); 

int send(const int port-no, Item *const something); 

Item *recv(const int port-no); 

short *getRtable(const int aid) { return rtab.get(aid); 

} 

public: 

short *add2rtable(const int aid); 

int wire(const int outport, Atom *a, const int port-a); 

virtual void main() = 0; 

Figure 5-5: A partial definition of the class Atom 

Since the class Atom is abstract, it does not provide any implementation. Concrete 

classes, for instance the class HalfDuplex, implement main. 

5.5.2 An Example: Building a Processor Grid 

This section presents an example of constructing a simulation model. 

Assume that it is required to build a grid of a x b processors with distributed 

memory. The processors are identical, have four ports each and are connected 

via half-duplex links to their nearest neighbours; no wrap-around connections are 

assumed at the grid edges. 

The processors communicate with one another by message-passing. A simple mes- 

sage routing mechanism is employed. A message is first routed along the row (in 

which it originated) until it reaches the correct column. Then it is routed along 

the column until it reaches the right row. 
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Deriving a processor class. First a class Proc4 encapsulating the processor 

objects of the grid is derived from the class Processor. Proc4 is defined in the 

derivation to have four ports. See figure 5-6. 

class Proc4 : public Processor { 

private: 

int rowid, colid; 

protected: 

int getPort(const int i, const int j); 

public: 

Proc4() : (4) { } /* Proc4 is a Processor with 4 ports */ 
void main(); 

/* Dynamic behaviour of Proc4 gets described in main */ 

int 

Proc4::getPort(const int i, const int j) 

{ 

if ( j > colid ) return 2; /* Go right */ 
else if ( j < col-ld ) return 0; /* Go left */ 
else { /* j == col_id. Move along the column */ 

if ( i > row-id) return 1; /* Go up */ 
if ( i < row-ld) return 3; /* Go down */ 
else return -1; /* Stay here */ 

} 

} 

Figure 5-6: Creating a processor with four ports 

In general, it is required to set up route tables at every processor which indicate to 

which output port a given message must be sent in order to reach a given processor. 

Since the message routing mechanism in this example is simple, there is no need to 

maintain route tables. Whenever there is a message requiring routing, the identity 

of the output port is computed using the method getPort. Thus a table space of 

0(a2b2) is saved. 
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The dynamic behaviour of the class is assumed to be defined in the method main 

according to the execution model the class chooses to describe. For instance, if 

the execution model is to be that of a DTask, then the dynamic behaviour will 

be similar to the one described in section 5.4; a complete description of dynamic 

behaviour for this execution model appears in appendix B. Description in main 

will make use of getPort to find the appropriate output port to which a given 

message has to be sent. 
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Creating the grid of processors. The processors of class Proc4 are used in 

building the required grid. The function makeGrid (see figure 5-7) creates a rect- 

angular grid of Proc4 processors. The processors are connected by identical half- 

duplex links of a given capacity. 

Proc4 * 

makeGrid(const int a, const int b, const int capacity) 

{ 

Proc4 *pptr = new Proc4[a*b]; 

/* create a x b processors of type Proc4 */ 
Proc4 *processor[a][b]; /* processor indices */ 
int i, j; /* loop indices */ 

/* index the processors according to their position in the grid */ 
for(i=0;i<a;++i) 

for(j=0;j<b;++j) 
processor[i]D] = pptr + a*i + j; 

/* wire them across - do not wrap around the edges */ 
for(i0;i<a;++i) 

for(j=0;j<b;++j){ 
if(j>0) 

wireH(processor[i]D], 0, processor[i]D-1], 2, capacity); 

if(i>0) 
wireH(processor[i][j], 1, processor[i-1][j], 3, capacity); 

} 

return pptr; 

} 

Figure 5-7: Creating a processor grid 

The function wireH wires the specified ports of two non-connect atoms with a half- 

duplex link of a given capacity. It is a function that instances a new HalfDuplex 
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atom and connects the two given non-connect atoms with this new atom. It uses 

the method wire implemented in the class Atom (see figure 5-5). 

Firing up the simulation. Figure 5-8 shows a typical code that simulates the 

execution of a task graph on the processor grid created. The task graph is read 

and mapped onto the processor grid. A call to the global function go-simulate 

starts the simulation. 

int main(int argc, char *argv[]) 

{ 

const int a = 64; const int b = 128; const int capacity = 1; 

/* Create an a x b grid of processors */ 
Proc4 *grid = makeGrid(a, b, capacity); 

/* Read in the task graph specified in the command line */ 
TaskGraph taskGraph(argv[1]); 

/* Map the task graph on the grid */ 
map(taskGraph, grid, a, b, capacity); 

/* Start the simulation */ 
go-simulate(); 

return 0; 

} 

Figure 5-8: Firing up the simulation 

The function go-simulate passes all the active entities (in this case, the processors 

and the half-duplex links) on to Awesime's internal scheduler and the scheduler 

then executes the entities' main methods appropriately. 
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5.6 Comparison with Related Works 

Comparable related works on modelling parallel architectures include PARET 

[NE88], ASIM [Jum9O] and OASIS [UBP81]. These are all object-oriented mod- 

elling systems - PARET and ASIM are based on C++ and OASIS is based on 

Simula. 

PARET (Parallel Architecture Research and Evaluation Tool) is targeted for non- 

shared memory, MIMD architectures. A specific computer model comprises three 

subsystems - the user program, the interconnections and the system functions that 

each processor must execute. These subsystems share the same model - a directed 

flow graph where the nodes represent units of action and the arcs represent both 

data and control flow. PARET provides a graphical user interface that lets the 

user draw and edit the graphs representing the algorithm and the architecture. 

Run-time statistics are displayed by user-selected meters. 

ASIM is a parallel computer simulator that belongs to a family of discrete event 

simulators called xSIM. Except a class Processor, all the simulation classes repre- 

sent software entities. Processors model the sequential processors in a multipro- 

cessor computing system. A process is attached to a processor in order to model 

the effect of the process executing on that processor. This attachment of pro- 

cesses to processors is under user control and can be changed during simulation. 

This enables simulations to model process migration. A process can be an actual 

program written in C. Process synchronization primitives are provided by xSIM. 

Process Device Processor 

Link Memory 

Segment Module 

Figure 5-9: OASIS class hierarchy 
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OASIS is a library of Simula classes. See figure 5-9. The classes Link and Process 

are provided by Simula. The OASIS classes Device, Segment, Memory, Processor 

and Module represent an abstract `computer system device', `unit of information', 

`information storage device', `information processing element' and an `executable 

program' respectively. Each class allows facilities fundamental to the class. For 

example, class Processor has a facility for simulating the execution of programs, 

or objects belonging to the class Module. Using the appropriate classes and the 

facilities they provide, the user creates the simulation model. 

In comparison to these works, Genesis is not restricted to any particular category 

of computers (cf. PARET, ASIM). It can model anything from a simple bus ar- 

chitecture to novel architectures like a dataflow architecture. Classes essential to 

construct most of the architectures are provided by Genesis. The choice of classes 

is based on the architectural representation scheme underlying Genesis. Thus the 

classes are realistic (cf. OASIS). 

Hardware components are active objects in Genesis. Every hardware component 

is modelled by a black-box that is free to function independently. The user has 

control over the way these black-boxes are connected and the way they function. 

