

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429706815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Task Assignment in Parallel Processor Systems
Sathiamoorthy Manoharan

Ph. D.
University of Edinburgh

1992

Abstract

This thesis studies the problem of assigning programs onto parallel processor sys-

tems. It develops a generic simulation environment to model parallel systems and

uses this environment to assess various assignment techniques.

Graphs are used in modelling programs, and based on these program models, a

taxonomy for assignment schemes is proposed. Assignment schemes are broadly

classified into schemes dealing with dependency graphs and schemes dealing with

interaction graphs. Desirable properties for efficient assignments under different

program models are discussed.

In contrast to the assignment of an interaction graph, an assignment of a de-

pendency graph, in general, can be proved to be close to the optimal assignment.

Moreover, the explicit temporal information made available by dependency graphs

helps in establishing better assignment heuristics. The thesis thus focuses on the

assignment of dependency graphs.

Most of the published schemes for assigning dependency graphs are work-greedy.

Their heuristics is based on satisfying the following rule of thumb: keeping the

processors busy will lead to a -good' assignment. These schemes do not let a

processor idle if there is a task the processor could execute. New analytical results

bounding the performance of work-greedy assignment schemes are derived. It is

shown that, when communication costs cannot be ignored, work-greedy assignment

schemes may not perform well. An alternative assignment scheme which has a

time-complexity lower than those of the work-greedy schemes is proposed.

Abstract - ii

A generic object-oriented simulation platform is developed in order to conduct

experiments on the performance of assignment schemes. The simulation platform,

called Genesis, is generic in the sense that it can model the key parameters that

describe a parallel system: the architecture, the program, the assignment scheme

and the message routing strategy. Genesis uses as its basis a sound architectural

representation scheme developed in the thesis.

The thesis reports results from a number of experiments assessing the performance

of assignment schemes using Genesis. The comparison results indicate that the

new assignment scheme proposed in this thesis is a promising alternative to the

work-greedy assignment schemes. The proposed scheme has a time-complexity

less than those of the work-greedy schemes and achieves an average performance

better than, or comparable to, those of the work-greedy schemes.

To generate an assignment, some parameters describing the program model will

be required. In many cases, accurate estimation of these parameters is hard. It is

thought that inaccuracies in the estimation would lead to poor assignments. The

thesis investigates this speculation and presents experimental evidence that shows

such inaccuracies do not greatly affect the quality of the assignments.

Acknowledgements

To my supervisors Nigel Topham and Roland Ibbett for their time and helpful

advices; to Peter Thanisch for our fruitful discussions and his many useful com-

ments; to David Skillicorn for his help throughout the development of Genesis; to

Roy Campbell for object-orienting me; to Tom Waring and Leslie Goldberg for

their advice, suggestions and encouragement; and to everyone who helped me with

my work.

To the Department of Computer Science for providing me with an interesting work

environment.

I was supported by a University of Edinburgh Postgraduate Studentship and an

Overseas Research Students Award.

Table of Contents

Abstract

1. Introduction

i

1

2. Models and Schemes for Assignment 8

2.1 Assignment of Dependency Graphs 9

2.1.1 Preemptive and Nonpreemptive Assignments 10

2.1.2 Work-greedy Assignments 11

2.1.3 Non-work-greedy Assignments 12

2.1.4 Assignment of Independent Tasks 13

2.2 Assignment of Interaction Graphs 13

2.2.1 Assignment of Regular Graphs 15

2.3 A Taxonomy for Assignment . 16

2.4 Desirable Properties for Efficient Assignments 17

2.4.1 Interaction Graphs . 18

Table of Contents vi

2.4.2 Dependency Graphs . 21

2.5 Examples from the Literature . 22

2.5.1 Interaction Graphs . 22

2.5.2 Dependency Graphs . 25

2.6 Summary . 27

3. Assignment of Dependency Graphs 29

3.1 On the Assignment of Dependency Graphs 31

3.2 Work-Greedy Assignments . 36

3.2.1 Brief Reviews of Some Work-Greedy Assignments 36

3.3 General Bounds on the Makespan of Work-Greedy Assignments . . 39

3.3.1 Independent Tasks . 40

3.3.2 Dependency Graphs with Zero Communication Times 44

3.3.3 Dependency Graphs with Unit Computation and Commu-

nication Times . 47

3.3.4 Dependency Graphs with Arbitrary Computation and Com-

munication Times . 47

3.3.5 Implications of the Bounds on Makespans 51

3.4 A Non-Work-Greedy Scheme for Assignment 53

3.4.1 DFBN: The New Scheme 55

Table of Contents vii

3.4.2 Processor Ordering . 58

3.4.3 Task Ordering . 59

3.4.4 Time-complexity of DFBN 60

3.4.5 Performance Guarantee . 60

3.5 Summary . 61

4. Representation of Parallel Architectures 64

4.1 A Survey of Some Architectural Classification Schemes 65

4.1.1 Flynn's Scheme . 65

4.1.2 Hockney's Scheme . 66

4.1.3 Skillicorn's Scheme . 67

4.1.4 Dasgupta's Scheme . 70

4.2 A Representation Scheme for Parallel Architectures 72

4.2.1 A Refined Set of Atoms . 73

4.2.2 The Representation Scheme 75

4.3 Summary . 78

5. A Modelling Environment for Parallel Systems 80

5.1 On the Design Choices . 81

5.1.1 Object Orientation: Objects, Classes and Hierarchies 83

Table of Contents viii

5.1.2 The Modelling Approach 83

5.2 Software Representation: The Software Hierarchy 85

5.3 Hardware Representation: The Hardware Hierarchy 86

5.3.1 Building a Hardware Model 89

5.4 Specifying Assignment and Routing Schemes 91

5.5 Implementation Notes . 93

5.5.1 Definition of the Class Atom 95

5.5.2 An Example: Building a Processor Grid 96

5.6 Comparison with Related Works . 101

5.7 Summary . 103

6. Performance Assessment of Assignment Schemes 104

6.1 Optimal Assignments . 106

6.2 Assigning Random Graphs . 112

6.2.1 Assessing the Effect of Estimation Errors 114

6.3 Dependency Graphs from Programs 118

6.3.1 Effect of Estimation Errors 121

6.3.2 On the Assignment of Loops 123

6.4 Varying the Size of the Processor Graphs 126

Table of Contents ix

6.5 Task Assignment on Meiko . 128

6.6 Summary . 131

7. Summary and Conclusions 133

7.1 Future Directions . 137

A. Definition of the Watchdog

B. Dynamic Behaviour of a Processor

152

154

C. Tables 157

Chapter 1

Introduction

Execution of a program on a parallel processing system requires the program to

be decomposed into several modules that can be executed concurrently by the

processors. Such modules are called tasks. Most of the parallel languages - for

example, Occam, Concurrent C or Modula 2+ - leave such decomposition to the

user; the user should `think in parallel' and explicitly decompose the program into

parallel tasks. Other languages - for example, SISAL, IBM Parallel Fortran or

Concurrent Prolog - do not support explicit decomposition; they depend on a

compiler for decomposition.

Assume that the program has already been decomposed into tasks either by the

user or by a compiler. The tasks comprising the program model must then be

assigned to the set of processors so as to minimize the total completion time of

the program. This is known as the assignment problem.

Let T be the set of n tasks {T1, T2, ... , Tn} and P be the set of m processors {P1,

P2, ..., Pm} onto which T is to be assigned. Assignment is then defined to be a

function

M:T -+P

that maps the set of tasks onto the set of processors. M is defined for each task

of T. The total time the set of tasks T takes to execute on the set of processors

Chapter 1. Introduction 2

P is called the makespan. The objective of the assignment is to minimize the

makespan.

The number of possible assignments is exponential in n. Thus, enumerating all

the possible assignments and choosing the optimal one will be enormously time

consuming (except for very small values of n). It is very unlikely that there could

be a cleverer scheme to find the optimal assignment, since even the restricted

versions of the assignment problem have been proved to be NP-complete [GJ79,

U1176,AP91]. Automating the assignment procedure is therefore hard.

Given the difficult nature of automated assignments, some parallel languages that

leave the decomposition to the user require the user to specify the assignment as

well. Languages such as Occam and POOL take this approach. For instance, Oc-

cam forces the user to map processes to processors and communication channels to

physical links. These languages trade off portability of programs for the simplicity

of compilers (and run-time systems).

Portable parallel programs require automated assignment schemes. Such auto-

mated assignment schemes, in general, use some heuristics and produce a near-

optimal solution in a reasonable amount of time.

This thesis is a treatise on automated assignment schemes. It discusses the tech-

niques and schemes for automated assignments. Throughout the thesis abstract

program models, rather than specific programs, are assumed in order to maintain

generality. Based on these abstract program models, the thesis presents a taxo-

nomical framework for assignment schemes that broadly classifies the assignment

schemes into schemes dealing with dependency graph models and schemes deal-

ing with interaction graph models. The thesis then focuses on the assignment of

dependency graphs, shows the impact of task ordering on the makespan and dis-

cusses the factors on which task ordering should depend. It derives new analytical

results bounding the performance of a class of assignment schemes and presents a

new scheme that is easy to implement.

Chapter 1. Introduction 3

Comparison of different assignment schemes requires extensive experiments. It is

decided to carry out these experiments on a simulated parallel processor system

so that the parameters of the system can be varied easily during the experiments.

To this end, the thesis develops a generic object-oriented simulation environment

for parallel processor systems. The simulation environment is generic in the sense

that it can model different architectures, assignment schemes and message routing

strategies on a single platform. The environment uses as its basis an architectural

representation scheme developed in the thesis.

Performance of assignment schemes are assessed through experiments conducted

using the simulation environment. The thesis reports results of many such exper-

iments.

Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 discusses the models and schemes used by automated assignment sche-

mes. Graphs are used in modelling parallel programs. Based on these program

models, a taxonomy for assignment schemes is proposed. Assignment schemes

are broadly classified into schemes dealing with dependency graphs and those

dealing with interaction graphs. Desirable properties for efficient assignments

under different program models are discussed. Since these desirable properties

are model-specific, the approaches taken by assignment schemes under different

models are seen to be distinct. Some examples from recent literature are mentioned

and are related in the light of the proposed taxonomy.

As opposed to the assignment of an interaction graph, an assignment of a de-

pendency graph, in general, can be proved to be close to the optimal assignment.

Moreover, the explicit temporal information made available by dependency graphs

helps in establishing better assignment heuristics.

-Chapter 1. Introduction 4

Chapter 3 thus focuses on the assignment of dependency graphs. Since even the

restricted versions of the assignment problem are NP-complete, it is hard to find

optimal assignments in a reasonable amount of time. Practical assignment schemes

thus go for some heuristics that picks up a near-optimal assignment in polynomial

time.

The heuristics most of the current assignment schemes for dependency graphs use

is based on satisfying the following rule of thumb: keeping the processors busy

leads to a `good' assignment. Such schemes are said to be work-greedy. Work-

greedy assignments are important since most of them provide a solution with

a guarantee. It is proved that, when communication costs can be ignored, any

work-greedy assignment would be close to the optimal assignment by no more

than a small constant factor. It is also proved that this does not hold, should the

communication costs be taken into account; that is, with communication costs,

a work-greedy assignment can perform worse than the optimal assignment by a

large factor that depends on the communication costs along some path in the task

graph.

A non-work-greedy assignment scheme whose heuristics is not based on keeping

the processors busy is proposed. The scheme is based on satisfying two desirable

properties put forward in chapter 2: assigning independent tasks to different pro-

cessors, and assigning dependent tasks to the same processor. The new scheme

has a time-complexity at least an order less than the work-greedy schemes.

Performance assessment of these assignment schemes is the goal of the remain-

der of the thesis. Performance of a parallel system depends on the architecture,

program, the assignment scheme and the message routing strategy. We develop

a generic modelling approach that lets us specify and model these parameters

and use this approach to simulate program execution on some processor topolo-

gies under different assignment schemes. These simulations aid the performance

assessment of the assignment schemes.

The development of a generic modelling approach requires the following.

Chapter 1. Introduction 5

1. A representation scheme based on an abstraction level that integrates most

of the possible architectural schemes.

2. Representing software in an architecture-independent way.

3. Providing the means to specify the assignment scheme and the routing strate-

gies.

Chapter 4 develops a structural framework for representing parallel architectures.

A set of functional units forming the basic blocks of architectures is identified.

These functional units serve as building blocks in constructing architectures. Struc-

tural diagrams are used in representing the architectures thus constructed. Gen-

esis, a generic modelling environment for parallel systems, is based on the repre-

sentation scheme developed in this chapter.

Chapter 5 discusses the design and implementation aspects of Genesis. Genesis

takes an object-oriented view of the entire parallel system, viewing both the ar-

chitecture and the software as sets of objects. Every single functional unit of the

architecture is modelled by an object; software entities - tasks, task graphs and

messages, for instance - too are modelled by objects. In addition, there are means

to specify various assignment and routing schemes. Genesis is thus a tool to de-

scribe and model the key parameters determining the performance of a parallel

system: the architecture, program, assignment method and routing scheme. It is

a good laboratory for carrying out experiments in performance analysis.

Chapter 6 uses Genesis as a modelling platform to analyse the performance of the

work-greedy assignment schemes and the proposed non-work-greedy scheme. Us-

ing Genesis, processor topologies are constructed and the execution of a number of

task graphs is simulated under different assignment schemes. Optimal assignments

are found for small task graphs and these are compared against those assignments

generated by the chosen assignment schemes. The schemes are then tested with

random task graphs as well as task graphs obtained from real programs. The

Chapter 1. Introduction 6

possibility of testing the assignment schemes on a real multiprocessor system is

also investigated in chapter 6.

Static assignment schemes assume that the task graph parameters - task execution

times, volumes of information transfer, etc. - are known at compile time. However,

in practice, run-time dependencies prohibit accurate measurement of these param-

eters. One would expect that such inaccuracies would lead to poor assignments.

Chapter 6 thus investigates this speculation and presents experimental evidence

that shows the impact of measurement or estimation inaccuracies on the quality

of assignments is small.

The final chapter concludes with a summary.

Contributions of the Thesis

The specific contributions of this thesis are as follows:

1. A taxonomy for assignment schemes [Man91].

2. Performance guarantees for the work-greedy assignments of

independent tasks [MT90]

dependency graphs ignoring communication delays, and

dependency graphs with communication delays.

3. A non-work-greedy assignment scheme [MT91].

4. Performance and error-sensitivity analyses of assignment schemes for depen-

dency graphs.

5. A structural representation scheme for parallel architectures.

Chapter 1. Introduction 7

6. An implementation of an object-oriented environment - Genesis - to model

and simulate parallel systems [Man92].

Chapter 2

Models and Schemes for Assignment

A parallel program can be best viewed as a graph: the vertices represent the

tasks and the edges represent the dependencies or interactions between the tasks.

This gives rise to two models that represent parallel programs: a dependency

graph and an interaction graph. See figure 2-1. In dependency graphs, the edges

dictate a temporal dependency on the tasks they connect, i.e. the simultaneous

execution of the tasks connected by an edge is prohibited. In interaction graphs the

edges simply represent the interactions between the tasks they connect. Temporal

dependencies are not explicit in an interaction graph: two tasks connected by an

edge are thus simultaneously executable.