Software components stay passive. Thus Genesis cannot run a task written in a 

high-level language. A high-level program must be translated into an intermediate 

form. This is a drawback of Genesis. Simulation systems such as ASIM support 

tasks written in high-level languages. Yet, these systems do not have the flexibility 

that Genesis has in modelling the hardware. 

Genesis provides the means to specify and alter routing and assignment schemes. 

Both static and dynamic schemes can be supported. Since Genesis describes both 

executable and non-executable objects in a unified framework, it permits migration 

of executable objects with as much ease as migrating a non-executable object. 

Currently there is no graphical user interface to Genesis. Both the hardware and 

the software must be expressed by some code. A graphical interface similar to 

that of PARET would be a useful addition to Genesis. 
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5.7 Summary 

The design of Genesis is described. Genesis presents a unified, object-oriented 

approach to model parallel systems. The approach is based on the architectural 

representation scheme developed in chapter 4. Genesis provides the means of de- 

scribing and modelling the key parameters determining the performance of a par- 

allel system: the architecture, program, assignment method and routing scheme. 

It is thus a good laboratory for carrying out experiments in performance analysis. 

We now turn our attention back to the assignment problem and, using Genesis as a 

modelling platform, report some experiments on the performance of the assignment 

schemes described in chapter 3. 



Chapter 6 

Performance Assessment of 

Assignment Schemes 

Even though work-greedy assignments give guaranteed solutions, they could be 

worse than a non-work-greedy assignment. The following example demonstrates 

this. Consider the assignment of the task graph of figure 6-1(a) onto a two proces- 

sor system {PO, P1} with zero interprocessor communication delay. Gantt charts 

of figures 6-1(b) and 6-1(c) show that a work-greedy assignment fairs poorly in 

comparison to a non-work-greedy one (which, in this case, is an optimal assign- 

ment). 

(a) 

(2) 

TO T4 

t=0 t=7 t=9 

TO T3 

Tl 
T2 T4 

(a) Task graph (b) A work-greedy assignment (c) A non-work-greedy assignment 

(Numerals in parenthesis denote task execution times.) 
I 

Figure 6-1: Work-greedy assignments are not always good 

However, there is no analytical performance guarantee for a non-work-greedy as- 
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signment. Thus this chapter presents an experimental performance analysis of the 

non-work-greedy assignment scheme DFBN. 

Comparison of assignment schemes that ignore communication costs have been 

reported in the literature [ACD74,SWP90]. However, to our knowledge, no com- 

parison of the schemes that consider communication costs has yet been reported. 

Thus, this chapter reports an extensive set of results comparing these schemes. 

The comparison experiments use the assignment schemes, ETF, ERT, MH and 

DFBN. The scheme MCP is not considered here since it is very similar to RMH, 

the restricted version of MH. 

The assignment schemes are tested with random task graphs as well as task graphs 

obtained from real program routines. For some small task graphs, the makespans 

of the assignments generated by the heuristic schemes are compared against the 

makespans of the optimal assignments. 

Both DFBN and the work-greedy assignment schemes assume that the task graph 

parameters - task execution times, volumes of information transfer, etc. - are 

known a priori. However, in practice, it is hard to measure these parameters ac- 

curately. One would expect that such inaccuracies would lead to poor assignments. 

Thus, some experiments are conducted to investigate the impact of measurement 

inaccuracies on the makespan. 

The Experimental Framework. Task dependency graphs are executed on 

processor graphs (topologies) using partitions dictated by the assignment schemes. 

Genesis is used for building these processor graphs and simulating the execution. 

The means of building processor graphs and simulating the execution is discussed 

in chapter 5. The simulation method uses a fixed shortest path routing for com- 

munication; network contention is taken into account by queueing messages. To 

transfer a message of size v through a link that has an information transfer rate 

c takes Iv/cl units of time. It is assumed that the processors can do only one 

activity at a time: either computation or communication. 
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The following points are to be noted. 

The scheme MH uses the number of hops between processors in determining 

communication costs. This is fine when the processors are connected by 

identical links, but not otherwise. Thus we use the inter-processor distance 

(as defined in chapter 3) in determining communication costs under MH. 

MH uses an adaptive shortest path routing scheme while finding the assign- 

ments. Even though we use this adaptive routing scheme while determining 

assignments under MH, we do not use the adaptive scheme when we find the 

makespans of the MH-generated assignments. We only use a simple shortest 

path routing scheme. 

DFBN uses a weighted sum of priorities to calculate the overall priority of 

a task. See chapter 3, equation 3.4.1. Since we do not know what choices of 

weights will consistently give good assignments, we arbitrarily set wo = 10, 

wi = 1 (i = 1 ... 5) and a = 1. This choice gives more weight to the critical 

tasks than to the others. 

6.1 Optimal Assignments 

To see how close to optimal a given assignment is, the optimal makespan (i.e. the 

makespan of the optimal assignment) must be known. The best known method to 

find an optimal assignment (and the optimal makespan) is exhaustive search. An 

exhaustive search looks at every possible assignment and chooses the one with the 

minimum makespan. 

If the tasks are independent of each other, then the number of possible assignments 

that should be looked at is m'. Now if an arbitrary precedence relation is intro- 

duced among the tasks, then task ordering within the partitions of an assignment 
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must be taken into account in determining the number of possible assignments, N. 

Task ordering increases N, while precedence relation decreases it. The increase 

due to task ordering is reflected in the following lemma. 

Lemma 6.1. The number of possible assignments a set of n tasks can have on an 

m processor system is 

(n+m-1)! 
W(n, m) _ (rn - 1)! 

ignoring the effect of precedence relation among the tasks, but taking into account 

the task ordering. 

Proof. 

The proof is by induction. 

Let the number of possible assignments be W (n, m). Since a task can be assigned 

to any of them processors, W (l, m) = in. Assume that 

W(q,m)= 
(q+m-1)! 

(m - 1)! 

Now increase the number of tasks from q to q + 1. The new task can be added 

to a partition after any of the q tasks; it can also be placed at the head of any of 

the m partitions. Thus, there are q + m ways of inserting the new task into an 

existing assignment. That is, 

W(q+1,m) _ (q+m) W(q,m) _ (q+m)! 
(m - 1)! 

Therefore, if the result holds for n = q, it will hold for n = q + I. 

The decrease in N due to precedence relation is hard to determine. This problem is 

as hard as finding the number of linear extensions in a poset which has been proved 
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to be #P-completes [BW91]. Given an arbitrary precedence relation among the 

tasks, we only have an upper bound on the number of possible assignments. That 

is, 

N< (n+m-1)t 
(m - 1)! 

An exhaustive search through the possible assignments is thus enormously time 

consuming and is practical only for very small task graphs. Hence, three small- 

sized task graphs (see figure 6-3) are chosen and their best-case and worst-case 

makespans (corresponding to the best and worst assignments) on the processor 

graphs of figure 6-2 are found through an exhaustive search. Table 6-1 lists these 

best-case and worst-case makespans; the corresponding assignments are tabulated 

in table C-1 of appendix C. 

Out of the task graphs of figure 6-3, GT is taken from Hwang et al. [HCAL89]; 

G' and GT are chosen arbitrarily. 

P P3 

(a) G 
P 

P 
0 

P1 

&-i-O 
1 1 

O 2 O 
P1 

P2 

(c) G 
P 

(Information transfer rates are shown beside the edges of the graphs.) 

Figure 6-2: Example processor graphs 

'Any #P-complete problem is as hard as counting the satisfying assignments of a 

boolean formula [Va179]. 
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TO(8) 
T7(6) 

i 
(a) GT 

T 
0 

(6 

T (6) 
0 

T3(6) T5(4) 

T9 (7) 

() G3I 

(Numerals in parentheses denote task execution times. The volume of 

information transfer is shown beside each edge.) 

T1(5) T2(4) 

Figure 6-3: Example task graphs 
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GT Gp The best-case 

makespan 

The worst-case 

makespan 

GT GP 32 65 

GT GP 39 65 

GT GP 32 68 

G7. GP 53 92 

G7. GP 54 92 

G7. GP 53 98 

G7. G o 17 39 

G7. GP 22 39 

GT G p 17 42 

Table 6-1: Best-case and worst-case and makespans 

-110 

The worst-case execution time is never less than the sequential execution time; in 

general, it may be greater because of delays due to message latencies. 

For each task graph and processor graph combination (figures 6-3 and 6-2), as- 

signments are generated using each of the assignment schemes (see table C-2 of 

appendix C). The execution of the task graph on the processor graph is then 

simulated, and the makespan of the task graph on the chosen processor graph is 

tabulated in table 6-2. As an example, figure 6-4 illustrates the execution of GT 

on GP with a best-case assignment. Note that DFBN generates a best-case (or 

optimal) assignment in this case. 

Busy computing S Waiting for communication 

P 
0 

P 

P., 

T, T5 T7 i4 T3 T6 

T1 T4 T4 

0 8 16 24 32 

Idling 

Figure 6-4: Gantt chart showing an execution of GT on GP 

Table 6-2 lists also the total execution times of task graphs under a random 

assignment. The time complexity of a random assignment is 0(n). 
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GT Gp ETF ERT MH/RMH DFBN Random 

GT GP 34 34 33 32 47 

GT G p 41 40 42 48 47 

GT G3 34 34 33 32 44 

G2 GP 53 55 55 53 58 

GT G2 61 57 55 54 69 

GT G3 54 55 55 53 66 

G3 GP 18 18 18 18 23 

GT GP 24 24 25 24 26 

GT G3 17 17 23 19 30 

Table 6-2: Makespans of the task graphs 

Examination of tables 6-1 and 6-2 leads us to the following observations: 

111 

DFBN generates optimal assignments in five cases; ETF in two cases; and 

ERT in one case. 

The heuristic assignments, in general, perform better than a random assign- 

ment. 

Effect of Routing on the Makespan. Consider the assignment of G7. onto 

G3 under MH. See table C-2 of appendix C for the partitions and figure 6-5 for 

a Gantt chart showing execution. To and T2 finish their execution at instances 

6 and 4 respectively. To start T3 on P2 output message from To on Po should 

reach P2; and to start T4 on PO output message from T2 on P2 should reach Po. 

The non-adaptive shortest path routing scheme used in the simulation requires 

messages to and from Po and P2 to be routed via P1. Since Pl is busy executing 

T5, these messages do not get routed until T5 is completed. Therefore, T3 and T4 

have to start as late as instance 11. Had the messages been routed via P3, the 

makespan would have been shorter. (Alternatively, if P1 could be interrupted to 

handle message routing, then also the makespan could be shorter.) 
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0 Busy computing . Waiting for communication 

P 
0 

P 
1 

P2 

P3 

Idling 

TO T4 

T1 
T5 T6 

T2 T3 

0 5 10 15 20 23 

Figure 6-5: Effect of routing on the makespan 
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It is thus seen that smart routing schemes can be employed to shorten the make- 

spans. However, since our goal is only to study the performance changes due to 

different assignment techniques, we do not need to use any smart routing scheme; 

we only have to fix a routing scheme and use it consistently. 

6.2 Assigning Random Graphs 

This experiment tests the assignment schemes using a number of random task de- 

pendency graphs. Random dependency graphs help to predict the performance of 

assignment schemes without any assumption about specific workloads. Processor 

graphs of figure 6-2 are used in executing these random task graphs. Random task 

dependency graphs are generated following the technique outlined in [ACD74]. 111 

random graphs2 with the following characteristics are generated for the test. 

2The number 111 has no special significance. It is an arbitrary selection. 
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Range of number of vertices 8-35 
Average number of vertices 21 

Range of number of edges 15 - 44 

Average number of edges 27 

Range of mean execution time of a task 13 - 42 

Average mean execution time of a task 28 

Range of mean volume of information transfer 4- 18 

Average mean volume of information transfer 11 

Task execution times and volumes of information transfer have negative exponen- 

tial distributions with the mean values given above. Thus the execution times and 

volumes of information transfer tend to vary widely within a task graph. 

I 
Gp ETF ERT MH RMH DFBN 

GP 278 274 274 274 265 

GP 362 352 361 361 346 

GP 269 264 275 275 255 

Table 6-3: Average makespan of the random graphs 

Table 6-3 shows the average makespan of the assignments generated by different 

assignment schemes. The average is taken over the 111 random graphs. 

Some graphs may favour a particular heuristic. For example, consider the task 

graph of figure 2-3(a). The best-case work-greedy assignment of this graph is 

the one shown in the Gantt chart of figure 2-3(c) whereas the best-case non- 

work-greedy assignment is the one in figure 2-3(a). The best-case work-greedy 

assignment is worse than the best-case non-work-greedy assignment. Now consider 

the same task graph with all its precedence relations inverted. The best-case 

assignments under both work-greedy and non-work-greedy schemes will then be 

the assignment shown in figure 2-3(c) (but with the chart reversed). That is, by 

inverting the precedence relation of the task graph we see that both schemes fair 

equally well. 
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To investigate the possibility of the graph generation process favouring a particular 

heuristics, we repeat the experiment with the same random graphs but with all the 

precedence relationships inverted. Table 6-4 shows the average makespan of the 

precedence-inverted random graphs under different assignment schemes. Tables 6- 

3 and 6-4 show no evidence that the random graph generation is biased. 

GP ETF ERT MH RIM DFBN 

GP 262 254 261 261 250 

GP 351 341 345 345 336 

GP 244 242 250 248 236 

Table 6-4: Average makespan of the precedence-inverted random graphs 

Examination of tables 6-3 and 6-4 reveals that 

DFBN does consistently better than the rest of the assignment schemes. Per- 

formance of DFBN is up to 8% better than the rest of the schemes considered 

here. 

MH does not exhibit any significant performance improvement over RMH. 

In fact, there are cases where RMH does better than MH. This may be due 

to the fact that the simulator that executes the task graphs uses a fixed 

shortest path routing scheme rather than the adaptive routing embedded in 

MH. 

Note that the random graphs used in obtaining tables 6-3 and 6-4 are sparse. 

Sparse random graphs are used because they closely model real programs. 

6.2.1 Assessing the Effect of Estimation Errors 

Due to many non-deterministic factors affecting program execution, it is not always 

possible to determine the exact values of the task graph parameters. Compile time 
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analysis cannot predict the task execution times when there are run-time depen- 

dencies. Even in the case of instruction scheduling, where the compiler knows the 

instruction execution times, load and store instructions may take longer to execute 

than predicted, because of cache misses3. Run-time estimation of parameters may 

also be inaccurate. For instance, execution time of a task in a multiprogramming 

system may not be deterministic due to the interference by other tasks executing 

in the system. 