(a) A dependency graph (b) An interaction graph

Figure 2-1: Program models: dependency and interaction graphs.

Both dependency and interaction graphs may have weights associated with their

vertices and edges: the weight on a vertex indicates the amount of computation

Chapter 2. Models and Schemes for Assignment _ _ 9

the corresponding task performs, and the weight on an edge indicates the amount

of communication between the tasks the edge connects.

Many assignment schemes are based either on dependency graph models or on

interaction graph models. That is, they assume that the program has already

been transformed into one of these graph forms and work their way forward to

find a mapping of the task set onto the set of processors.

Some models of computation, for instance CSP [Hoa78] or CCS [Mi189], are well

suited to the interaction graph forms whilst some other models of computation,

for instance a dataflow computation model [GPC88,Sar89], are well suited to the

dependency graph forms. The ease of transformation of the program into a suitable

graph form thus depends on the user's model of computation. Programs written in

Occam, for instance, are easy to model as an interaction graph whereas programs

written in SISAL can be easily modelled as a dependency graph.

2.1 Assignment of Dependency Graphs

Tasks in a dependency graph have computation times associated with them. The

graph edges, in addition to specifying temporal dependencies and thus a partial

order on the task set, specify the volumes of information transfer that take place

between the tasks they connect. Tasks receive information on their input edges and

send information on their output edges. A task becomes ready to execute when

all its input information is received, and finishes execution when it has produced

all the required outputs. It is assumed that the task produces no output whilst it

executes and then produces all outputs instantaneously when it finishes executing.

Dependency graphs are assumed to be acyclic, since this assumption makes their

assignment simpler. When a program contains loops and conditional branches,

this model does not seem to be realistic. However, there are techniques to convert

Chapter -2. -Models and Schemes for Assignment 10

cyclic dependency graphs (which correspond to programs containing loops and

conditional branches) into acyclic ones:

Probabilistic techniques associate with every task graph edge a nonzero prob-

ability [ME67,Tow86]. If there is a directed edge from task T; to task T;,

then associated with this edge is the probability that task T; will be executed

following the execution of Ti.

Conditional branches can be collapsed into single tasks [RG69].

Conditional branches introduce exclusive solution paths. Directed acyclic

graphs for each of these paths could be obtained and mapped onto the same

set of processors [SWP90].

Loops can be unrolled [ERL91] or collapsed into single tasks. Loop-unrolling

is briefly discussed in section 6.3.2.

The acyclicity constraint on dependency graphs is assumed throughout this thesis.

2.1.1 Preemptive and Nonpreemptive Assignments

Depending on whether a task's execution can be suspended or not, assignment

strategies for dependency graphs take two forms: preemptive and nonpreemptive.

In the nonpreemptive case, a task is executed continuously from start to finish

on the same processor. In the preemptive case, execution of a task can be inter-

rupted under the assumption that it will be resumed at a later time on some (not

necessarily the same) processor.

Preemptive assignments may have makespans shorter than those of nonpreemptive

ones. Consider the assignment of three independent tasks To, Tl and T2 each of

execution time 2 on two identical processors Po and P1. The Gantt charts in fig-

Chapter 2. Models and Schemes for Assignment 11

PO

PI

PO

PI TI T2

TO

TI TZ

0 1 2 3

Time -s
(a) Preemptive

TI TO

0 1 2 3 4

Time

(b) Nonpreemptive

Figure 2-2: Preemptive assignments may be better than nonpreemptive ones

ure 2-2, adapted from [Cof76], demonstrate that the makespan of the preemptive

assignment is shorter than that of the nonpreemptive one. However, not all tasks

can be preempted. If a task is atomic, i.e. indivisible, then it cannot be preempted.

Besides, preemption is not free: it involves some context-switching overheads. It

is also hard to decide whether and when to preempt a task.

2.1.2 Work-greedy Assignments

Most of the known nonpreemptive assignment schemes for dependency graphs are

work-greedy. The heuristics used by a work-greedy assignment scheme is based on

satisfying the following rule of thumb: keeping the processors busy leads to a `good'

assignment. That is, a work-greedy assignment does not let a processor idle if there

is a task it could execute. Work-greedy schemes, in general, generate assignments

with a guarantee: the assignments can be provably close to the optimal assignment.

It can be shown analytically that no work-greedy assignment can be worse than

the optimal assignment by more than a constant factor. When the communi-

cation costs are fixed, this constant factor is small. Assignment of independent

tasks [MT90], assignment of dependency graphs with arbitrary computation costs

but zero communication costs [Gra76], and assignment of dependency graphs with

unit computation and unit communication costs [RS87] are some cases where the

existence of the small constant factor has been proved. In all these cases, it can

be shown that

-<2
w -

Chapter 2. Models and Schemes for Assignment 12

where w' is the makespan of a work-greedy assignment and w is the makespan of the

optimal assignment. However, poor assignment strategies may have greater impact

on the makespan when the communication costs are arbitrary [BMRS88]. The next

chapter looks at this issue in detail and proves tighter bounds on makespans.

Given the varying nature of communication costs, it is not always easy to guarantee

that a processor will not idle when there is a task it could execute. For instance,

a work-greedy assignment may, at compile-time, assign a task T to a processor

P such that the start time of T is the earliest when T executes on P. This also

ensures that P will be kept busy as much as possible. However, at run-time, due

to routing decisions and contention in the network, T may not be able to start

on P at the predicted time. It may also be possible, under the prevailing network

conditions, that there could be a processor P on which T would have started

earlier than it would have on P. That is, processor P may be idling even though

there is a task T in the system that it could execute.

2.1.3 Non-work-greedy Assignments

Keeping the processors busy is not the prime goal of non-work-greedy assignment

schemes. That is, a non-work-greedy assignment may have a processor idling even

when there is a ready task that the processor could execute. This may seem

inefficient at first sight. The following example illustrates that, in fact, a non-

work-greedy assignment may perform better than a work-greedy assignment. See

figure 2-3. The task graph is assigned to two identical, connected processors Po

and P1. Note that, under the non-work-greedy assignment, processor PO idles

during the time interval (0, 1) although task T3 is executable during this interval.

The work-greedy assignment shown in figure 2-3(b) is the best any work-greedy

assignment can generate. The makespan of this assignment is larger than that of

the non-work-greedy assignment. The existence of non-critical, ready tasks make

work-greedy assignment schemes fair poorer than the non-work-greedy schemes.

Chapter 2. Models and Schemes for Assignment

TO

T1

t-0

T2

T3

T4

t_5 t.6

TO

N
T2

T3

T4

T1

13

(a) Task graph (b) A work-greedy assignment (c) A non-work-greedy assignment

(Numerals in parenthesis denote task execution times.

Number of processors is two.

Communication delay is assumed to be zero)

Figure 2-3: A comparison of work-greedy and non-work-greedy assignments

However, predicting whether or not it is desirable to delay the execution of a

non-critical task is not easy. Therefore, non-work-greedy schemes may be more

complicated than the work-greedy schemes.

2.1.4 Assignment of Independent Tasks

An important and well-studied class of program graphs arises when all the tasks are

independent, that is, when there are no dependencies or interactions between the

tasks. Since the execution times of these tasks carry all the temporal information

required by dependency graph models, the assignment of independent tasks is

indeed a special case of the assignment of dependency graphs.

2.2 Assignment of Interaction Graphs

Tasks in an interaction graph have an average computational load associated with

them. Each graph edge specifies the volume of information transfer that takes

place between the tasks that it connects.

Chapter 2. Models and Schemes for Assignment 14

Tasks execute simultaneously by going through a series of compute and communi-

cate steps. The completion time of a task in an interaction graph is indeterministic.

Therefore, the makespan of an assignment of an interaction graph is indetermin-

istic. It can be neither calculated nor expressed in terms of the interaction graph

parameters. Thus, assignment schemes for interaction graphs set their objective

to satisfy a set of desirable properties that can be expressed in terms of the graph

parameters, rather than to achieve the minimum makespan. An objective func-

tion that satisfies the set of desirable properties is formulated and used by the

assignment schemes. The objective function evaluates the quality or the cost of

an assignment. An optimal assignment refers to the assignment that optimizes

this objective function rather than the assignment that minimizes the makespan.

Several objective functions have been used in the literature. They can be classified

into three groups. The first group of functions aims to balance the computation

costs among the processors and the second group aims to minimize communication

costs. The third group of functions aims to balance the computation costs whilst

minimizing communication costs.

Just balancing the computation costs will result in an assignment that has all

its task distributed across the available processors. Therefore, when the inter-

task communication costs are large, the first group of objective functions may

not do well. Similarly, just minimizing the communication costs will result in a

trivial assignment that clusters all the tasks into a single processor (or a group

of processors). Thus, the second group of objective functions, used alone, cannot

be a reasonable goal for assignment. Good assignment schemes, therefore, use

objective functions of the third group.

A naive approach to arrive at the optimal assignment is through an exhaustive

search for the assignment that minimizes the objective function. Unfortunately,

given n tasks and m processors, the number of possible assignments is m". Thus

the naive approach will be time consuming.

A straightforward way of reducing the search time is to use established search

Chapter 2. Models and Schemes for Assignment 15

improvement techniques, such as branch-and-bound search with underestimates

or the A* search [Win84]. These techniques reduce the best-case search time. Yet,

the worst-case time remains exponential.

Another technique widely employed by assignment schemes is iterative improve-

ment. These schemes start from an initial assignment and improve its quality by

iteratively moving tasks between processors. The improvement is measured by

the objective function. Iterative improvement methods may not work always, for

there are chances of getting stuck at a local optimum of the objective function.

Probabilistic jumps to nearby solutions may permit further improvement in such

cases. Simulated annealing [K+83] is a technique to get around the local optima

in a systematic way. In the worst-case, all iterative improvement techniques take

exponential time. But in practice, by choosing appropriate improvement mecha-

nisms, speedy solutions are possible.

2.2.1 Assignment of Regular Graphs

The above discussions apply for any arbitrary interaction graph. However, simpler

assignment techniques can be used for those interaction graphs that are regular.

In a regular graph, all the tasks have the same characteristics and all the inter-

task communications are of the same volume. Regular graphs form the models of

iterative parallel programs in which the computation and communication patterns

are regular and identical during each iteration. The regular nature of the graphs, in

most cases, permits one to consider assignment as a simple geometric partitioning

problem.

Chapter 2. Models and Schemes for Assignment

2.3 A Taxonomy for Assignment

16

Based on the discussion in the previous section, a taxonomy for assignment schemes

is proposed here. The related earlier works on taxonomies for assignment schemes

include [CK88], [WM85] and [SE87].

The taxonomy presented by Casavant and Kuhl is based primarily on solution

techniques [CK88]. By `solution technique', we mean the methods and ways of

arriving at a solution. Optimal, heuristic and graph-theoretic methods are some

examples. The taxonomy is partly hierarchical and partly flat. The characteristics

that do not fit uniquely under any particular branch of their hierarchical taxonomy

are placed in the flat part of the taxonomy. In fact, the characteristics forming

the flat part could be branches beneath several leaves of the hierarchy.

Since similar solution techniques apply to different assignment schemes, the base

of their hierarchical taxonomy is filled with many identical leaves. Most of the

known solutions to the assignment problem are heuristic sub-optimals. Thus the

taxonomy of Casavant and Kuhl places most of the assignment schemes in the

heuristic sub-optimal class. A taxonomy based solely on solution techniques often

groups assignment schemes that are not particularly related.

Wang and Morris present a taxonomy for load balancing [WM85]. Load balancing,

however, is just one criterion for efficient assignment of certain program models.

Thus their taxonomy cannot categorize most of the assignment methods.

Sadayappan and Ercal mention a taxonomy based partly on program models

[SE87]. However, the structure of their taxonomy is not sufficiently expressive.

For instance, assignment of independent tasks is not classified under the assign-

ment of dependency graphs; rather, it is treated as special, at the top level of the

taxonomy.

Chapter 2. Models and Schemes for Assignment 17

Assignment
Interaction graph

--F-Dependency graph

Figure 2-4: A broad classification for assignment based on program models

Figure 2-4 illustrates our broad taxonomy based on program models. Assignment

schemes for dependency graphs are classified further: figure 2-5 illustrates the

taxonomy.

Nonpreemptive
Dependency graph

L_ Preemptive

Work-greedy

Non-work-greedy

Figure 2-5: A broad taxonomy for dependency graph assignment

Task graphs can be generated either at compile time or at run time. Static assign-

ment schemes use task graphs generated at compile time; dynamic schemes use

the graphs generated at run time. Thus the taxonomy classifies both static and

dynamic assignment schemes in the same framework.

2.4 Desirable Properties for Efficient Assign-

ments

The heuristics used by most of the assignment schemes are based on satisfying two

desirable properties: balancing the computation costs among the processors and

minimizing the communication costs. To balance the computation costs needs an

even distribution of tasks across the available processors; and the minimization

of communication costs requires to cluster tasks together onto a single processor.

These two are contradictory goals. The efficiency of an assignment scheme depends

on how well the scheme exploits the graph structure to arrive at an assignment

that achieves both these goals. It involves trade-offs between satisfying the two

Chapter 2. Models and Schemes for Assignment 18

stated desirable properties. This section discusses some desirable properties for

efficient assignments in the light of the program models that have been described

earlier.

The desirable properties depend also on the parallel system onto which the pro-

gram is assigned. In particular, the properties that relate to the minimization

of communication costs may vary according to the type of the parallel system.

In distributed-memory systems communication between any two tasks executing

on two different processors depends on the distance between the two processors.

In most of the shared-memory systems, where the tasks are held in a common

pool and communication is via a shared address space, communication cost be-

tween any two tasks is independent of where the tasks execute. This commu-

nication cost depends upon the architectural characteristics and the workload of

the memory system and the interconnects. Resource contentions and conflicts in

the memory and interconnects may increase the communication cost. However, if

the shared-memory systems exploit local storage (caches, registers, etc.) for local

communication, then communication cost between the tasks placed in the same

processor can be substantially less [Squ90].

Therefore, the desirable properties that aim to minimize communication costs

must take into account the properties of the parallel system.

2.4.1 Interaction Graphs

In order to exploit the potential parallelism in an arbitrary interaction graph,

the processors need to be equally loaded. This property is often referred to as

load balancing. This is essentially the distribution of the tasks evenly across the

processors so that each processor has an equal share of the total computational

load.

To minimize the communication costs in a distributed-memory system, tasks with

heavy interaction must be assigned to the same processor (or adjacent processors).

Chapter 2. Models and Schemes for Assignment 19

In addition, in systems where the interconnection is a topology, mapping of the

task graph edges onto single processor links will minimize communication costs.

In shared-memory systems, if some local storage (registers, cache, etc.) is used for

local communication, then it is desirable to assign those tasks that interact heavily

to the same processor; otherwise communication costs are irrelevant as far as the

assignment is concerned.

Regular Interaction Graphs

Regular graphs, by their very nature, permit simpler assignment techniques to

be employed. For example, in systems comprising identical processors with reg-

ular communication network (regular topologies and shared-memory systems, for

instance), assignment of regular graphs can be viewed as a simple geometric par-

titioning problem. Each partition generated by the assignment scheme is assigned

to a suitable processor (chosen by the assignment scheme) for execution. In gen-

eral, partitions and processors are so chosen that the communication is restricted

to the nearest neighbours.