This experiment examines the effect of estimation error on the makespans of ran- 

dom task graphs. The sparse random graphs of the previous experiment are re- 

used. 
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Figure 6-6: Effect of estimation error on the makespan under ETF 

Assignments under the schemes ETF, ERT, RMH, MH and DFBN are deter- 

mined with random errors added to both the task execution times and the volumes 

of information transfer. A random error is assumed to be normally-distributed. 

Makespans of the task graphs on the processor graphs of figure 6-2 under these 

3Normally, in such cases, the entire instruction pipeline is frozen to maintain the 

state of the schedule. 
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Figure 6-7: Effect of estimation error on the makespan under ERT 
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assignments are found through simulation. The simulation uses the correct task 

graph parameters in executing the task graphs (i.e. it does not add any random 

error to the task graph parameters). 
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Figure 6-8: Effect of estimation error on the makespan under RMH 

The graphs of figures 6-6 to 6-9 illustrate the effect of estimation errors on the 

makespan. The average gain in the makespan of a heuristic assignment is com- 

puted with respect to the makespan of a random assignment and is plotted against 

the standard deviation of estimation error. The gain in the makespan is defined 



Chapter 6. Performance Assessment of Assignment Schemes 

as 

Wran - W x 100 
Wran 
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where Wran is the makespan of the random assignment and w is the makespan of 

the heuristic assignment. The average is taken over the 111 random graphs used 

in the previous experiment. 
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Figure 6-9: Effect of estimation error on the makespan under DFBN 

Since the makespans produced by RMH and MH are very close to each other, only 

the results from RMH are reported here. 

These graphs show that the estimation errors have very little impact on the 

makespan. A 70% standard deviation of estimation error results in no more than 

6% variation in the average gain. The prime reason for this low sensitivity for 

estimation errors is that the assignment schemes depend more on the structure 

(or the layout) of the task graph than on the parameters of the graph. 

This important result implies that accurate estimation of task graph parameters 

is not necessary to produce reasonably good assignments. As long as the structure 

of the task graph and some estimate of the task graph parameters are determined 

at compile time, the assignment schemes will generate good assignments. This 
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means that, if the task graph structure is known at compile time, one need not 

postpone the assignment until run time. 

Observe also that DFBN has the maximum average gain over the random assign- 

ment. 

6.3 Dependency Graphs from Programs 

Synthetic random graphs often lack the complex embedded correlations that real 

task graphs contain. It is thus desirable to validate the results obtained using 

synthetic random graphs by experiments conducted on real task graphs. This sec- 

tion thus repeats the experiments carried out in the last section using dependency 

graphs extracted from real program routines. 

More than 500 dependency graphs obtained from an extensive dependency analysis 

of Fortran subroutines are used in this section to test the assignment schemes. The 

subroutines are part of one of the Perfect Club Benchmarks [B+89,CKPK90]. The 

benchmark implements a QCD (Quantum Chromodynamics) simulation using the 

Cabbibo-Marinari pseudo heat-bath algorithm [CM82]. The QCD simulation is 

required in high energy Physics for understanding subnuclear processes and is 

extremely computationally demanding. 

The dependency graphs correspond to the basic blocks (i.e. the maximal blocks of 

instruction sequences containing no branches) of the source subroutines. Tasks are 

thus fine-grained, representing individual instructions. They have execution times 

of 1 - 8 clock cycles. Each dependency is taken to mean a unit information transfer 

between the dependent instructions. The biggest graphs have 63 instructions. No 

graph having less than 8 instructions is used. These graphs are grouped into two: 

a set of small graphs each with 8-15 instructions; and a set of large graphs each 

with 16-63 instructions. 
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The processor graphs of figure 6-2 are used in executing these dependency graphs 

under different assignment schemes. Makespans of the assignments under ETF, 

ERT, MH and RMH are compared to the makespan of the DFBN generated as- 

signment. The performance gain of DFBN over the other assignment schemes is 

expressed by the makespan difference 

AX WX - WDFBN x 100 where X E {ETF, ERT, MH, RMH}. 
WDFBN 

Since MH produced makespans very close to those of RMH, results from MH are 

not reported here. 
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Figure 6-10: Frequency of makespan difference between ETF and DFBN 
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Figure 6-11: Frequency of makespan difference between ERT and DFBN 
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Figure 6-12: Frequency of makespan difference between RMH and DFBN 

The histograms of figures 6-10 to 6-12 show the frequency of Ax, where X is either 

ETF, ERT or RMH. The positive values of OX imply an advantage for DFBN over 

the assignment scheme X. Figures 6-10 to 6-12 show a definite advantage of using 

DFBN over the other schemes. Table 6-5 summarizes the advantage of DFBN 

over these schemes. It shows the percentage of cases where DFBN performs better 

than or equal to the assignment scheme under comparison. The figures in the table 

are averages over the small and large instruction graphs and the three processor 

graphs. 
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6.3.1 Effect of Estimation Errors 
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Section 6.2.1 reported experimental evidence suggesting that the assignment sche- 

mes considered here are fairly insensitive to estimation errors. The experiment 

used random graphs. Here we repeat those experiments with the instruction de- 

pendency graphs extracted from QCD subroutines. 
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Figure 6-13: Effect of estimation error on the makespan under ETF 

Assignments of the instruction graphs on the processor graphs of figure 6-2 are 

determined using the heuristic schemes ETF, ERT, RMH and DFBN. Normally- 

distributed random errors are added to the instruction execution times while deter- 

mining the heuristic assignments. As before, the makespans of these assignments 

are found through simulations using the error-free instruction execution times. 

The average gain in the makespan of heuristic assignments is calculated with re- 
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spect to the makespan of a random assignment. See section 6.2.1 for a definition 

of makespan gain. 
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Figure 6-15: Effect of estimation error on the makespan under RMH 

Figures 6-13 to 6-16 show the effect the maximum estimation error has on the 

average makespan. Maximum estimation errors up to 100% result in no more than 

6% variation in the average makespan. 
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Figure 6-16: Effect of estimation error on the makespan under DFBN 

Out of the assignment schemes tested, DFBN has the maximum average gain over 

the random assignment. One exception to this is the assignment onto GP; RMH 

performs slightly better than DFBN in this case. 

To summarize, all the assignment schemes exhibit a good deal of insensitivity to 

estimation errors. This has two important implications: 

1. Inaccuracies in the estimation of task graph parameters can be mostly tol- 

erated. 

2. An instruction schedule generated for a particular architecture can be exe- 

cuted on a slightly different architecture, where some instructions have dif- 

ferent execution times, without incurring a large penalty. 

6.3.2 On the Assignment of Loops 

The dependency analysis carried out to extract dependency graphs from the QCD 

subroutines does not utilize the parallelism that may be present across the loops 

- it just extracts the dependency graph corresponding to the loop body. However, 
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it is possible to extract more parallelism (than is visible in the body) from a loop 

by unrolling it several times. 

Consider the loop of figure 6-17(a). The task Tb is dependent on Ta during any 

iteration; and the task Ta during iteration I is dependent on Ta during iteration 

I-1. 

DO I = 1,2*N,2 

DO I = 1,2*N Ta X(I) = X(I-1) + 10 

Ta:X(I)=X(I-1)+10 TV :Y(I)=X(I)+Y(I) 
Tb : Y(I) = X(I) + Y(I) Ta : X(I+1) = X(I) + 10 

END DO Tb : Y(I+1) = X(I+1) + Y(I+1) 

END DO 

Figure 6-17: (a) An example loop. (b) Loop (a) unrolled once. 

Data dependence in loops are classified as follows: (a) loop-carried dependence that 

arises when data are passed between different iterations; and (b) loop-independent 

dependence that arises when data are passed from one task to another within the 

same iteration. See [ERL91]. The example loop of figure 6-17(a) has a loop- 

carried dependence from Ta to itself, and there is a loop-independent dependency 

from Ta to Tb. Both loop-independent and loop-carried dependencies make a loop 

less parallelizable. 

Taking into account the dependencies within a loop body, a dependency graph 

corresponding to the loop body can be constructed. This dependency graph can 

then be assigned onto a parallel execution system using one of the assignment 

heuristics discussed thus far. 

The dependency graph corresponding to the loop body of figure 6-17(a) is depicted 

in figure 6-18(a). Assuming Ta and Tb take unit time for their execution, the 

makespan of the entire loop is 4N. 

Now consider unrolling the loop. When a single loop is unrolled u times, the loop 
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(a) (b) 

(a) Task graph corresponding to the loop body of figure 6-17(a) 

(b) Task graph corresponding to the loop body of figure 6-17(b) 

Figure 6-18: Task graphs for the example loops 

body is replicated u times, the loop control variable is adjusted for each copy and 

the step value of the loop is multiplied by u + 1. Figure 6-17(b) shows the loop 

of figure 6-17(a) unrolled once. 

The dependency graph corresponding to the unrolled loop body of figure 6-17(b) 

is depicted in figure 6-18(b). Ignoring communication delays, the makespan of this 

dependency graph on a system with more than one processor is 3. The makespan 

of the entire loop is thus 3N. As before, tasks Ta, and Tb are assumed to take unit 

time for their execution. A speed-up of 4/3 has been achieved by unrolling the 

loop once. 

In general, the makespan of an entire loop depends on u (the number of times 

the loop is unrolled) and the assignment heuristics employed in assigning the loop 

body. Good assignment heuristics would result in shorter makespans. A discussion 

on the influence of u on the makespan and the treatment of nested loops are found 

in [ERL91]. 

Loop unrolling, however, has one main disadvantage. It produces significant code 

expansion, increasing the pressure on an instruction cache. Thus an overlapped 

loop execution (that pipelines the execution of tasks within and across the loop 
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body) has been proposed [DHB89]. However, such overlapped execution requires 

complex hardware support in addition to the compiler efforts. When the code size 

is not of great concern, loop unrolling is a good technique to expose the parallelism 

in the loops. Good assignment schemes find applicability in assigning the unrolled 

loops. 

6.4 Varying the Size of the Processor Graphs 

This experiment examines the effect the size of the processor graph has on the 

assignment. It uses two-dimensional processor grids of different sizes. These pro- 

cessor grids are constructed using the methodology outlined in section 5.5.2. The 

grids, however, have wrap-around connections in order to exploit all the processor 

links. The wrap-around connections enable faster routing. 

The experiment uses the assignment schemes ETF, ERT, RMH and DFBN to find 

assignments of task graphs onto these processor grids and simulates the execution 

to find the makespans. 

MH has a time-complexity cubic in the number of processors. When the processor 

graphs are large, MH spends a lot of time updating the route tables used in its 

embedded adaptive routing scheme. Since the earlier experiments have shown that 

RMH (the restricted version of MH) is equally good, this experiment uses RMH 

instead of MH and avoids the extra time-complexity of MH. 

The average makespans of the task graphs of the QCD benchmark are found to be 

the same for all assignment schemes on all processor grids. We thus report results 

from experiments that use the sparse random graphs of section 6.2. Note that the 

number of tasks (n) in the random graphs varies from 8 to 35 with an average of 

21. Table 6-6 summarizes the average makespans of the assignments of these task 

graphs on different processor grids. 
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Grid size (m) ETF ERT RMH DFBN 

1 x 1 623 623 623 623 

2 x 2 248 249 250 238 

2 x 4 218 218 218 224 

4 x 4 212 212 212 228 

8 x 4 213 212 213 230 

Table 6-6: Average makespans for different grid sizes 
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When the grid size is small, DFBN has the minimum average makespan. For large 

grid sizes, average makespans of the work-greedy assignments are smaller than 

those of DFBN generated assignments. 

The deficiency of DFBN for large grid sizes arises from the fact that it does not 

make use of the topology of the processor graphs in the same way as work-greedy 

assignment schemes. DFBN simply uses the `distance' of processors from the `most 

capable' processor in determining processor priorities. In contrast, work-greedy 

assignments choose a processor according to how quickly the processor can start 

executing a given task. 

However, choosing processors in the way work-greedy assignment schemes do re- 

quires a time-complexity higher than that of DFBN. Work-greedy schemes have a 

time-complexity of 0(n2m) whereas the time-complexity of DFBN is just 

0((n + m). log m + e). The improvement the work-greedy schemes achieve for 

large grid sizes does not thus match the effort and time spent. Judging the schemes 

by their time-complexity and the results they produce, DFBN is certainly a very 

promising assignment scheme even for large grid sizes. 

It is possible to show a performance guarantee for DFBN for grid sizes larger than 

the task graph widths (as in the lower rows of table 6-6) if the communication costs 

are small compared to computation costs. As has been pointed out in section 3.4.5, 

the makespan generated by DFBN in this case is within a factor of two of the 

optimal makespan. This same guarantee holds for the work-greedy schemes too. 
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Thus the makespan of a DFBN-generated assignment is within a factor of two of 

the makespan of a work-greedy assignment. It will be interesting to investigate if 

one could prove a similar guarantee when communication costs are comparable to 

the computation costs. 

6.5 Task Assignment on Meiko 

This section discusses the viability of testing the assignment schemes for depen- 

dency graphs on Meiko [Mei89], the Edinburgh Concurrent Supercomputer. Meiko 

is a multi-transputer machine consisting of T800 transputers. The set of transput- 

ers is divided into domains that a user can reserve for use. Parallel programming 

is supported through CS Tools [CST], a development toolset for the Meiko. User 

programs are written in a high-level language, C for example. The programmer 

needs to think in parallel and code a number of sequential tasks. These tasks 

operate concurrently, passing messages amongst themselves when necessary. CS 

Tools provides the programmer with a set of library routines that let explicit 

message-passing. 

Within each domain, tasks communicate using the same library calls regardless of 

whether or not a direct physical link can be made between the transputers. CS 

Tools provides all the message re-transmission, multiplexing and buffering that 

are necessary. The programmer sees the hardware as an idealized, fully connected 

and homogeneous system. The mechanism that underlies the communication and 

routing services of CS Tools is called CSN (Computing Surface Network). CSN 

takes the form of a background process that resides on every transputer of the 

domain. User tasks do not directly interact with one another; they have to interact 

via CSN. 