As an example, consider the regular interaction graph of figure 2-6(a). Tasks

in this graph represent iterative processes that communicate with their nearest

neighbours. For the processor topology of figure 2-7(b), the partition of figure 2-

6(b) would suit best; for the processor topology of figure 2-7(c), the partition

of figure 2-6(c) would suit best. In both these cases both the computation and

communication loads are balanced. For the processor topology of figure 2-7(a),

the partition of figure 2-6(c) is more suitable than that of figure 2-6(b); even

though both partitions balance the computation costs, the communication cost

per processor graph edge is less in the case of partition 2-6(b).

The computation time of a partition is proportional to the area of the partition;

and the inter-partition communication time is proportional to the perimeter of the

partition. Here `area' means the number of task vertices within the partition, and

Chapter 2. Models and Schemes for Assignment

E:.

(a) (b) (c)

Figure 2-6: Partitioning regular graphs: Task graph and partitions.

PO

(a)

PO P1 P2 P3

Figure 2-7: Partitioning regular graphs: Processor topologies.

20

P1

`perimeter' means the number of vertices along the partition boundary. The task

vertices along the partition boundary are responsible for the inter-partition com-

munication (and, since each partition is assigned to a processor, inter-processor

communication). The partition can be of different shapes: square, strip, rectan-

gular, etc. (see figure 2-6). The processor topology and communication pattern

will determine the exact shape of the partition [RFS7].

Since both the computational load and the communication load need to be bal-

anced, the following desirable properties apply for regular graphs:

The sizes of the partitions need to be the same.

P1

The shapes of the partitions need to be the same.

Chapter 2. Models and Schemes for Assignment 21

2.4.2 Dependency Graphs

The temporal dependencies present in a dependency graph dictate a partial order-

ing on the tasks. This partial ordering does not permit equal loading of processors

without either increasing the makespan or wasting processor resources. Therefore,

load balancing makes little sense for dependency graphs. Assignment schemes

for dependency graphs should thus employ a different criterion to minimize the

computation costs.

Assume a dependency graph in which communication costs are negligible compared

to the computation costs. The following desirable property that minimizes just

the computation costs is thus adequate for such a graph:

Processors must be kept as busy as possible.

The heuristics used by work-greedy assignment schemes is based on satisfying this

property. Under this property tasks are executed at the earliest possibility.

When the communication costs vary, approaches that minimize the communication

costs while balancing the computation costs are needed. One such approach is to

extend the above desirable property to take communication costs into account.

Work-greedy schemes that consider communication costs take this approach.

Another approach is to start with a different set of desirable properties that aims

to balance computation costs and minimize communication costs. Such a set of

desirable properties is stated as follows:

Assignment of independent tasks to different processors.

Independent tasks are concurrently executable. To minimize the

makespan requires the concurrent execution of these independent

tasks. Thus these tasks should be assigned to separate processors.

Assignment of dependent tasks to the same processor.

Chapter 2. Models and Schemes for Assignment 22

Dependent tasks can only be executed in sequence. They would

gain nothing by being assigned to separate processors; and, more

importantly, they could incur extra communication delays if they

are executed in separate processors. Thus the dependent tasks

should be assigned to the same processor.

2.5 Examples from the Literature

In this section, some recent literature on assignment is briefly reviewed and clas-

sified according to the proposed taxonomy. The distinctions and relationships

between the published assignment schemes will then be easy to appreciate. Some

of these schemes are dynamic and the rest are static.

Note that an extensive survey is not intended. Only a few typical examples are

cited.

2.5.1 Interaction Graphs

Shen and Tsai view the assignment of interaction graphs as a type of graph match-

ing problem called weak homomorphism [ST85]. If a graph GT can be mapped

onto another graph Gp such that there is a many-to-one mapping of the edges of

GT onto the edges of Gp, then there is a weak homomorphism from GT to Gp.

They use the A* algorithm [Win84] to find the minimum cost weakly homomorphic

mapping.

Most of the heuristic assignment schemes for arbitrary graphs use a two step

procedure: an initial assignment and an iterative improvement. Some schemes

minimize the communication costs in the first step, and in the second step balance

the computational load. Others balance the computational load first and then

iteratively exchange tasks to minimize communication.

Chapter 2. Models and Schemes for Assignment 2a

The scheme proposed by Efe first clusters heavily-communicating tasks together

to form an initial assignment and then uses a task reassignment algorithm to

obtain iteratively an assignment with balanced computational load [Efe82]. Sa-

dayappan and Ercal address the problem of assigning non-uniform, irregular finite

element meshes onto processor graphs [SE87]. The initial assignment is improved

by boundary refinement to balance the computational load.

Bokhari presents a heuristic algorithm that improves an initial assignment through

pairwise interchanges, the objective function being the number of task graph edges

that fall on processor graph edges [Bok8l]. He uses probabilistic jumps to guide

the objective function out of local optima. Lee and Aggarwal propose a similar

assignment scheme [LA87]. Unlike Bokhari, they examine only selected pairs for

interchange; although, in the worst case, all the pairs could be selected. They also

take the possibility of network contention into account.

Simulated annealing is a technique that generalizes the probabilistic jump ap-

proach to get around local optima. Donnet et al. show results indicating the effec-

tiveness of simulated annealing over other iterative improvement methods [DSS88].

However, simulated annealing is time consuming. Parallel versions of simulated

annealing are thus being employed by some assignment schemes [HMS].

Lin and Keller propose a dynamic scheme for assignment based on the so-called

gradient strategy: a local, demand-driven load balancing method [LK87]. They

assume locality of interactions among the task vertices, and thus aim to achieve

a global load balance by successive localized balances. Kale proposes a similar

dynamic assignment scheme called Contracting Within a Neighbourhood (CWN)

[Ka187].

Regular Interaction Graphs

Most of the assignment schemes published for the parallel numerical solutions

of partial differential equations are good examples of this category [RF87]. The

Chapter 2. Models and Schemes for Assignment 24

solution domain of a partial differential equation (PDE) can be discretized into a

`grid' of points. The value at each grid point is updated in each iteration using

the values at neighbouring points. These points can be updated in parallel. The

computational work associated with each point is the same throughout the grid.

Each of these grid points is a task to be executed; and these tasks interact with

their neighbours. Hence the PDE grid forms a good example of a regular graph.

Vrsalovic et al. consider the assignment of regular graphs onto a shared bus multi-

processor [V+85,V+88]. They define speedup in terms of computation and commu-

nication decomposition functions. The computation (communication) decompo-

sition function is the ratio of processing (data access) time for a single processor

system to the processing (data access) time for a multiprocessor system. They

consider three different partition shapes. For three different combinations of de-

composition functions, they derive speedup considering both exclusive global data

access and data access with local copying. In [Cve87], Cvetanovic extends the

work done by Vrsalovic et al. Her analysis is not limited to shared buses. She

defines speedup in terms of the bandwidth of the interconnection network and the

computation and communication decomposition functions.

Reed et al. consider the assignment of a PDE solution grid onto both shared

memory and message passing architectures [RF87,RAP87]. Their analysis differs

from [V+85,V+88,Cve87] in that they consider the effect of stencils (the number

of neighbours with whom a grid point interacts) on the speedup. They conclude

that stencils, partition shape and architecture must be considered together for

generating optimal assignments. In [NW88], Nicol and Willard derive expressions

for optimal speedup and optimal number of processors for the assignment of PDE

solution grids.

In [Bok88], Bokhari considers the problem of assigning a chain-structured parallel

or pipelined program onto a chain of processors. Both the task and processor

graph have nearest-neighbour communications. With the constraint that each

processor should be assigned a contiguous subchain of tasks, Bokhari develops a

Chapter 2. Models and Schemes for Assignment 25

simple algorithm for finding the optimal assignment. The algorithm uses a layered

graph to search for the optimal solution.

Regular graph structures may as well arise at an intermediate stage during the

assignment process. For example, chain-structured graphs arise as an intermedi-

ate form in some of Bokhari's assignment schemes [Bok88]. The schemes generate

optimal assignments of some classes of programs onto host-satellite processor sys-

tems with certain constraints. Program transformation techniques that transform

classes of programs into pre-defined regular graph structures have been proposed

elsewhere as well [Co189].

2.5.2 Dependency Graphs

Optimal polynomial time assignments of dependency graphs are available only for

restricted cases. For example, in [Cof76] two such restricted cases are given: when

the task graph is a forest, and when there are only two processors available. In

both these cases task execution times are fixed at unity and communication costs

are assumed to be zero.

Many of the assignment schemes use heuristics to arrive at near-optimal solutions.

Work-greedy Assignments. Most of the published work-greedy assignment

schemes assume that the communication costs can be ignored. Coffman gives

a good account of such work-greedy assignment schemes that ignore communi-

cation costs [Cof76]. Shirazi et al. [SWP90] and Adam et al. [ACD74] present

comparative analysis of such assignment schemes. Work-greedy schemes that ig-

nore communication delays have been used in scheduling dataflow graphs onto

dataflow architectures [GKS87] and scheduling instruction streams onto pipelined

processors [Kri90].

Rayward-Smith considers work-greedy assignments of dependency graphs with

Chapter 2. Models and Schemes for Assignment 26

unit execution and unit communication times [RS87]. Lee et al. [LHCA88], Wu

and Gajski [WG88], Hwang et al. [HCAL89] and El-Rewini and Lewis [ERL90]

propose work-greedy assignment schemes taking arbitrary communication costs

into account. The next chapter will briefly describe these schemes.

Kruatrachue and Lewis introduce a work-greedy assignment scheme called Dupli-

cation Scheduling Heuristics (DSH) that replicates execution of some of the tasks

so as to minimize the communication costs [KL87]. If a task T's execution on a

processor P is delayed due to communication from a predecessor task Tp of T,

then DSH examines if replication of Tp (and possibly Tp's predecessors and Tp's

predecessors' predecessors and so on) on P will make T start earlier. The so-

lutions that DSH generates are very good if the communication costs are large

compared to computation costs. The trade-off here is the high time-complexity of

the algorithm'.

All the above assignment schemes are static. Chou and Abraham describe a dy-

namic assignment scheme [CA82]. They introduce probabilistic fork and join

points in the task graph in order to model the probabilistic nature of the pro-

gram. Partitions of the task graph are found using results in Markov decision

theory. Communication costs are assumed to be zero in this scheme.

Non-work-greedy Assignments. Kim [Kim88] and Sarkar [Sar89] propose al-

gorithms for non-work-greedy assignments and show that they perform well for

task graphs with heavy communication. These algorithms follow a two step ap-

proach. The first step assigns the tasks onto an unbounded number of virtual

processors. These virtual processors are completely connected and have equal

interprocessor communication costs. The second step maps the virtual proces-

'The time-complexity of DSH is O(n4m), where n is the number of tasks and m is

the number of processors.

- Chapter 2. Models and Schemes for Assignment 27

sors onto the real processors. Yang and Gerasoulis propose a non-work-greedy

algorithm called Dominant Sequence Clustering (DSC) for the first step [YG91].

The two-step non-work-greedy schemes are complex and involve large time-com-

plexities. They do not provide any analytical performance guarantee as do the

work-greedy schemes. Moreover, no experimental comparison between these sche-

mes and work-greedy schemes have been reported.

Preemptive Assignments. Sahni [Sah84] and Blazewicz et al. [BDW86] ad-

dress preemptive assignment of independent tasks. Sahni assumes the context-

switching time to be non-zero and develops an algorithm to obtain a sub-optimal

solution of known accuracy. Blazewicz et al. present a scheme for a system where

tasks may need more than one processor at a time for their processing.

2.6 Summary

The models and schemes used for the solution of the assignment problem have

been discussed. Graphs are used in modelling parallel programs. Based on these

program models, a taxonomy for assignment is proposed. Assignment schemes

are broadly classified into schemes dealing with dependency graphs and those

dealing with interaction graphs. Desirable properties for efficient assignments

under different program models are discussed. Since these desirable properties

are model-specific, the approaches taken by assignment schemes under different

models are seen to be distinct. Some examples from recent literature are mentioned

and are related in the light of the proposed taxonomy.

The distinction between assignment techniques brought to light by the taxonomy

is important. It aids research to take the right path in choosing a proper technique

and not spending too much time over the others.

Chapter 2. Models and Schemes for Assignment 28

As opposed to interaction graphs, a dependency graph permits finding an assign-

ment with a guarantee: the assignment can be proved to be close to the optimal

assignment. Moreover, the explicit temporal information made available by depen-

dency graphs helps in establishing better assignment heuristics. We thus choose

to analyse in detail the problem of assigning dependency graphs.

The next chapter is a treatise on the assignment of dependency graphs. The impact

of task ordering on the partitions of dependency graphs is shown. The factors that

should determine the ordering are discussed. Work-greedy assignment schemes,

particularly those that take the communication costs into account, are discussed.

Solution guarantees are proved for work-greedy schemes. A single-step non-work-

greedy assignment scheme, whose heuristics is based on satisfying the desirable

properties put forward in section 2.4.2, is proposed.

Chapter 3

Assignment of Dependency Graphs

The previous chapter classified assignment schemes broadly into those dealing

with interaction graphs and those dealing with dependency graphs. As opposed

to interaction graphs, a dependency graph permits finding an assignment that

can be provably close to the optimal. Besides, the temporal dependencies made

available by dependency graphs help in finding better assignment heuristics. Thus,

this chapter chooses to examine in detail the assignment of dependency graphs.

During its course, it shows the impact of task ordering on the makespan and

discusses the factors on which task ordering should depend. It presents some

new results bounding the performance of work-greedy assignment schemes and

proposes a new non-work-greedy assignment scheme. The time-complexity of the

new scheme is at least an order less compared to the work-greedy schemes.

Some notations that need to be used subsequently are defined first. Other nota-

tions will be defined in context.

Chapter 3. Assignment of Dependency Graphs

Notations.

n number of tasks

m number of processors

T set of tasks { To, T1, . . . , Tn_1 }

P set of processors { Po, P 1 ,- .. , P._1 }

Tj execution time of Ti assumed common on all P;

Si memory space requirement of Ti

vjj volume of information transfer between Tj and Tj

cjj amount of information that can be transferred between Pi and P;

per unit time

yj memory capacity of Pi

GT task graph depicting tasks and the dependencies among them

Gp processor graph depicting processors and their interconnections

w the total execution time of GT on Gp (i.e. the makespan)

30

The primary architectural considerations are the set of processors and the topology

in which the processors are connected. The processor topology is modelled as a

graph with vertices representing the processors and weighted edges representing

the interconnections between the processors. All the processors are assumed to be

capable of doing the functions required by the tasks.

Task graphs are assumed to be acyclic. A dataflow execution model is assumed

for the execution of task graphs. That is, a task can begin its execution when

all its inputs are available, and finishes only when it has produced all the re-

quired outputs. Communication delay may occur when a task sends its output to

its successor tasks. This delay is dependent on the volume of information being

transferred and the distance the information needs to travel. Tasks, once sched-

uled, cannot be preempted. Task replication is not considered, that is, no task

can execute on more than one processor.

See figure 3-1 for example task and processor graphs. Figure 3-1(a) shows the

task dependency graph corresponding to the evaluation of an expression z =

Chapter 3. Assignment of Dependency Graphs 31

(b)

Figure 3-1: Example task and processor graphs.

F(f (x), g(y)). Figure 3-1(b) shows a three-processor system where all processors

are equidistant' from each other.

3.1 On the Assignment of Dependency Graphs

An assignment divides the task set T into in, some possibly empty, ordered subsets

or partitions. The objective of the assignment is to minimize the makespan of T

on P.

The following example illustrates the effect task ordering has on the makespan.

Consider the assignment of the task graph of figure 3-3(a) on a two-processor

system {Po, P,} with zero interprocessor communication delay. The assignment

{To, T3, T4 } Po; {T1, T2, Ts } P1

gives rise to a makespan of 3 units; whereas the assignment

{To, Ts, T4} Po; {T2, T1, Ts} P1

gives rise to a makespan of 4 units. An increase in makespan is observed by

changing the ordering of tasks belonging to the task partition mapped to P1.

1Two processors, P= and P2, are equidistant from a processor Pk if cik = Cjk = cki =

Ckj.

Chapter 3. Assignment of Dependency Graphs 32

Let p(T, A) be the processor to which the task T is assigned under assignment A.

Two assignments Al and A2 are said to be equivalent if p(T;, Al) = p(T;, A2) Vj.

In the example above, Al and A2 are equivalent. Equivalence of two assignments

implies that the processors are assigned the same subsets of tasks under both

assignments; yet the task orderings within these subsets are different.

Now consider a set of equivalent assignments S = { A1, A2, ..., AZ }. Let

the makespans of these assignments be w1, w2, ... , and wZ respectively. Let

wmin = mini=1...Z wi and wmax = maxi=1...z wi. Assume that the processors are

never left idling intentionally, i.e. they idle only if there is no task they could

execute. The following bound then holds.

Theorem 3.1.
wmax < m
Wmin

Furthermore, this bound is tight.

Proof. This theorem follows as a special case of a theorem Jaffe [Jaf8O] (and Liu

and Liu [LL78]) proved. For a heterogeneous system with k types of tasks and mi

processors to execute tasks of type i, Jaffe proved that

w'
1 <k+1-

w maxi mi

where w is the length of the optimal makespan; and w' is the makespan of any

arbitrary assignment that assumes that the processors do not idle if there are tasks

that they could execute. He also proved that this bound is tight.

Since each task of partition i of A, belonging to the set of equivalent assignments

S, can be considered to have type i, our theorem can be seen as a special case of

Jaffe's theorem where k = m and mi = 1 Vi.

0

Theorem 3.1 establishes that an assignment with a poor task ordering can perform

m times worse than an equivalent assignment with a good task ordering. Thus an

Chapter 3. Assignment of Dependency Graphs 33

assignment scheme should not only determine to which processor the tasks are to

be assigned but also determine the ordering of tasks assigned to each processor.

This ordering is determined by giving suitable priorities to the tasks.

An obvious candidate for the top priority is the critical task. If a task's execution

cannot be delayed without increasing the makespan, then the task is said to be

critical. Experimental results have shown that choosing the critical task first

leads to good assignments when the communication costs can be ignored [ACD74].

However, it is hard to find the critical task if communication delays are to be taken

into account, since these communication delays depend on the assignment that is

yet to be determined. Besides, giving the critical task top priority is not sufficient

to guarantee an optimal assignment [SWP90].

We now identify those tasks that should be given priority.

1. Tasks with long execution times must get priority -

Consider a fixed makespan. Assigning short-length tasks first leads to a state

where there is no processor with enough time to fit a long-length task. Such

temporal fragmentations increase the makespan. (See figure 3-2. A poor

assignment results, if long-length tasks are not given priority.)

Thus task Tt should be given priority proportional to Ti.

2. Tasks with large communication requirements must get priority -

This again is due to the possible temporal fragmentation that may occur if

priority is not given to tasks with large communications.

Thus task Ti should be given priority proportional to

E vtj where succ(T) denotes the set of successors of task T.
T) E succ(T;)

3. Tasks with large numbers of successors must get priority -

- Chapter 3. Assignment of Dependency Graphs 34

I =4

T4

T O T T O
4 5 0 1 3

(3) (2) (1) (1) (1) (1)

(a)

T1

T5
t=3

T3

T2
t=O

1

T4 T2

PO P1 P2
PO

P1 P2

(b) '(0

(a) Task graph (b) Optimal assignment (c) Poor assignment.

(Numerals in parenthesis denote task execution times.

Number of processors is three.)
d

Figure 3-2: Priority for long tasks.

By executing tasks with large numbers of successors first, task dependencies

can be resolved as quickly as possible [KN84]. Thus, more tasks may become

executable, reducing processor idle time and the makespan. (See figure 3-3.

A poor assignment results, if tasks with large numbers of successors are not

given priority.)

Thus task Ti should be given priority proportional to

E 1

Ti E succ(T;

(a)

T4

T3

TO

T5

T2

T1

PO P1

(b)

t=4

t=3
T4

T3

t=0
TO

T5

T1

T2

PO P1

(c)

(a) Task graph (b) Optimal assignment (c) Poor assignment

(Numerals in parenthesis denote task execution times.

Number of processors is two.

Communication delay is assumed to be zero)

j

i

Figure 3-3: Priority for tasks with more successors.

Chapter 3. Assignment of Dependency Graphs 35

4. Tasks with long-length successors must get priority

The reason for this is the combination of the reasons given for 1 and 3 above.

Thus task Tj should be given priority proportional to

E rj
T1 E succ(T;)

5. Tasks with large memory space requirements must get priority -

Assigning small-sized tasks first will lead to a situation where there will not

be any processor with enough free memory to hold large tasks, though the

total free memory space is large enough. Such spatial fragmentations can be

reduced by assigning tasks with large space requirements first.

Thus task T, should be given priority proportional to si.

Assigning priorities to tasks is important even if the tasks are independent. The

task selection mechanism in any assignment scheme should take these priorities

into account. However, once an assignment is determined, task ordering becomes

irrelevant in the case of independent tasks. Tasks within the partitions of an

assignment can be executed in any order and this will not have any effect on the

makespan. In other words, equivalent assignments of independent tasks have the

same makespan.

Solving the assignment problem. A naive approach to solve the assignment

problem is to enumerate all the possible assignments and choose the assignment

that gives the minimum makespan. However, this approach will take exponential

time. It is very unlikely that there would be any cleverer scheme to find the optimal

assignment in polynomial time, since even the restricted cases of the assignment

problem have been proved to be NP-complete [U1176,RS87]. Practical assignment

schemes thus settle for heuristics that find sub-optimal assignments in polynomial

time.

Chapter 3. Assignment of Dependency Graphs 36

Most of these heuristic assignment schemes are work-greedy. The next section

analyses work-greedy assignments in detail.

3.2 Work-Greedy Assignments

An assignment is work-greedy if no processor remains idle when there is a task

the processor could execute. Work-greedy assignments are time-driven: tasks and

processors are selected at specific time instances, i.e. when a processor becomes

free or when a task finishes its execution.

Work-greedy assignment schemes, in addition to finding where to execute a task,

attempt to find when to execute a task. That is, they always predict the start and

finish times of the tasks. This permits computation of bounds on the makespans

of work-greedy assignments.

3.2.1 Brief Reviews of Some Work-Greedy Assignments

Many work-greedy assignment schemes ignore communication delays. These sche-

mes follow a common basic algorithm.

Tasks are kept in a priority list. A free processor scans the list from left

to right to find the first ready task to be executed. If there is a ready

task, the processor executes the task until completion. Otherwise the

processor idles until a task becomes ready.

This procedure ensures that the assignment is work-greedy. See [Cof76] for a good

account of assignment methods not involving communication delays.

This section reviews some work-greedy assignment schemes that do take commu-

nication delays into account in arriving at an assignment. All assignment schemes

Chapter 3. Assignment of Dependency Graphs 37

considered here are static, that is, the characteristics of the task dependency graph

are assumed to be known at compile time.

Scheme ETF

The ETF (Earliest Task First) [HCAL89] algorithm uses two sets called the ready

task set, A, and the free processor set, I. A task is said to be ready when all its

predecessors are scheduled. The algorithm calculates the earliest start time es of

every task that belongs to A on every processor belonging to I. The tasks are

assigned in the ascending order of their earliest start times. Let the minimum of

these earliest start times be es, and the task and processor corresponding to this

minimum be T and P respectively. It is worth noting here that the sets A and I
change as each task finishes its execution - more tasks may become ready and at

least one processor becomes free.

The algorithm uses two instances of an event clock to mark the current moment

(CM) and the next moment (NM). An event is the termination of an executing

task. The event clock advances with the completion times of the tasks. NM

specifies the time instant to which the event clock would next advance. It is

essentially the earliest time after CM at which one or more currently executing

tasks finish execution. When a task finishes execution at NM, it may cause new

tasks to become ready. It is possible that a newly ready task could have an e3 less

than es. In that case, it is this new task that should be scheduled first. The reason

for using NM is simply to take these newly ready tasks into account. In essence,

a task is scheduled at CM, if NM > es. Otherwise the decision is postponed until

the instant NM.

The time-complexity of the ETF scheme is 0(n2m), where n is the number of

tasks and m is the number of processors.

Chapter 3. Assignment of Dependency Graphs -- - 38

Scheme ERT

ERT (Earliest Ready Task) [LHCA88] selects a task and processor combination so

that the selected task is the earliest ready at a given moment. That is, the selection

criterion in ERT is the minimum earliest ready time (not the earliest start time

as in ETF). Thus, ERT does not postpone any scheduling decision until a further

moment as ETF often does. As in ETF, task and processor selection methods are

inseparable. ERT does not maintain a set of free processors. All the processors

are checked against each task of the set of ready tasks to determine the best task

and processor combination.

The time-complexity of the ERT scheme is O(n2m).

Scheme MH

MH (Mapping Heuristic) [ERL90] selects for assignment the maximum priority

task from the set of ready tasks at a given time. A task's priority is calculated

from the task's level (the length of the longest path from this task to any end-task)

and the number of successors the task has. The selected task is then assigned to

the processor that can execute it earliest. Compare this with ERT, in which task

and processor selection methods are inseparable.

In calculating communication delays, MH assumes an adaptive shortest path rout-

ing policy to deliver the messages. This takes network contention into account.

The time complexity of the MH scheme is O(n2m3).

There is a restricted version of MH that does not use any adaptive routing in

determining the communication delays. This scheme is called RMH.

Chapter 3. Assignment of Dependency Graphs 39

Scheme MCP

MCP (Modified Critical Path) [WG88] is similar to RMH except for the choice of

task priorities. In MCP tasks are given priority according to their latest start time.

When two tasks have the same priority, the latest start times of their successors

(and latest start times of successors' successors, and so on) are used to break the

tie.

The time-complexity of the MCP scheme is O(n2 log n + n2m) of which O(n2 log n)

is spent on calculating the task priorities.

3.3 General Bounds on the Makespan of Work-

Greedy Assignments

A work-greedy assignment does not guarantee optimality. Yet, it is possible to

prove that the makespan of a work-greedy assignment is within a constant factor

of the makespan of the optimal assignment. This section presents some new results

bounding the makespans of work-greedy assignments. The bounds are general in

the sense that they apply for any task ordering employed. Implications of these

bounds are discussed in section 3.3.5.

For the purpose of notational convenience, a work-greedy assignment is character-

ized as an ordered triple W = (01, 02, 03), where ji are defined as follows.

1. th characterizes the execution times of the tasks involved in the assignment.

It depends solely on the dependency graph.

01 E {arbitrary, unit}

2. N2 characterizes the communication time between two tasks assigned to dif-

ferent processors. It depends on the dependency graph, the architecture onto

Chapter 3. Assignment of Dependency Graphs

which the dependency graph is to be assigned and the assignment itself.

/32 E {arbitrary, unit, nil}

40

3. /33 characterizes the precedence relation between the tasks. It depends solely

on the dependency graph.

/33 E {arbitrary, nil}

Graham et al. [GLLK79] and Veltman et al. [VLL90] have used similar notational

characterizations.

3.3.1 Independent Tasks

Assignments of independent tasks are characterized by W = (arbitrary, nil, nil).

Let w and w' denote makespans of any two work-greedy assignments. Graham

[Gra76] proved that
w' maxi T= <1+(m-1)
W E Ti

It can be readily seen that for large values of in, this bound is not tight. In

particular it is known that as m -4 oo, w'/w should reach unity. The following

theorem presents an improved bound that more accurately reflects the behaviour

of work-greedy assignment algorithms for large values of in.

Let T be the execution time of the longest task, i.e. maxi r=; and let ir = E r1/T.

Then we have

Theorem 3.2.

w'/w<1+(m-1)/ir ifm<7
w'/U.; <1+(ir-1)/m ifm>7r

where w is the length of the optimal makespan, that is not necessarily work-greedy;

and w' is the makespan of any arbitrary work-greedy assignment.

Chapter 3. Assignment of Dependency Graphs 41

Proof. Consider a work-greedy assignment of makespan w'. Let the last task to

finish be T,z (i.e. T,z finishes execution at the instant w'). The rule of work-greedy

assignments dictates that no processor can remain idle before the instant w' - Ti

and that at least one processor will be busy until the instant w'. Hence,

Ti> (m-1)(W'-Ti)+w'

Since-r,, <T Vz (z=1...n),

ETi>(m-1)(W'-f)+W'
i

This gives
W,<ETi+(m-1)T

(3.3.1)

For any (and thus, the optimal) assignment with a makespan of W, the following

inequality holds true:

w > max (3.3.2)
m

When E Ti /m > T, from (3.3.1) and (3.3.2) we get the bound:

W' m - 1 -<1+
W 7r

When T > E Ti/m, from (3.3.1) and (3.3.2) we get the bound:

W 7r-1 -<1+
W m

(3.3.3)

(3.3.4)

Both (3.3.3) and (3.3.4) always hold true. However, when m > 7r the bound of

(3.3.4) is tighter, otherwise the bound of (3.3.3) is tighter.

11

Examples can be constructed to establish that the bound of theorem 3.2 is the

best possible when m = 7r. See [Gra76] example 3.

From (3.3.3) and (3.3.4) we get the following loose bound:

w'
< 2 (3.3.5)

W

Chapter 3. Assignment of Dependency Graphs 42

When m > n, each processor is assigned at most one task. In this case, the

makespan is the length of the longest task. Thus, the makespan remains constant.

That is,
w' -=1 ifm>n
w

It may be possible to find tight bounds that are independent of ir for some special

cases. The following theorem presents such a bound for the case m = n - 1.

Theorem 3.3. If m = n - 1, then w'/w < 3/2. Furthermore, there exist task sets

for which w'/w equals the above bound.

Proof. Without loss of generality, it can be assumed that

Tl < 72 < Tn-1 < -r.-

Since m = n - 1, all the tasks except one will start execution at instant 0. Let

the last task to be executed (i.e. the task that starts execution at an instant > 0)

be Ti. Ti will be assigned to a processor that is assigned the shortest task in the

set T - {T,}. Let the makespan of this assignment be w;.

Now, if T1 is the last task to be executed, it will be assigned to the processor that

is assigned T2, for T2 is the first task to finish out of the tasks already assigned.