In addition to the application program, the user must prepare a configuration file 

that states which tasks are involved in the application and where they are to run. 
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Typically, a configuration file consists of task name and transputer id pairs. In the 

configuration file the user can specify how the transputers are to be connected. If 
no such specification is given, CS Tools connects the transputers in a line and uses 

up the spare links for random cross connections. 

There are several points about CS Tools worth noting. 

Task assignment is left to the user. 

Processor interconnection is also left to the user. If the user fails to specify 

the interconnection then an interconnection pattern, that in no way corre- 

sponds to the communication structure within the program, is chosen. 

Message-passing is strictly via CSN even if the two communicating tasks re- 

side in the same processor. This is very desirable, but the efficiency depends 

solely on the way CSN uses the locality in communication to minimize the 

communication time. 
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Figure 6-19: Average intraprocessor information transfer time 

A simple experiment conducted to measure the time for interprocessor and in- 

traprocessor message-passing shows that the time to pass a message between two 
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Figure 6-20: Average interprocessor information transfer time 

tasks residing in the same processor is comparable to the time to pass the same 

message between tasks residing in two adjacent processors4. Figures 6-19 and 6- 

20 show that the time t (in microseconds) to transfer a message of volume v (in 

bytes) is given by 

t 210 + 0.25v if the tasks are in the same processor, and 

t ti 210 + 0.75v if the tasks are in adjacent processors. 

Intra-processor communication time is more than one third of the inter-processor 

communication time. This implies that CS Tools fails to exploit the locality to 

minimize communication times. 

Now let us see how viable it is to use the automated assignment schemes for 

dependency graphs with CS Tools. 

In CS Tools, the tasks and their communication and are modelled by an interac- 

tion graph. It is, however, possible to restrict the communication so that the tasks 

'The experiment transfers back and forth a message of size v bytes between two tasks 

and finds the average time for a single transfer. 
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would receive messages when they start and send messages when they terminate. 

By imposing such a restriction one can create a dependency graph model. The 

tasks forming the dependency graph can then be assigned using one of the au- 

tomated assignment schemes for dependency graphs, thus relieving the user from 

having to create a configuration file. 

Since CS Tools does not efficiently exploit the locality in communication, the in- 

traprocessor communication cost is comparable to that of the communication cost 

between any two processors. Automated assignment schemes, however, assume 

that the intraprocessor communication cost is negligible when compared to the 

interprocessor communication. Assessing the performance of these assignment 

schemes on Meiko under CS Tools is thus not appropriate. 

In order to have an efficient automated assignment, one needs to take a global 

view of the application program. There should be a compile-time analysis of 

the program, and the compiler, rather than the user, must determine the program 

decomposition. The decomposition may make use of user directives in determining 

the potential parallelism. This is an exercise in its own merit and we do not deal 

with it in this thesis. Once such a decomposition is made, the compiler can make 

use of an appropriate assignment scheme to generate an assignment automatically. 

In such a case, intraprocessor message-passing can be achieved by passing pointers; 

and it will be reasonable to assume that the intraprocessor communication cost is 

negligible, an assumption that does not hold with CS Tools. 
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6.6 Summary 

Comparison of assignment schemes that consider communication costs has not 

been reported in the literature. This chapter thus presented an extensive set of 

experimental results comparing these schemes. 

Task graphs, either generated randomly or extracted from real program routines, 

are executed on processor topologies under different assignments and the resulting 

makespans are compared. For some small task graphs makespans under heuristic 

assignments are compared against optimal makespans. 

The results indicate that DFBN is a promising alternative to work-greedy schemes. 

It has a time-complexity less than those of work-greedy schemes and achieves a 

performance better than, or comparable to, that of work-greedy schemes. 

These assignment schemes operate under a common assumption: the task graph 

parameters - the task execution times, volumes of information transfers, etc. - are 

known prior to the assignment. Accurate estimation of these parameters is often 

hard due to run-time dependencies, interference from other programs, etc. It is 

generally thought that such inaccuracies will result in poor assignments. However, 

the error-sensitivity experiments reported in this chapter suggest that estimation 

errors have very little impact on the quality of the assignments. 



Chapter 7 

Summary and Conclusions 

This thesis showed some new analytical and experimental results relating to the 

assignment problem and proposed a new scheme for assignment. It also reported 

the development of a generic simulation environment for parallel architectures 

and used this environment to compare the performance of a number of assignment 

schemes. 

Chapter 2 proposed a hierarchical taxonomy for automated assignment schemes. 

The taxonomy was based on program models. It broadly classified assignment 

schemes into schemes dealing with interaction graphs and those dealing with de- 

pendency graphs. Desirable properties for efficient assignments under different 

program models were discussed. 

As opposed to the assignment of an interaction graph, an assignment of a de- 

pendency graph, in general, can be proved to be close to the optimal assignment. 

Moreover, the explicit temporal information made available by dependency graphs 

helps in establishing better assignment heuristics. 

Chapter 3 thus chose to examine in detail the assignment of dependency graphs. 

The impact of task ordering on the makespan was established. It was shown that 

an assignment with a poor task ordering can perform m times worse than an equiv- 

alent assignment with a good task ordering, m being the number of processors. 
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Factors that must determine the task ordering were discussed. Tasks with long 

execution times, task involving large communication times, tasks with large num- 

bers of successors, tasks with long-length successors and tasks with large memory 

requirements were identified to be those that need high priority in a task ordering. 

Most of the assignment schemes for dependency graphs are work-greedy. Their 

heuristics is based on satisfying the following rule of thumb: keeping the processors 

busy will lead to a `good' assignment. These schemes do not let a processor idle 

if there is a task the processor could execute. Many of these work-greedy schemes 

assume that the communication costs are negligible compared to the computation 

costs. With such an assumption, any work-greedy assignment can be proved close 

to the optimal by no more than a factor of two. Chapter 3 proved such performance 

guarantees for the work-greedy assignments of: 

independent tasks, and 

dependency graphs with zero communication costs. 

The performance guarantees depend on the degree of average software parallelism 

and the hardware parallelism (i.e. the number of processors available). 

Recent assignment schemes extend the work-greedy heuristics to take commu- 

nication costs into account. However, when the communication costs are taken 

into account, they lose two important characteristics of zero-communication work- 

greedy assignment schemes. That is, with arbitrary communication costs, it was 

shown that 

there is no guarantee that a processor will not idle when there is a task it 

could execute, and 

a work-greedy assignment can be worse than the optimal assignment by a 
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large factor (determined by the communication costs along some path in the 

dependency graph). 

There was thus a case for examining an assignment scheme that moves away from 

the work-greedy heuristics. Chapter 3 proposed such an assignment scheme. It is 

based on satisfying two desirable properties put forward in chapter 2: 

DP1. Assignment of independent tasks to different processors. 

DP2. Assignment of dependent tasks to the same processor. 

This new scheme, called DFBN (depth-first breadth-next), uses a combination of 

the familiar depth-first and breadth-first search algorithms to arrive at an assign- 

ment. 

DFBN does not primarily aim to keep the processors busy. It does not provide 

any analytical performance guarantee as do the work-greedy schemes. However, 

it has a time-complexity lower than that of the work-greedy schemes. The time- 

complexity is linear in the number of tasks and task graph edges. 