Therefore,

wl = max[r,, r1 + r2] (3.3.6)

If T, (i > 1) is the last task to be assigned, then T1 will be the first task to finish

execution. Ti will be assigned to the processor that is assigned T1. Therefore,

w; = max[Tr, Tl + Ti] (3.3.7)

From (3.3.6) and (3.3.7) it is observed that,

1. wl = w2

Chapter 3. Assignment of Dependency Graphs 43

2. Wn = Ti + T.

3. w, _1 > W.-2 > w2 (since Ti > Tj_1 V j > 1)

4. W,i, > w,,_1 (since Wn = Ti + T,i, and T. Ta_1)

From these observations we obtain

Wn > W.-1 > Wn_2...... > W2 = W1

The best-case makespan is thus w1, and the worst-case makespan is

Wworst Wn Ti + T.

Wbest W1
=

max[Tn, Ti + T2]

We now find the maximum possible value of W,,/W1.

wn.

(3.3.8)

Hence,

(3.3.9)

When Ti and T2 are relatively small such that Ti + T2 < Tn, the denominator of

the ratio wn/w1 is Tn. Now let us increase T1 keeping Tn constant so as to increase

Wn/w1. Let Tn = 2k (k > 0) and T2 = Ti + 2E (e > 0). The numerator of Wn/W1

increases but the denominator remains constant at 2k. However, when Ti becomes

greater than k -c (i.e. Ti + T2 becomes greater than Tn) the denominator starts to

increase. Now two cases need to be considered:

1. Ti < k - e. Let Ti = k - e - S (0 < S < k - e). By substituting for Ti in (3.3.9),

wn 3k-e-S
L01 2k

2. T1 > k - e. Let Ti = k -c + S (0 < 6 < k + e). By substituting for Ti in (3.3.9),

wn 3k-e+S
w1 2k + 26

Since we are interested in (wn/W1)may, we let e - 0. Thus we have

w 3k-6 n if <k 10) (3 3 Ti . .

W1 2k

Wn 3k + rS if Ti > k (3.3.11)
w1 2k + 25

Chapter 3. Assignment of Dependency Graphs 44

From (3.3.10) and (3.3.11) we get

Wnl 3

Cwl/max 2

If w and w' are any two makespans, then

(!L'Jworstbest

J max

Thus,

W - 2
(3.3.12)

As an example, consider a set of three tasks for which execution times are given

by rl = T2 = r3/2 = 1. With two processors, the best-case makespan is 2, and

the worst-case makespan is 3. This example establishes that the bound stated in

theorem 3.3 is the best possible.

3.3.2 Dependency Graphs with Zero Communication Times

Assignments of dependency graphs with zero communication times are character-

ized by W = (arbitrary, nil, arbitrary).

Let w and w' denote makespans of any two work-greedy assignments. Graham

[Gra69,Gra76] proved that

<2-1/m

The following theorem improves this bound by incorporating into it the so-called

degree of average software parallelism. Informally, the degree of average software

parallelism is a measure of parallelism in a task dependency graph.

Let T* be the execution time of the longest chain of the dependency graph; and

let r = E z;/z*. Then we have

Chapter 3. Assignment of Dependency Graphs 45

Theorem 3.4.

w'/w<1+(m-1)/7r ifm<7r
w'/w<1+(7r-1)/m ifm>7r

where w is the length of the optimal makespan, that is not necessarily work-greedy;

and w' is the makespan of any arbitrary work-greedy assignment.

Proof.

For any (and thus, the optimal) assignment of makespan w, the following inequality

holds true:

w>max[ETi,T*] (3.3.13)
M

Let -< be the partial order on T. The rule of work-greedy assignments dictates

that for any arbitrary work-greedy assignment of makespan w' there exists a chain

of tasks

Tcl - < Tc2 --< ... --< Tay

such that at every time instant t E [0, w'] some Tj is being executed.

Let the sum of all the processor idle times in this assignment be I. Then,

y

I<(m-1)Erj
j=1

But for any chain in an assignment, the following inequality holds true:

y

ET,j < T*
j=1

Now since

w'= 1 FTi+I
m

using (3.3.14) and (3.3.15) we get,

w' < m {ri+(m_1)r*] - [: I

(3.3.14)

(3.3.15)

(3.3.16)

Chapter 3. Assignment of Dependency Graphs 46

When F_7-{/m > 7-*, from (3.3.13) and (3.3.16) we get the bound:

``'l <1.m-1
LO 7r

When 7-* > F_ 7-{/m, from (3.3.13) and (3.3.16) we get the bound:

LO' <1+7r-1

LO m

(3.3.17)

(3.3.18)

Both (3.3.17) and (3.3.18) always hold true. However, when m > 7r the bound of

(3.3.18) is tighter, otherwise the bound of (3.3.17) is tighter.

7r is defined to be the degree of average software parallelism. It is a lower bound

on the amount of parallelism within a task dependency graph.

If --< is empty, then 7r becomes equal to E 7-t/T and thus the results of theorem 3.4

and theorem 3.2 match.

Note that, from (3.3.13) and (3.3.16), we get the following loose bound:

w' -<2 (3.3.19)

According to theorem 3.4, as m -i oo, w'/w reaches unity (rather than 2 as

Graham's bound suggests). This highlights the fact that with unlimited processing

resources, any work-greedy assignment is optimal. In practical terms, a work-

greedy assignment is optimal if m > n.

We can also express in terms of 7r a lower bound on the number of processors

required to execute the task graph in the minimum possible time.

A bound on the number of processors. The number of processors required

to finish executing all the tasks in the minimum possible time is bounded below

by the ratio of the total execution time requirement of the tasks and the minimum

Chapter 3. Assignment of Dependency Graphs 47

makespan [McN59]. The total execution time requirement is 2 T; and the mini-

mum possible makespan is T'. A lower bound on the number of processors is thus

given by

r i '_ TD [7r]
T"

That is, any (not necessarily work-greedy) assignment will require at least 17rl

processors, if it is to execute the task graph in the minimum possible time.

Tighter lower bounds on the number of processors can be found in [FB73,AM90].

3.3.3 Dependency Graphs with Unit Computation and

Communication Times

Assignments of dependency graphs with unit computation and unit communication

times are characterized by W = (unit, unit, arbitrary). For this characterization,

Rayward-Smith [RS87] proves the following upper bound on the makespan w of

an arbitrary work-greedy assignment:

w<(3_)w'_(1_)
m

3.3.4 Dependency Graphs with Arbitrary Computation

and Communication Times

Assignments of dependency graphs with arbitrary computation and arbitrary com-

munication times are characterized by W = (arbitrary, arbitrary, arbitrary). The

assignment schemes ETF, ERT, MH and MCP fall under this characterization.

Hwang et al. [HCAL89] and Lee et al. [LHCA88] proved bounds on the makespans

of ETF and ERT. They have proved that

W'<(2_!)wi+c
m

Chapter 3. Assignment of Dependency Graphs - 48

where w' is the makespan of the work-greedy assignment (either ETF or ERT),

w` is the makespan of the optimal assignment without considering communication

delays, and Cx is the communication delay along some chain in the task graph.

Expressing w' in terms of w` does not reveal much. When giving a guarantee for

the makespan of a certain assignment, one would want to give it in terms of the

corresponding optimal makespan. It is more useful to give a guarantee in terms of

w, the optimal makespan not ignoring the communication delay.

As in theorem 3.4, the degree of average software parallelism can be incorporated

into this bound so that the bound will be tighter.

Moreover, we note that the bound can be generalized for all the assignments

characterized by W = (arbitrary, arbitrary, arbitrary). We thus present in the

following theorem a generalized bound.

Let r* be the sum of execution times of tasks along the longest chain (ignoring

communications) of the dependency graph and T+ be > Ti; and let ir = T+/T

Then we have

Theorem 3.5.

w' <1+(m-1)+m Ccomm ifm<7r
W 7C T+

i
W <1+(1C-1 +7r Ccomm ifm>7r
W M T+

where w is the length of the optimal makespan, that is not necessarily work-greedy;

and w' is the makespan of any arbitrary work-greedy assignment. Ccomm is the

maximum communication delay along some chain of tasks.

Proof.

The proof is similar to the one presented for theorem 3.4.

Chapter 3. Assignment of Dependency Graphs 49

For any (and thus, the optimal) assignment of makespan w, the following inequality

holds true:

W > max I , T*,
m

(3.3.20)

Let -< be the partial order on T. The rule of work-greedy assignments dictates

that for any arbitrary work-greedy assignment of makespan w' there exists a chain

of tasks

Tc1 -< Tc2 -< ... -< Tcy

such that at every time instant t E B some Tcj is being executed or is waiting for

input from Tcj_1 (that has finished executing) to start its execution. Here B is

the set of all points of time in [0, w'] for which at least one processor is idle.

Let proc(T) be the processor that has been assigned the task T; and let mtt(PP, Pj)

be the maximum time to transfer unit information from processor Pi to processor

Pj (possibly via other processors). Ccomm is calculated as follows:

y-1

Ccomm = E mtt(proc(Tcj), proc(Tcj+l)) v(Tcj, Tcj+1)
j=1

Let the sum of all the processor idle times in this assignment be I. Then,

y \ y I < m E Tcj + Ccomm - E Tcj
j=1 j=1

But for any chain in an assignment, the following inequality holds true:

11Tc3
< T*

Now since

W' =
1

[T+ + I]

using (3.3.21) and (3.3.22) we get,

'
T+ (m - 1)T*

W _ - + + Ccomm
m m

When T+/m > T*, from (3.3.20) and (3.3.23) we get the bound:

w'<l+m-1+m Ccomm

7 T+

(3.3.21)

(3.3.22)

(3.3.23)

(3.3.24)

Chapter 3. Assignment of Dependency Graphs - 50

When r > T-+/m, from (3.3.20) and (3.3.23) we get the bound-

(A) ' 1+7r -1+7r Ccomm
(3.3.25)

w in r+

Both (3.3.24) and (3.3.25) always hold true. However, when m > the bound of

(3.3.25) is tighter, otherwise the bound of (3.3.24) is tighter.

O

Construction of the chain. The set of all points in time in the interval [0, w']

is divided into two subsets A and B as follows. A is the set of points in time for

which all processors are busy. B is the set of points in time for which at least one

processor is idle.

Let t/ and q; denote respectively the start and finish times of Ti. The following

algorithm constructs the chain.

1. Let the chain C be an ordered set of tasks, set to null initially.

2. Ta E- a task that finishes at time w'.

3. If yba E B,

then there exists a processor which for some e > 0 is idle during the time

interval [c&a -,E, la]. This occurs only when there is a task Tb, an immediate

predecessor of Ta, such that

Ob + mtt(proc(Ta), proc(Tb)) v(Ta, Tb) _ VI.-

Insert Ta into C, Ta +- Tb and go to 3.

4. Let u = l.u.b.2 {xjx < yea and x E B}. If u is zero, output C and stop.

2Least upper bound

-Chapter 3. Assignment of Dependency Graphs

5. Find a task Tb such that

51

fib = max{ii; Ti a predecessor of Ta, and i < u}.
1

There is a sequence of tasks, Tc, T;1, ... T;-,, such that Tb -< Tc -< T;1 -< ... -<

T;-, < L. Insert Tc into C, Ta +- Tb and go to 3.

The maximum time to transfer information between processors depends as well on

the underlying routing strategy and the network contention. These dependencies

were ignored in the proof above.

Note that the communication factor that appears in our bound is smaller than

those of Hwang et al. and Lee et al. Note also that our bound is applicable to all

work-greedy assignments - not just ETF and ERT.

If communication costs can be ignored, then Ccom,m, = 0. The bounds of the-

orems 3.4 and 3.5 then match. Note that the value of Ccomm depends on the

assignment. Good assignments will have small values of Ccomm. Now if

C' = max [mtt(P;, P;)] mT x I E v;j I where T is any chain in GT,
T;,T;ET; T,,=succ(T;)J

then

'-'comm < C" for any chain.

Thus the bounds of theorem 3.5 become

<1+ (m-1)
-gym

C*
if m<w

W 7f 7+
(3.3.26)

<1+(ir-1)+7c* ifm>7 (3.3.27)
W m T+

These bounds are not assignment-dependent.

3.3.5 Implications of the Bounds on Makespans

The hardware parallelism, m, and the degree of average software parallelism, ir,

have a symmetric relation in the bounds of theorems 3.2, 3.4 and 3.5. When m > ir,

Chapter 3. Assignment of Dependency Graphs - - 52

the makespan may be limited by software `sequentialism'; and when ir > m the

makespan may be limited by hardware inadequacy. Note that, since ir is only a

lower bound on software parallelism, we can find cases where m > ir and yet the

makespan is limited by hardware inadequacy.

The loose bounds of (3.3.5) and (3.3.19) suggest that, if communication costs can

be ignored, the maximum speedup an assignment scheme can achieve is no more

than 2. In other words, no assignment scheme can be worse than the optimal

scheme by more than a factor of two. The bound by Rayward-Smith suggests

that, if communication times are assumed to be unitary and if the computation

times are also unitary, this factor of degradation is no more than 3. Thus it is

seen that any work-greedy assignment scheme can be used for the assignment of

1. independent tasks

2. dependency graphs with zero communication times, and

3. dependency graphs with unit computation and communication times

and still a performance not worse than a small constant factor would be guaran-

teed.

However, if communication costs are arbitrary, the performance can degrade con-

siderably with bad assignment schemes. In this case, from (3.3.26) and (3.3.27),

we have the following loose bound:

WI C"_ C* - < 2 + Al where A = min(m, ir) = w r 7+/ min(m,lr)

A signifies the communication to computation ratio along the critical path of the

(arbitrary) assignment. Bad assignments will have large values of A and thus they

will have a poor performance compared to the optimal assignment. For instance,

a work-greedy assignment scheme that ignores the communication costs when the

dependency graph does have communication requirements may yield a large value

of A.

Chapter 3. Assignment of Dependency Graphs 53

3.4 A Non-Work-Greedy Scheme for Assign-

ment

Work-greedy assignment schemes try not to leave a processor idle if there is a task

the processor can execute. Tasks are assigned to the processors that can execute

them the earliest. Ensuring this involves extra search. Yet these schemes permit

finding assignments with a guarantee.

When communication costs are taken into account, work-greedy assignment sche-

mes lose two of their important characteristics. That is, with arbitrary communi-

cation costs,

there is no guarantee that a processor will not idle when there is a task it

could execute (see section 2.1.2), and

a work-greedy assignment can be worse than the optimal assignment by a

large factor (determined by the communication costs along some path in the

dependency graph); hence, a bad work-greedy scheme could generate very

poor assignments.

There is thus a case to examine an assignment scheme that moves away from the

work-greedy heuristics and to see how well this scheme performs compared to the

work-greedy assignments. To this end, this section proposes a simple non-work-

greedy assignment scheme which is based on satisfying the desirable properties

stated in 2.4.2. The scheme is easy to implement and has a time-complexity linear

in the number of tasks and task graph edges.

If the goal of an assignment scheme is the minimization of the makespan, then it

is desirable that the scheme should possess the following properties:

Chapter 3. Assignment of Dependency Graphs 54

DP1. Assignment of independent tasks to different processors.

DP2. Assignment of dependent tasks to the same processor.

The first desirable property DP1 ensures that the parallelism available in the task

graph is fully exploited. An assignment can possess this property only if sufficient

processors exist. Intuitively, the maximum number of processors needed will be

equal to the size of the largest set of independent tasks.

The second desirable property DP2 helps to minimize the communication cost.

But, not all dependent tasks can be assigned to the same processor. The reason is

two fold: (1) two independent tasks may have common dependencies (i.e. they may

share a successor or predecessor), and (2) per-processor memory may be limited.

We move away from the work-greedy heuristics and propose an assignment scheme

whose heuristics is based on satisfying the properties DPI and DP2. The scheme

assumes, as the work-greedy schemes do, that the parameters of the task graph

are known at compile time.

Work-greedy assignment schemes find the start and finish times of the tasks as they

proceed to find the assignment. However, due to network contention and routing

decisions, these times cannot be predicted correctly at the time of assignment.

The assignment schemes that claim to take network contention into account have

their own adaptive routing techniques embedded into their assignment algorithms.

By doing so, they map the message transfers to certain processor interconnections

(or links). If this mapping is not preserved during run-time, for instance, by using

a routing scheme other than the one embedded in the assignment algorithm, the

start and finish times of the tasks predicted by the assignment scheme may be

different from the actual times. Thus, it is noted that the start and finish times of

tasks make sense only as far as determining the partitions of the tasks. Once the

partitions are determined, each processor will need to perform a local scheduling:

taking ready tasks one by one from the task partition assigned to the processor and

Chapter 3. Assignment of Dependency Graphs 55

executing them. Our proposed assignment scheme, therefore, does not attempt to

find the start and finish times of the tasks; it finds only partitions.

3.4.1 DFBN: The New Scheme

The scheme uses a combination of the familiar depth-first and breadth-first search

algorithms to arrive at an assignment. This technique is called depth-first-breadth-

next (DFBN) search.

DFBN searches the graph as follows. All start vertices of the graph are entered

in a queue. An unvisited vertex v is taken from the queue and a function visit

is called for v. This is repeated until the queue is empty. The function visit

marks v visited, selects an unvisited successor vertex w for visiting, appends all

other successors to the queue, and finally calls itself recursively for vertex w. Visit

returns when it is called for a vertex such that its successor vertices have been

visited. The traversal of the graph follows a depth-first and breadth-next order.

Thus the name DFBN.

The DFBN technique is used in generating assignments for dependency graphs.

Note that any single call from DFBN to visit for a vertex v marks a chain of

vertices originating from v visited. Every call from DFBN to visit thus results in

a traversal of a new chain. Now if the vertices represent tasks and edges represent

dependencies, then all the vertices of a chain are dependent. Thus they could be

assigned to a single processor. Since all new chains could be independent of each

other, these chains are assigned to different processors. See figure 3-4 for the full

algorithm.

Chapter 3. Assignment of Dependency Graphs

procedure FormAssignment()

Initialize taskQ with all the start vertices in it

while taskQ not empty do

task = pop(taskQ)

if task is not assigned then
processor = Get Processor(task)

Assign(task, processor)

PutProcessor(processor)

endif

endwhile

endproc

procedure Assign(task, processor)

Mark task assigned to processor

if there are no successors of task then

return

else

NewTask = first unassigned successor of task

endif

forall other unassigned successors of task do

Push(successor, taskQ)

endfor

Assign(New Task, processor)

endproc

Figure 3-4: The assignment scheme DFBN

56

Procedure FormAssignment performs a DFBN search. The function visit has been

replaced by a function Assign that takes as its parameter a processor in addition to

a task vertex. Every call from FormAssignment passes a new processor to Assign.

A new processor is returned by a function GetProcessor.

The function GetProcessor could simply select the processor with minimum load,

where the load of a processor is defined to be the sum of the execution times of all

the tasks that had been assigned to the processor. The load of a processor does not

Chapter 3. Assignment of Dependency Graphs 57

reflect processor idle times due to communication events. Processors can be kept

in a balanced binary tree [HS781 sorted by their load. The function GetProcessor

would remove a processor from the tree; and the function PutProcessor would add

a processor to it.

This approach of selecting processors according to their loads has a major draw-

back. It can use more processors than necessary, if sufficient processors exist.

Consider the task graph of figure 3-5. This graph will be assigned to three pro-

cessors, if processors are available. For instance, in a three processor system with

processors Po, P1 and P2, a possible assignment is

{To,T2iT3,T4} H Po; {T1} H P1; {T5} H P2;

However, two processors are sufficient for executing this task graph in minimal

time.

Figure 3-5: An example task graph

We get around this problem by letting GetProcessor choose a processor that has

a Freelnstant just below the latest start time (LST) of the task needing a new

processor. Freelnstantk of a processor Pk signifies the time instant at which Pk

can finish executing the tasks assigned to it. If the Freelnstants of the processors

are larger than the latest start time of the task, then the processor with the

minimum loading is used. The latest start time, rather than the earliest start

time, of the task is used so that the execution of non-critical tasks can be delayed

as much as possible. As before, processors can be kept in a balanced binary tree

for efficient deletion and insertion by GetProcessor and PutProcessor.

Chapter 3. - Assignment of Dependency Graphs 58

The LST can be estimated in time 0(n + e) prior to the assignment. Its exact

value, however, depends on the assignment that is yet to be determined. The

LST can also be recalculated during the assignment procedure using the partial

assignment (so that it can be closer to the exact value), but this will involve

additional time-complexity.

Now consider again the task graph of figure 3-5. Under the second approach of

processor selection, the task graph will be assigned to just two processors. The

assignment, in this case, would be

{TO,T2,T3,T4} H Pa {T1,T5} H P1.

If a processor does not have enough local memory to hold all the tasks belonging

to a chain, function Assign could request new processors through GetProcessor

and split the chain up between these processors.

When there is a need for arbitration, task and processor priorities are used. The

need for arbitrating tasks arises when the function Assign scans through the list

of successor tasks and when the start tasks are added to the taskQ. The need for

arbitrating processors arises when there are ties in function GetProcessor.

3.4.2 Processor Ordering

To order the processors, a `most capable' processor is first chosen; this processor

could be the one with the maximum computational and communication capability.

The other processors are arranged in an ascending order of `distance' from the

`most capable' processor. The `distance' between two directly connected processors

Pi and P; is defined to be 1/cu. (Thus, two processors connected by a high capacity

link will be `closer' to each other than those connected by a low capacity link.)

For processors that are not directly connected, the shortest `distance' is found via

other processors. To break ties, processors' computational and communication

capabilities can be used.

Chapter 3. Assignment of Dependency Graphs 59

3.4.3 Task Ordering

In finding a task ordering, one would want to give top priorities to the critical

tasks. To determine these critical tasks, inter-task communication times need to be

known. But, these communication times will not be known before the assignment

is done. One can only have a guess of the critical path. A poor guess may deprive

the deserving tasks of top priority and this may result in a poor assignment. Thus,

instead of giving some tasks absolute priority, it is decided to give priorities to all

the tasks depending on their critical factors. In other words, there will be no

explicit discrimination between critical and non-critical tasks. The critical factor

of a task Tq is defined as follows:

CFq = max[LCTt - ECTj] - (LCTq - ECTq)
1=1,n

Here ECTq and LCTq are the earliest and latest completion times of the task

Tq. (LCTq - ECTq is sometimes known as the completion interval of task Tq.)

It should be noted that the values ECT and LCT can only be estimates. Exact

values cannot be calculated before the assignment is done.

As has been noted in 3.1, a task's priority depends on other factors as well. Thus

the overall priority of a task is expressed by a weighted sum of the individual

priorities based on these factors as well as the critical factor. However, maximum

weight is given to the critical factor. One can therefore hope that the deserving

tasks will get at least top range priorities, if not the topmost priority.

If the set of successors of a task T is denoted by succ(T), the priority pi of a task

Ti can be expressed as:

pi = wo(CFi)a + w1T1 + w2 Vii + w3 1: 1 + w4 r + w5si (3.4.1)
Tj E succ(T,) Tj E succ(Ti) Tj E succ(T;)

where w's denote the weights. Prominence is given to large critical factors by

raising CFi to some power a > 1. Calculation of the priorities of all the tasks can

be performed in O(n + e) time.

Chapter 3. Assignment of Dependency Graphs 60

Polychronopoulos and Banerjee use a similar scheme to assign priorities to tasks

[PB87].

3.4.4 Time-complexity of DFBN

The total execution time of the forall loop in function Assign is O(e). Assign is

called n times. GetProcessor and PutProcessor have an execution time of O(log m)

and are called at most n times along with Assign. Here n is the number of tasks,

m is the number of processors and e is the number of edges in the task graph

GT. The initialization of the balanced binary tree takes time O(m. log m). The

time-complexity of the algorithm is thus O((n + m). logm + e).

Note that the time-complexity is linear in the number of nodes and edges of the

task graph. Therefore, DFBN will be a good choice for those applications that

have a large number of tasks.

3.4.5, Performance Guarantee

DFBN is a single-step non-work-greedy assignment scheme. Given a task graph

and a processor graph, it produces the assignment in a single step involving a

very low time-complexity. The desirable properties that DFBN aims to satisfy try

to exploit the parallelism visible in the graph whilst reducing the communication

costs.

The makespan of an assignment can never be less than the execution time of the

critical path in the task graph. The tasks belonging to the critical path are depen-

dent. DFBN tries to assign the tasks of the critical path to the same processor,

thereby reducing the inter-task communication cost within the execution of the

critical path.

Chapter 3. Assignment of Dependency Graphs 61

Since DFBN does not predict when a task must be executed (as all the work-

greedy assignments do), it is hard to prove any analytical bound on the makespan

of an assignment generated by DFBN.

Nevertheless, there is one special case for which an analytical performance guaran-

tee can be proved for DFBN. If the processor topology is a completely connected

graph with an unbounded number of processors having the same communication

costs between any two of them, then DFBN generates a linear clustering of a

task graph. In a linear clustering no two concurrently executable tasks will be in

the same partition. Gerasoulis et al. prove that the makespan of any such linear

clustering is within a factor of two of the optimal makespan, if communication

costs are small compared to the computation costs [GVY90]. However, in a real

parallel processor system where the number of processors are bounded and the

inter-processor communication costs may be arbitrary, this guarantee does not

hold.

Chapter 6 thus attempts to provide some experimental performance results.

3.5 Summary

The impact of task ordering on the makespan is proved and the factors upon

which task ordering should depend are discussed. Tasks with long execution times,

task involving large communication times, tasks with large numbers of successors,

tasks with long-length successors and tasks with large memory requirements are

identified to be those that need high priority in a task ordering.

The heuristics most of the current assignment schemes use is based on satisfying

the following rule of thumb: keeping the processors busy leads to a `good' as-

signment. Such schemes are said to be work-greedy. Work-greedy assignments are

important since most of them provide a solution with a guarantee: it is proved that,

when communication costs can be ignored, any work-greedy assignment would be

Chapter 3. Assignment of Dependency Graphs 62

close to the optimal assignment by no more than a small constant factor. It is also

proved that, should the communication costs be taken into account, this factor

may no longer be small. With communication costs, a work-greedy assignment

can perform worse than the optimal assignment by a large factor. This factor

depends on the communication costs along some path in the task graph.

A non-work-greedy assignment scheme, called DFBN, is proposed. Its heuristics

is based on satisfying two desirable properties: assigning independent tasks to

different processors, and assigning dependent tasks to the same processor. The

time-complexity of DFBN is at least an order less compared to the work-greedy

schemes. However, there is no analytical performance guarantee for the assign-

ments generated by DFBN.

Performance assessment of these assignment schemes is the goal of the remainder

of this thesis. Performance of a parallel system depends on the architecture, the

program, the assignment scheme and the routing strategy. We develop a generic

modelling approach that lets us specify and model these parameters. We then use

this approach to simulate program execution on some processor topologies under

different assignment schemes. These simulations aid the performance assessment

of the assignment schemes.

The next two chapters deal with the development of a generic modelling approach.

The development of such an approach requires the following.

1. A representation scheme based on an abstraction level that integrates most

of the possible architectural schemes.

2. Representing the program (or software) in an architecture independent way.

3. Providing the means to specify the assignment scheme and the routing strate-

gies.

Chapter 3. Assignment of Dependency Graphs 63

The next chapter proposes a representation scheme for parallel architectures. A

generic modelling approach, based on this representation scheme, is presented

in chapter 5. Performance assessment of assignment schemes is the theme of

chapter 6.

Chapter 4

A Structural Framework for the
Representation of Parallel

Architectures

The problem of representation and classification arises when an area of study

involves many different objects. Representation describes an object according to

some meaningful rules. Classification partitions the objects into a set of classes.

The primary goal of having a representation is to describe the functionalities of

these objects; and the goal of having a classification is to provide a platform to

compare and contrast the functionalities of the objects.

A good representation scheme is an aid in learning and modelling the behaviour

of the objects under study. It is our interest to model parallel architectures in

a generic way. To this end, this chapter develops a structural framework for

representing parallel architectures.

With the proliferation of different parallel architectures, the distinction between

representation and classification has become thin. In fact, the two terms have

been used interchangeably [Das90]. Here we critically review some of the architec-

tural classification schemes to date and build upon them a representation scheme

Chapter 4. Representation of Parallel Architectures 65

suitable for modelling. This representation scheme becomes an integral part of

the modelling environment to be developed in chapter 5.

4.1 A Survey of Some Architectural Classifica-

tion Schemes

The sheer diversity of parallel architectures makes it difficult to represent them

in a unified framework. Nevertheless there have been attempts to approach this

problem and classify architectures in interesting and useful ways [F1y72,A1m85,

Hoc85,Hoc87,Ski88,Dun90,Das90,Dad9l]. This section presents a critical review

of some of these classification schemes.

4.1.1 Flynn's Scheme

The most popular classification of architectures is due to Flynn [F1y72]. His classi-

fication is based upon streams of instructions and data. Depending on the number

of these streams, architectures are categorized as SISD, SIMD, MISD and MIMD.

SISD: Single Instruction stream, Single Data stream machines. The

conventional von Neumann machines come under this category.

SIMD: Single Instruction stream, Multiple Data stream machines. Mul-

tiple processors simultaneously execute the same instruction on differ-

ent data. Array processors come under this category.

MISD: Multiple Instruction stream, Single Data stream machines. Mul-

tiple processors simultaneously execute different instructions on the

same datum. Decoupled architectures come under this category [BPTS91].

Chapter 4. Representation of Parallel Architectures 66

MIMD: Multiple Instruction stream, Multiple Data stream machines.

Multiple processors asynchronously execute different instructions on

different data items.

4.1.2 Hockney's Scheme

The main drawback of Flynn's classification is that it is too broad to describe

any realistic architecture. For example, Flynn's classification fails to discrimi-

nate between the various MIMD architectures that now proliferate. There is no

distinction between a shared-memory machine and a message-passing machine in

Flynn's classification. They both come under the MIMD class. Hockney [Hoc85],

thus, provides a structural classification scheme for MIMD architectures (Figure

4-1). In the top level, MIMD architectures are divided into switched systems and

networked systems.