Comparisons of assignment schemes when the communication costs are zero have 

been reported in the literature. However, since most of the assignment schemes 

that consider communication are recent, no comparison of these schemes has yet 

been published. This thesis thus reported an extensive set of experimental results 

comparing these recent assignment schemes including DFBN. 

An object-oriented simulation platform for parallel systems was developed in order 

to carry out simulations comparing the performance of assignment schemes. Chap- 

ter 5 discussed the design and significant implementation issues involved in the 

development of this simulation platform. The platform, called Genesis, is generic, 

in the sense that it can model the key parameters that describe a parallel system: 

the architecture, the program, the assignment scheme and the routing strategy. 
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Genesis uses as its basis a sound architectural representation scheme reported in 

chapter 4. 

A number of experiments on the performance of assignment schemes was carried 

out using Genesis. Chapter 6 reported the results of these experiments. Task 

graphs, either generated randomly or extracted from real program routines, are 

executed on processor topologies under different assignment schemes. For some 

small synthetic task graphs, makespans under the heuristic assignment schemes 

are compared against the optimal makespans. Genesis was used in constructing 

the simulation models. Real task graphs were extracted from the subroutines of a 

Perfect Club benchmark. 

The comparison results indicated that DFBN is a promising alternative for work- 

greedy schemes. It has a time-complexity less than those of the work-greedy 

schemes and achieves an average performance better than, or comparable to, that 

of work-greedy schemes. The linear time-complexity of DFBN will make it a 

suitable scheme for the assignment of large task graphs. 

All these assignment schemes assume that the task graph parameters - the task 

execution times, volumes of information transfer, etc. - are known a priori. How- 

ever, due to many non-deterministic factors, these parameters cannot always be 

estimated correctly. It is generally thought that such inaccuracies will result in 

poor assignments. Experiments were conducted to investigate this; the effect of 

estimation errors on the performance of different assignment schemes were stud- 

ied. Chapter 6 reported results of these experiments. The results indicated that 

estimation errors have very little impact on the makespan. They showed that all 

the assignment schemes exhibit a good deal of insensitivity to estimation errors. 

Two important implications of these results were pointed out: 

1. Inaccuracies in the estimation of task graph parameters can be mostly tol- 

erated. Therefore, an accurate estimation of task graph parameters is not 
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necessary (nor, in many cases, is possible) to produce reasonably good as- 

signments. 

2. An instruction schedule generated for an architecture can be executed on a 

slightly different architecture, where some instructions have different execu- 

tion times, without incurring a large penalty. 

7.1 Future Directions 

This section outlines some of the possible directions in future research. 

Chapter 2 noted that the two-step non-work-greedy assignment schemes are com- 

plex. These schemes, in the first step, assign the task graph onto an unbounded 

number of virtual processors that are completely connected and have equal inter- 

processor communication times. In the second step, they map the virtual proces- 

sors onto physical processors. Table 7-1 shows the time-complexities of the known 

two-step non-work-greedy assignment schemes. 

Scheme 15t step 2"d step 

Kim [Kim88] 

Sarkar [Sar89] 

O(ne3) 

O(ne + e2) 

O(n3m) 

O(nnm + e) 

Table 7-1: Time-complexities of two-step non-work-greedy schemes 

Recall that n is the number of tasks and m is the number of processors. The 

number of virtual processors that have been actually used is n (< n). The time- 

complexity of DFBN is much lower than the time-complexities of these two-step 

non-work-greedy schemes. Since these two-step schemes are complex and require 

large time-complexities, the comparison experiments reported in chapter 6 did not 

take them into account. However, it will be interesting to compare the performance 

of these two-step non-work-greedy schemes in a framework similar to the one 

reported in chapter 6. 
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Chapter 3 showed the impact task ordering has on the makespan. Poor task 

orderings can result in long makespans. The factors that determine the task 

ordering were pointed out. Tasks with long execution times, task involving large 

communication times, tasks with large numbers of successors, tasks with long- 

length successors and tasks with large memory requirements were identified to be 

those that need high priority in a task ordering. But a task graph may contain a 

mixture of such tasks. How should one determine a unique task ordering in a task 

graph like this? DFBN, when determining a task ordering, took a weighted sum of 

various priorities. Is there be a better way of doing this? We need more exploration 

- either analytical or experimental - to provide an answer. An interesting direction 

would be to explore the relative significance of the task priorities. 

Another direction for future work is to find analytical performance guarantees for 

DFBN. This may be hard, since DFBN does not predict when to execute a task; 

it only finds where to execute it. With no start and finish times of the tasks 

predicted, it may be hard to quantify the makespan in terms of the task and 

processor graph parameters. 

If two concurrently-executable tasks communicate heavily with a common suc- 

cessor task, it may be advantageous to assign these two concurrently-executable 

tasks to the same processor (that will then be assigned the common successor). 

Such an assignment produces a communication-based clustering. DFBN and the 

other work-greedy assignment schemes always assign these concurrently-executable 

tasks to different processors, if there are sufficient processors. That is, they do not 

produce a communication-based clustering. When the tasks graphs have a small 

computation to communication ratio, there is a case for extending an assignment 

heuristics to produce communication-based clusterings. 

The thesis did not take into account the possibility of task replication. There is 

a definite performance gain by executing some tasks on more than one processor 

when the average communication to computation ratio is more than one [KL87]. 

However, the time-complexity of the assignment scheme will then be large. For 
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instance, the scheme proposed by Kruatrachue and Lewis [KL87] has a time- 

complexity of O(n4m). One future direction is to compare the assignment schemes 

reported in chapter 3 to that of DSH. Besides, it will be interesting to extend 

theorem 3.5 of chapter 3 taking task replication into account. 

On a more general direction, it will be interesting to explore the suitability of as- 

signment schemes to programming languages. Automated assignment schemes are 

well suited to dataflow languages [Sar89]. Other languages need to be translated 

into dependency graphs first. For the translation exercise, tools that perform de- 

pendency analysis of programs and generate dependency graphs will be useful. If 

the language does not support explicit parallelism, then such tools should also be 

able to automatically detect and extract parallelism embedded in the programs. 

Tool kits such as Sigma II [Sig92] take this direction. 
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Appendix A 

Definition of the Watchdog 

Each atom of Genesis owns a watchdog in order not to busy-wait for the arrival 

of items on the atom's input ports. The definition of the watchdog is presented 

here. 

Watchdog is a boolean variable w which can be either true or false. The only 

permissible operations on w are wait(w) and notify(w). These two are indivisible 

or atomic operations: 

wait(w) : if ( ! w ) { set w; go to sleep; } 

else error; 

notify(w) : if ( w ) { wake up the process waiting on w; reset w; } 

else do nothing; 

Two processes cannot wait on the same watchdog. That is, only one process has 

the right to set w; however, any process can reset w. 

Another example of the use of watchdogs is in interrupt-handlers. An interrupt- 

handler is a process that needs to be waken up only when one or more other 
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processes needs service. Hence, an interrupt-handler can own a watchdog and 

wait on it. The processes needing service may notify the watchdog, thus waking 

up the interrupt-handler. 