MIMD -I
Dancehall

Switched --C
Boudoir

L- Network Various topologies

Figure 4-1: Hockney's classification

A switched system is one where "there is an identifiable and separate switch unit

that connects together a number of processors and memory modules". One can

view a switch as a shared set of interconnections. In general, switches are complex

and may involve several stages of interconnect.

These switched systems are sub-divided depending on the way the processors,

memory modules and the switch unit are organized. In the dancehall configura-

tion, the processors take up one side of the switch unit and the memory modules

take up the other side. In the boudoir configuration, processors are linked to their

own local memory modules and the switch unit is used to connect the processors to-

gether. The dancehall configuration represents most shared-memory systems and

Chapter 4. Representation of Parallel Architectures - 67

the boudoir configuration represents the distributed-memory or message-passing

systems (Figure 4-2) [A1m85].

(a) Dancehall (b) Boudoir

Figure 4-2: Shared-memory and distributed-memory systems

Both shared and distributed memory systems are further divided according to the

type of switch unit: cross-bar, multistage or bus.

In a networked system "a number of PEs are connected together into a network

with an identifiable topology". Here a PE is a processor connected to its own local

memory. As one would expect, networked systems are further divided according

to their topology - mesh, cube, tree, etc. The so-called reconfigurable networks,

in which the interconnection pattern itself can be changed, also come under the

networked category.

4.1.3 Skillicorn's Scheme

Although interesting, Hockney's classification is limited to the MIMD class. Also,

it fails to categorize novel architectures such as dataflow or graph reduction ma-

chines that fall under the MIMD paradigm. Skillicorn shows that by separating the

instruction-oriented and data-oriented functions of processors and memory mod-

ules, it is possible to arrive at a more general and discriminating classification of

architectures [Ski88].

Chapter 4. Representation of Parallel Architectures 68

At the highest, most abstract level, architectures are classified with respect to the

number of instruction and data processors, instruction and data memory units,

and the way they are connected. The processors and memory units are collectively

termed functional units.

Instruction processors (IP) are responsible for fetching and decoding the instruc-

tions; data processors (DP) are responsible for fetching the required data and

executing the instructions.

A memory hierarchy is an `intelligent' storage device that provides the instruction

or data requested by the processor. The ideal von Neumann memory unit does

not differentiate instructions from data. However, almost all real machines do

differentiate them, at least from the user's point of view. Thus, memory units are

divided into instruction memories (IM) and data memories (DM). In other words,

a distinction between memory hierarchies is provided at the abstract machine level.

However, in a real implementation the separation normally occurs only at the top

level of the memory hierarchy and within the virtual memory system.

The interconnections represent both shared and dedicated connections (cf. switched

and networked systems in Hockney's classification). Skillicorn names the intercon-

nections switches. Four types of switches are identified:

1-to-1: A single functional unit is connected to another single func-

tional unit.

n-to-n: The i-th unit of one set of functional units is connected to the

i-th unit of another set. This is simply a 1-to-1 switch replicated n

times.

1-to-n: A single functional unit is connected to all the n units of a set

of functional units.

Chapter 4. Representation of Parallel Architectures 69

n-by-n: Every unit of one set of functional units communicates with

every unit of the second set and vice versa.

An abstract machine is constructed by wiring the functional units with switches.

Skillicorn identified 28 classes of architectures (see table 4-1) depending on the

organization of the functional units and the switches.

Class IPs DPs IP-DP IP-IM DP-DM DP-DP Name

3 0 n none none n-n nxn Distributed memory

Reduct/Dataflow

4 0 n none none nxn none Shared memory

Reduct/Dataflow

6 1 1 1-1 1-1 1-1 none Von Neumann

uniprocessor

8 1 n 1-n 1-1 n-n nxn Distributed memory

array processor

9 1 n 1-n 1-1 nxn none Shared memory

array processor

14 n n n-n n-n n-n nXn Distributed memory

von Neumann

15 n n n-n n-n nXn none Shared memory

von Neumann

Table 4-1: Some possible architectures under Skillicorn's classification

The lowest level in Skillicorn's classification is based on the state machine view of

the functional units. This level is used to distinguish variants more precisely. For

instance, the sequencing and ordering of operations performed by the instruction

and data processors can be expressed by a state diagram. These diagrams help to

distinguish between simple, pipelined and parallel units.

Flynn's classification is based upon how a machine relates the instructions to the

data being processed. Hockney's classification is based on the structure of the

machines. Skillicorn's classification is based on both.

Chapter 4. Representation of Parallel Architectures 70

4.1.4 Dasgupta's Scheme

Dasgupta extends Skillicorn's classification in certain ways [Das90]. He identifies

seven basic functional units called atoms:

iM - an interleaved memory unit,

sM - a simple memory unit,

C - a cache unit,

PI - a pipelined instruction processor,

sI - a simple (or non-pipelined) instruction processor,

pX - a pipelined execution processor, and

sX - a simple (or non-pipelined) execution processor.

The instruction processor is functionally identical to Skillicorn's IF. Similarly, the

execution processor is functionally identical to Skillicorn's DP. Distinction is made

to differentiate simple processors from pipelined processors. Note that in Skil-

licorn's scheme such distinctions are made only at the low level.

There is no distinction made between instruction and data memories. As has been

noted earlier, Skillicorn provided this distinction since most of the programming

environments enforce a separation between instruction and data. However, in real

implementations of memory units instruction and data storage are differentiated

only at the top level of the hierarchy, for instance, at the cache units. Thus,

Dasgupta chose not to differentiate instruction and data memories. He rather

chooses to differentiate caches from memories.

Using formulae inspired by chemical notation, Dasgupta presents a new approach

to the classification of architectures. There are two basic operators that operate

upon atoms. A subscript operator replicates an atom. For instance, iM3 and C8

denote three and eight atoms of interleaved memory and cache respectively. The

subscript could either be a positive integer constant or an integer-valued variable.

Chapter 4. Representation of Parallel Architectures 71

Replication represents a potential for multiple atoms to be used in parallel. A repli-

cated atom is called an atomic radical. An atom can be viewed as a monoatomic

radical.

The second operator is the dot operator that links two atomic radicals together.

The combination is called a complex, or non-atomic, radical. Examples are C.sX,

(C.pI)n and C.(C2.pI)2. The complex radicals are enclosed in parentheses when

there is a need to replicate them.

Using these two operators, an architecture is expressed as a formula. A cache-

processor (CP) is a combination of a cache radical and a processor radical. An

example is (C.pI),,. A memory-cache processor (MCP) is a combination of a

memory radical and a cache-processor radical. An example is (iM)m.(C.pI)n. An

I-molecule is an MCP-radical that represents a complete instruction preparation

system. Similarly, an X-molecule is a complete instruction execution subsystem.

Finally, a macromolecule is a single or replicated combination of an I-molecule

and an X-molecule; it represents the complete architecture. The symbol string

describing a particular radical or molecule is referred to as a formula.

Given a formula, Dasgupta provides construction rules. If W and Z denote two

radicals, then Wn, W.Z, Wn.Z, W.Zm and Wn.Zm describe all the possible struc-

tures that can be constructed. W,, represents radical W replicated n times. W.Z

represents two radicals W and Z connected by a simple link. Wn.Z represents W

replicated n times and connected to Z by a divergent link (Figure 4-3). W.Zm too

describes a similar structure. Wn.Zm produces a bidivergent link structure. Note

that the structures of figure 4-3 do not say whether the connections involved are

dedicated or shared.

The path through which atoms combine together to produce the final macro-

molecule forms a hierarchy in Dasgupta's classification. For instance, the top

level - the most abstract level - differentiates processor radicals, the second

differentiates cache-processor radicals and the final level discriminates between

macromolecules.

Chapter 4. Representation of Parallel Architectures

(a) Wn. Z

z w

(b) W.Zm (°) Wn Z m

Figure 4-3: Structural diagrams for Dasgupta's formulae

72

Dasgupta's scheme, in fact, names architectures rather than grouping them, and

thus it is more of a representation scheme than a classification scheme.

4.2 A Representation Scheme for Parallel Ar-

chitectures

This section proposes a representation scheme for parallel architectures. The ar-

chitectural classification schemes of Skillicorn and Dasgupta form the basis of the

representation scheme. In both Skillicorn's and Dasgupta's schemes, an architec-

ture is described by a set of functional units interconnected by switches. Depending

on the organization of the functional units and the switches in an architecture, the

architecture is classified into some groups.

We do not intend to classify or group architectures. Rather, we are interested

in describing or representing an architecture according to some meaningful rules

so as to model and simulate the behaviour of the architecture. As Skillicorn and

Dasgupta do, we too find a set of functional units, or atoms, that form the basic

units of any architecture. We then use these atoms to build and represent an

architecture of our choosing.

Chapter 4. Representation of Parallel Architectures 73

4.2.1 A Refined Set of Atoms

The main drawback of both Skillicorn's and Dasgupta's classification schemes

is in the representation of interconnections. There is no clear distinction made

between shared and dedicated connections. The scheme we propose here separates

interconnections, however trivial they may be, from the processing and memory

elements, and distinguishes between shared connections and dedicated ones. The

interconnections themselves can be functional units. Thus, a refined set of atoms

that serve as building blocks in constructing an architecture is obtained.

An atom is a black-box that is free to determine its internal functioning orthogonal

to other atoms. It has an arbitrary number of ports through which it can be linked

to the ports of other atoms. A port is simply a socket that is used to plug into

another port. The only way the atoms interact with one another is via these ports.

Five basic atoms are identified:

P - a processor,

C - a cache unit,

M - a memory unit,

D - a dedicated connect, and

S- a shared connect.

D denotes a dedicated connect that links just two atoms. Thus D is comparable

to Skillicorn's 1-to-1 switch. D could either be full-duplex or be half-duplex:1 a

full-duplex link is capable of sending and receiving data in both directions simul-

taneously; a half-duplex link too is capable of transmitting in both directions but

'There also can be a simplex link that is unidirectional. But a simplex link is seldom

used in isolation because the receiver can in no way communicate with the transmitter

to indicate errors.

Chapter 4. Representation of Parallel Architectures

only in one direction at a time. S denotes a shared connect that links more than

two atoms. The number of ports of an S atom will be equal to the number of

atoms it links. S realizes a many-to-many connection. Buses, concentrators and

switches are some typical S atoms. Note that the connects are also functional

units - their function is to pass or route the items they receive.

Processors, caches and memories are collectively termed non-connect atoms in

order to make a functional distinction between them and the connect atoms.

Following Skillicorn and Dasgupta, instruction oriented and data oriented func-

tions of a processor are separated. Two processor types are thus derived: an

instruction processor and an execution processor. This facilitates modelling the

concurrency in instruction prefetch and execution, besides enabling abstract rep-

resentation of exotic architectures.

Most of the hardware - data paths, registers, caches, etc. - and programming

environments enforce a separation between instruction and data. This separation

becomes thin only at the low-levels of the memory hierarchy. It is observed that

an instruction processor always deals with instruction memories; and an execution

processor always deals with data memories. Hence, even at the low-levels of the

memory hierarchy, instruction and data memories get logically separated. Thus it

is informative to separate instruction and data memories and caches rather than

having them represented by single atoms. This facilitates a better understanding

of the logical organization of the system.

Separating the instruction and data oriented functions of the processor, cache and

memory units leads to a secondary set of non-connect atoms:

iP - an instruction processor,

xP - an execution processor,

iC - an instruction cache,

dC - a data cache,

Chapter 4. Representation of Parallel Architectures

iM - an instruction memory, and

dM - a data memory.

75

The atoms iP and xP have the same meaning and functions as the corresponding

atoms IP and DP defined by Skillicorn. But iM and dM denote single memory

units rather than the entire memory hierarchy. If a memory hierarchy is required,

a number of memory and cache units must be connected together.

There is no distinction between pipelined and simple processors. Also, there is no

distinction between interleaved and simple memory units. Pipelining and memory

interleaving do increase the throughput, but they do not add a new dimension to

the global abstract view. Particularly, in a parallel system there are other factors

(for example, number and organization of functional units) that draw more interest

than pipelining or interleaving. It is thought to be more appropriate to consider

such details in a low, or concrete, level of the representation.

4.2.2 The Representation Scheme

An architecture is described by two levels: (1) the top level pertains to the way

the atoms are connected, and (2) the bottom level specifies how the atoms work.

For example, two architectures sharing the same topology but made of different

processors will be grouped together in the top level but will be differentiated at

the bottom level.

The bottom level description of the representation scheme takes the state view of

every individual atom comprising the architecture rather than the entire architec-

ture. This is important from a modelling point of view since each atom can have

its own independent dynamic behaviour, with occasional synchronizations with

other atoms directly connected to it. Thus, atoms operate locally without causing

any global side-effects.

Chapter 4. Representation of Parallel Architectures

A non-connect atom, Y.

Y = { P, M, C, iP, xP, iM, dM, iC, dC }

Dedicated connect, D.

Shared connect, S.

Figure 4-4: Primitives composing structural diagrams

Architectures are built by connecting together an appropriately chosen set of non-

connect atoms by a set of connect atoms. See figure 4-4. Structural diagrams

are used in representing the architectures thus built. A structural diagram graph-

ically displays the organization and interconnection of the atoms comprising an

architecture. Use of structural diagrams permits to describe topologies. Neither

Skillicorn's nor Dasgupta's scheme can describe topologies. Figures 4-5 to 4-7

depict structural diagrams of some typical architectures.

iM

O
Broadcast Bus

Interconnection Network

dM
UM

.

(a) A shared-memory architecture

O
Broadcast Bus

Interconnection Network

(b) A distributed-memory architecture

Figure 4-5: Array processors

Structural diagrams can be used to represent both the logical and the physical

organizations of an architecture. The logical organization of an architecture could

be represented by connecting together the appropriate non-connect atoms of the

secondary set. Figure 4-8 shows the logical organization of DEC's Firefly multi-

Chapter 4. Representation of Parallel Architectures

I
Interconnection Network 1

(a) A shared-memory architecture

Interconnection Network

(b) A distributed-memory architecture

Figure 4-6: Parallel von Neumann processors

Interconnection Network

Interconnection Network

(a) A shared-memory architecture (b) A distributed-memory architecture

Figure 4-7: Dataflow processors

77

processor workstation [TSS88]. The separation of instruction and data oriented

atoms may be found only at the logical level. For instance, instruction and data

memories typically share the same physical unit. Thus, the physical organization

of a parallel system could be different from its logical organization. As an ex-

ample, compare the logical organization of Firefly with its physical organization

(figures 4-8 and 4-9). Depending on what one wants to describe or model, one

can choose either of the representations.

.......... 0
GO -9

0-9
Figure 4-8: Logical organization of Firefly

Both Skillicorn's and Dasgupta's schemes describe an architecture by a set of func-

Chapter 4. Representation of Parallel Architectures

Figure 4-9: Physical organization of Firefly

78

tional units interconnected by switches. In our proposed scheme the switches (or

connects) themselves are functional units. Thus our scheme describes an archi-

tecture as a set of interconnected functional units. This is important only from a

modelling point of view, since it unifies model designs: the entire architecture is

built using just functional units as building blocks.

4.3 Summary

To develop a generic approach that models parallel systems requires a well-formed

and structured architectural representation scheme. This chapter reviewed some

of the classification schemes for architectures and, based on them, proposed an

architectural representation scheme.