Appendix B 

Dynamic Behaviour of a Processor 

Executing a Dependency Graph 

The following C++ code describes the dynamic behaviour of a processor executing 

a dependency graph (consisting of DTask objects). The code would appear in the 

member function main of the processor class derived from Processor. The routing 

mechanism in the code assumes that the processors are connected to form a grid. 

See section 5.5.2. 

for ( ; ; ) { /* repeat for ever */ 
/* execute the ready task in the task pool */ 
/* and convey their outputs to their successors. 

while (( task = pop-pool()) 0 ) { 

::hold(task--exec _time() / speed()); /* execute task */ 
/* for all successors of task do the following */ 

destination-task == task--+succo; 

destination_processor = destination task--whereO; 

if ( destination -processor == this ) { /* successor in this processor */ 
destination _task--input(); /* the successor gets an input */ 
/* if the succ is ready after getting the input, */ 
/* add it to the task pool. */ 
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if ( destination_task->ready() ) 

add2pool(destination_task, destination -task--+ prioritYO); 

} 

else { /* successor elsewhere */ 
/* form a new message packet */ 
/* and send it to the destination processor */ 

send (get -port (destination-processor ->xid(), 

destination_processor->yid()), msg); 

} 

/* end for */ 

/* nothing to do now. wait for some input port to get a message 

wait(); 

/* there is message. */ 

/* if it is for this processor, input it to the task it is destined to. */ 
/* otherwise route the message. */ 

for ( int p = 0; p < inports(); ++p ) 

if ( in-ready(p) ) { /* input port p has a message */ 
msg = (Mesg *) recv(p); /* receive the message */ 

if ( msg->where() == this ) { 

/* task t to which the message is destined is in this processor */ 
Task *t = (Task *)msg->destination(; 

/* t gets an input */ 
t->inputQ; 

/* if t is ready, add it to the task pool */ 
if ( t->ready() ) 

add2pool(t, t->priority()): 

} 

else { /* message destined elsewhere */ 

/* route the message */ 

155 
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send(get-port ((msg-->where())-xid(), 

(msg-where())-yid(), msg); 



Appendix C 

Tables 

GP, GP and GP refer to the processor graphs of figure 6-2. GT, GT and GT refer 

to the task graphs of figure 6-3. 
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GT Gp A best-case Makespan A worst-case Makespan 

assignment assignment 

Po: 0, 2, 5, 7 Po: 0, 7 

GT G1 Pl: 6, 3 32 Pl: 1, 2, 3, 4, 5, 6 65 

P2: 1,4 P2: - 
GT GP Po: 3, 5, 6, 7 39 Po: 0, 7 65 

P1: 0, 2, 1, 4 P1: 1, 2, 3, 4, 5, 6 

Po: 0, 2, 5, 7 Po: - 
GT G3 P1: 3, 6 32 P1: 5, 1, 6, 2, 7 68 

P2: - P2: 3 

P3: 1,4 P3: 0, 4 

Pb: 0, 2, 3, 5, 8, 9 Po: 0, 5, 9 

GT. G1 P1: 4, 6, 7 53 P1: 1, 2, 4, 6, 3, 7, 8 92 

P2: 1 P2: - 
Po: 0, 2, 3, 5, 8, 9 54 Po: 0, 5, 9 92 

GT GP Pl: 1,4,6,7 Pl: 1,2,4,6,3,7,8 
Po: 0, 2, 3, 5, 8, 9 Po: 0, 5, 9 

G. G3 Pl: 4, 6, 7 53 Pl: - 98 

P2: - P2: 1, 2, 4, 6, 3, 7, 8 

P3: 1 P3: - 
Pb: 1, 3, 6 Po: 0, 1, 2, 6 

GT G1 P1: 2, 5 17 P1: 3, 4, 5 39 

P2: 0, 4 P2: - 
GT G , Pb: 1, 3, 5, 6 22 Po: 0, 1, 2, 6 39 

P1: 0, 2, 4 P1: 3,4,5 
Po: 1, 3, 6 Po: 6 

GT 3 GP Pl: 2, 5 17 Pl: 4, 5 42 

P2: - P2: 3 

P3: 0, 4 P3: 0, 1, 2 

Table C-1: Best-case and worst-case assignments and makespans 
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GT Gp ETF ERT MH/RMH DFBN 

Po: 3, 6 Po: 3, 6 Po: 0, 2, 5, 7 Pb: 0, 2, 5, 7 

GT GP P1: 2, 5, 7 P1: 2, 5, 7 P1: 1, 4 P1: 6, 3 

P2: 0, 1, 4 P2: 0, 1, 4 P2: 3, 6 P2: 1, 4 

GT Gp Po: 3,5,6,7 Po: 2,3,5,7 Po:0,2,3,4 Po:0,2,5,7 
P1: 0, 1, 2, 4 P1: 0, 1, 4, 6 P1: 1, 5, 6, 7 P1: 1, 4, 6, 3 

Po: 3, 6 Po: 3, 6 Po: 0, 2, 5, 7 Po: 0, 2, 5, 7 

GT GP P1: - P1: - P1: 1,4 P1: 6, 3 

P2: 2, 5, 7 P2: 2, 5, 7 P2: - P2: - 
P3: 0, 1, 4 P3: 0, 1, 4 P3: 3, 6 P3: 1, 4 

Po: 2, 6, 7 Po: 2, 6 Po: 0, 1, 4, 7 Po: 0, 2, 5, 3, 8, 9 

GT G, P1: 3, 5, 8, 9 P1: 3, 5, 7 P1: 2,3,5,8,9 P1:6 

P2:0,1,4 P2: 0, 1,4,8,9 P2: 6 P2: 1, 7,4 

GT GP Po: 2, 6, 8, 9 Po: 2, 3, 5, 7 Po: 0, 1, 6, 4, 7 Po: 0, 2, 5, 3, 8, 9 

P1: 0, 1, 3, 4, 5, 7 P1: 0, 1, 4, 6, 8, 9 P1: 2, 3, 5, 8, 9 P1: 1, 7, 6, 4 

Po: 2, 6 Po: 2, 6 Po: 0, 1, 4, 7 Po: 0, 2, 5, 3, 8, 9 

GT G3 P1: 7 P1: 8, 9 P1: 2, 3, 5, 8,9 P1: 6 

P2: 3,5,8,9 P2: 3, 5, 7 P2: 6 P2: - 
P3: 0, 1, 4 P3: 0, 1, 4 P3: - P3: 1, 7, 4 

Po: 0, 4 Po: 0, 4 Po: 0, 4 Po: 0, 4, 6 

GT G1 P1: 1,3,6 P1: 1,3 P1: 1,5 P1: 2,5 

P2: 2, 5 P2: 2, 5, 6 P2: 2, 3, 6 P2: 1, 3 

GT G2 Po: 1, 4, 5, 6 Po: 1, 4, 5, 6 Po: 0, 3, 5, 6 Po: 0, 4, 6 

P1: 0,2,3 P1: 0,2,3 P1: 1,2,4 P1: 1,3,2,5 
Po: - Po: - Po: 0, 4 Po: 0, 4, 6 

GT G3 P1: 0,4 P1: 0,4 P1: 1,5,6 P1: 2,5 

P2: 1,3,6 P2: 1,3,6 P2: 2, 3 P2:- 
P3: 2, 5 P3: 2, 5 P3: - P3: 1, 3 

Table C-2: Task partitions under various assignment schemes 
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