A set of functional units, or atoms, forming the basic blocks of architectures is

identified. The atoms are broadly divided into a set of connect atoms and a set of

non-connect atoms. The set of non-connect atoms comprises processors, memories

and caches; and the set of connect atoms comprises dedicated and shared connects.

To model the instruction and data oriented functions of the non-connect atoms,

a secondary set of non-connect atoms is derived. These non-connect atoms have

their instruction and data oriented functions separated.

The atoms serve as building blocks to build architectures of one's choosing. This is

achieved by connecting together the appropriate atoms. Structural diagrams are

Chapter 4. Representation of Parallel Architectures 79

used in representing the architectures thus built. A structural diagram graphically

displays the organization and interconnection of the atoms that form the archi-

tecture. Structural diagrams of some typical architectures under the proposed

representation scheme are illustrated.

Genesis, a generic modelling environment for parallel systems, is based on the

representation scheme developed in this chapter. Genesis takes an object-oriented

view of the architecture and models each atom of the architecture as an object.

The next chapter discusses the design and implementation aspects of Genesis in

detail.

Chapter 5

Genesis: A Generic Simulation
Modelling Environment for Parallel

Systems

This chapter discusses the design aspects of Genesis, a generic simulation mod-

elling environment for parallel systems. The architectural representation scheme

developed in the previous chapter becomes an integral part of the design of Gen-

esis. Genesis takes an object-oriented view of the entire parallel system, viewing

both the architecture and the software as sets of objects. Every single atom of the

architecture is modelled by an object. Software entities - for example, tasks, task

graphs and messages - are also modelled by objects. Software objects get mapped

onto the hardware objects for a simulation of program execution. Mapping tasks

onto non-connect atoms is the problem of assignment tackled in detail in chap-

ters 2 and 3; mapping messages and requests (memory requests, input requests,

etc.) onto connect atoms is the problem of routing. Genesis provides the means

to specify both assignment and routing. A dynamic model of the entire parallel

system is thus realized.

Chapter 5. A Modelling Environment for Parallel Systems 81

5.1 On the Design Choices

Constructing a dynamic model of a given system is called simulation modelling.

The function of the model, called a simulator, is to mimic the behaviour of the

system within the limitations of the system description.

A system consists of several physical entities, or components. At any given time,

each of these entities has state information associated with it. For instance, a

server might have two states: busy and idle. Ideally, the state of the simulator

at a given simulation time should correspond to the state of the system at the

corresponding real time. The change of state is called an event. An event triggers

an activity - a unit of work - in the simulator. An activity will typically cause

the creation of further events. A logically-related set of activities constitutes a

process.

As the simulation proceeds, the simulation time advances in steps, depicting the

changes in states and mimicking the corresponding activities. In a time-based or

time-driven simulator, the time steps are regular, that is, the interval between

any two successive time steps stays constant. If the time interval is too large, the

simulator might miss some state changes. On the other hand, if the time interval

is too small, the simulator would waste time advancing through time steps during

which there are no state changes. Thus, in general, a time-based simulator lacks

either accuracy or efficiency, or both.

Event-based simulators [MacS7] get around this problem by advancing the simu-

lation time only to those points where there are state changes. Consequently, the

time steps here are irregular. These simulators maintain an event list that is a

diary of all unprocessed events. The simulation proceeds by removing from the

list the event with the earliest time and modelling the corresponding activities.

In an event-based simulator, the system is modelled as a collection of events. Cod-

Chapter 5. A Modelling Environment for Parallel Systems 82

ing an event-based simulator is tedious and it is hard to get the code correct. Main-

taining and updating the simulator is also tedious and time consuming [BLUL85].

An easier and more natural approach to model a system is to describe the be-

haviour of its components and the way they interact. Process-based simulators

take this approach in which every active component of the system is modelled by

a process, so that the actions and interactions of the processes correspond to those

of the system's active components. A process could simply be a description of the

system component's operation in the simulator's host language. Should the defi-

nition of a system component change, the simulator is updated by modifying the

corresponding process that models the component. Process-based simulators are

modular and thus make the construction and maintenance of large-scale models

easy. Genesis is process-based; thus, for every system component, there exists a

process in Genesis.

In modelling the system components, it is necessary to specify their static and dy-

namic structures. The static structure of a system component specifies its physical

framework. The dynamic structure, on the other hand, specifies the way the com-

ponent accomplishes its work. It is the dynamic structure that contributes towards

the active nature of a component; thus, components that have no dynamic struc-

ture are said to be passive. In general, a system has both active and passive

components.

Genesis takes an object-oriented approach to represent the system components

and to describe their static and dynamic structures. The hardware components of

the system have both static and dynamic structures associated with them; whereas

software components have just static structures.

Chapter 5. A Modelling Environment for Parallel Systems 83

5.1.1 Object Orientation: Objects, Classes and Hierar-

chies

An object represents an entity and its associated behaviour. Related objects are

grouped into classes. Related classes, in turn, can be grouped into further classes,

thus resulting in a class hierarchy. An object belonging to a class is said to be an

instance of the class. The classes forming the top-levels of the hierarchy are, in

general, abstract. No object can be instanced from an abstract class. An abstract

class can parent several child classes. A child class inherits most of its parent's

properties. In addition, a child can have its own properties. That is, in general,

a child is more `knowledgeable' than its parent. An abstract class expresses a

general concept, and a child specializes the concept. Classes in the bottom-levels

of the class hierarchy are, in general, concrete classes. Concrete classes express

the concepts specifically and completely, and thus they can instance objects.

Object-oriented programming [Str88] is a paradigm that approaches its solution

to a programming problem by considering it as a set of objects, their actions

and interactions. The object-oriented programming paradigm treats objects as

first-class entities. Compare this, for example, with the functional programming

paradigm where functions are the first-class entities.

The inheritance and abstraction mechanisms provided by object-oriented program-

ming help in dealing with the development complexities involved in large software

systems by enhancing software reusability, extensibility and maintainability. Class

inheritance makes the software reusable and extensible. Data abstraction eases

software maintenance.

5.1.2 The Modelling Approach

Modelling imposes two requirements: representing the system, and representing

the system's work. The system and its work can be viewed in two different ways.

Chapter 5. A Modelling Environment for Parallel Systems 84

In the first case, the system components are treated as resources that the work

can reserve and release. Here work is the active object, and the system stays

passive. In other words, the work operates upon the system. For example, a task

can reserve a processor for a certain amount of time for its execution. Similarly, a

message that needs to be transmitted along a link can reserve the link during the

transmission.

The second case treats the system components as the active objects. Work is

considered to be passive and is operated upon by the system. For example, a

processor can take up a task, execute it and send message packets to the links

wired to the processor. Similarly, a link can take an incoming message from its

input port and pass it to the output port after a suitable delay. This point of view

is more realistic than the first.

Genesis takes the second point of view and treats the system components to be

active and the work they do to be passive. Genesis has two main subsystems

modelling the hardware and software components of the parallel computer. The

hardware components are the active objects; and the software components stay

passive.

The software and hardware subsystems are represented by suitably chosen class

hierarchies. A software item could be an executable entity such as an instruction

or a task; or it could be a non-executable entity such as a datum or a message.

Both executable and non-executable entities are named items. Hardware entities,

such as processors, memories and connects, are named atoms. An atom functions

or operates upon items. The nature of an item - whether or not it is executable - is

revealed only by its usage. This is similar to real systems where both instructions

and data are represented by strings of bits and differentiated by usage.

Chapter 5. A Modelling Environment for Parallel Systems 85

5.2 Software Representation: The Software Hi-

erarchy

An Item is the abstract base class that provides the framework for the software

hierarchy. It can be either Executable or NonExecutable.

Executable
Item H

DTask

(Task

Non Executable Mesg

Figure 5-1: The software hierarchy

The class Executable encapsulates the executable objects that are processed by

processor atoms. These executable objects are to be extracted from programs.

As has been noted in chapter 2, programs are modelled as task graphs where the

vertices represent the tasks, or computation activities, and the edges represent in-

teractions or dependencies between tasks. Depending on what the edges represent,

task graphs are broadly classified into dependency graphs and interaction graphs.

The execution model of a task under these two graphs differ. A task belonging to a

dependency graph can start its execution when all its inputs are ready and finishes

only when it has produced all its outputs. On the other hand, a task belonging to

an interaction graph iterates infinitely through a sequence of compute and commu-

nicate steps. A task, an Executable object, thus takes two forms: a DTask object

realizing a vertex of a dependency graph and an ITask object realizing a vertex of

an interaction graph.

The task graph itself is viewed as an object; task graph objects are encapsulated

in a class TaskGraph. A TaskGraph object is a collection of Executable objects and

Chapter 5. A Modelling Environment for Parallel Systems - - 86

represents an entire program. A dependency graph is a collection of DTask objects;

and an interaction graph is a collection of ITask objects.

The class Mesg encapsulates the message objects that are passed from one atom

to another. Message objects are constructed and destructed during the course of

a simulation run.

5.3 Hardware Representation: The Hardware

Hierarchy

An Atom is the abstract base class that provides the framework for the hardware

hierarchy. An atom is considered to be a black-box that is free to function in-

dependently from other atoms. Atoms communicate with each other by passing

items. Note that, unlike items, atoms are active entities. Thus, in a process-based

simulation, every atom is represented by an independent process.

An atom may be busy simulating real work or simulating a delay. Both simulating

work and simulating delays suspend the process that represents the atom and

advances the process's simulation clock. An atom may also be busy communicating

with other atoms. Communication involves the reception and sending of items.

When an atom has no work or delay to simulate, it awaits the reception of items

on its input ports. The items it may receive will trigger some work or delay, and

may engage the atom in some communication, routing the items to other atoms.

An atom operates on items that represent both executable and non-executable

objects. This enables an atom to migrate executable objects with as much ease as

migrating a non-executable object.(This becomes useful when analysing the effect

of task migration on performance.)

The class Atom owns properties essential to specify its operational behaviour.

These properties include:

Chapter 5. A Modelling Environment for Parallel Systems 87

Figure 5-2: Atom: the base class of hardware hierarchy

- Ports

An atom has several input and output ports that are used for communication

with other atoms. An input port of an atom can be wired to an output

port of another atom. This sets up the path necessary for communication.

Associated with every atom is a port table that maintains details of the

atoms directly wired to it.

- Buffers

Atoms communicate with each other by passing items. Every input port of

an atom has a buffer that queues incoming items.

- Communication

An atom can send an item to a given output port. The item is placed in

the buffer of the input port to which the given output port is wired. If the

buffer is full, the send operation blocks the execution of the atom.

Similarly, an atom can receive an item from a given input port. The item is

simply removed from the buffer associated with the input port. If the buffer

is empty, then the receive operation blocks the execution of the atom.

An input port is said to be ready when the buffer associated with it is non-

empty. A receive operation on this port will not block. An output port is

said to be ready if the input port it is connected to has its buffer non-full.

Chapter 5. A Modelling Environment for Parallel Systems 88

A send operation on this port will not block. Non-blocking send and receive

can be realized by testing for the readiness of the respective output and input

ports.

- Routing

An atom maintains a route table that can indicate to which output port an

item must be sent in order to reach a given atom.

- Busy-waiting

Every atom owns a watchdog (Appendix A) that can alert the atom when

one or more of its input ports gets an item. The watchdog simulates busy-

waiting. If an atom has nothing to do, it can go to sleep after starting up

its watchdog.

Processor

r- NonConnect

Atom H

' Connect

Cache

I nst P roc

ExecProc

InstCache

DataCache

L- Memory
InstMemory

DataMemory

Simplex
DedicatedConnect--C

HalfDuplex

t-SharedConnect Bus

Figure 5-3: The hardware hierarchy

The complete hardware hierarchy is shown in figure 5-3. Note that there is no sep-

arate class representing a full-duplex link. A full-duplex link may be constructed

by having two simplex links connected in parallel but in opposite directions.

Chapter 5. A Modelling Environment for Parallel Systems 89

The abstract classes Connect and NonConnect do not possess any extra properties

that the class Atom does not. Yet, having them facilitates a better understanding

of the structural design.

More classes can be derived from the basic classes as required. As an example,

consider the class Bus that has the following static properties: a number of ports

and an inter-port communication delay. No dynamic behaviour is associated with

Bus since it is an abstract class. Concrete classes IDBus, an interrupt-driven bus,

and TDBus, a time-driven bus, can be derived from Bus with suitable definition

of dynamic behaviours. For instance, a high-level specification of the dynamic

behaviour of a time-driven bus is "wait for something to arrive at one of the ports,

send that something to the appropriate port after a delay, and go waiting again".

Instruction prefetch and execution can occur concurrently in most of the proces-

sors. Such concurrency is modelled elegantly by having instruction and execution

processors as separate atoms so that they can execute independently and con-

currently. This concurrency in instruction prefetch and execution needs to be

modelled for instruction level simulations.

5.3.1 Building a Hardware Model

To build a hardware model requires the following three steps.

1. Deriving new atoms

The active components of the system to be modelled are identified and

grouped into classes according to their dynamic behaviours. These classes

are to be derived from an appropriate class of the hardware hierarchy (fig-

ure 5-3) and their dynamic behaviours must be defined. However, if the

default dynamic behaviour of a given atom is satisfactory, there will not be

any need to redefine it. For instance, the default dynamic behaviour of a

half-duplex link is sufficiently adequate that it need not be redefined.

Chapter 5. A Modelling Environment for Parallel Systems 90

2. Instancing new objects and wiring them

A required number of objects is instanced from the appropriate classes.

These objects are then wired together to resemble the physical framework

of the system to be modelled.

3. Setting up route tables

Route tables of most of the objects in the model must be set up. Some

classes have a fixed routing scheme. Consider, for instance, a simplex link

that has a single input port and a single output port: whatever appears on

its input port gets to its output port after a delay. Objects of such classes

do not need route tables to be set up.

As an example, assume that we wish to model the network of four P2 processors

and two P4 processors shown in figure 5-4. A P2 processor has two ports and a

P4 processor has four. Assume that their dynamic behaviours are different.

Figure 5-4: An example architectural model

P2 and P4 come under different classes. Thus we derive two classes P2 and P4

from the class Processor and specify their dynamic behaviours. The derivation also

will specify the number of ports P2 and P4 have.

Four objects of the class P2 and two objects of the class P4 are instanced. In

addition we need some connect objects, half-duplex links, for instance, to connect

them. These objects are then wired together to form the network of figure 5-4.

Chapter 5. A Modelling Environment for Parallel Systems - 91-

Route tables must then be set up for all the processors. There is no need to set

up route tables for the half-duplex links.

5.4 Specifying Assignment and Routing Sch-

emes

Task assignment in Genesis is done during a simulation run. In modelling shared-

memory systems, Executable objects are placed in a global task pool accessible

by all the processors. In distributed-memory systems they are placed in private

task pools belonging to each processor. Assignment schemes decide where each

Executable object needs to be placed. In static schemes such decisions are taken

before commencing the simulation run; dynamic schemes make decisions during

the course of the simulation.

The execution model of an Executable object is determined by its type: DTask

or ITask. The dynamic behaviour of the processor needs to specify the execution

model. For instance, in a distributed-memory, message-passing system, the dy-

namic behaviour of a processor that executes DTask objects will typically be the

repeated execution of the following steps.

1. If there exists a ready task in the local task pool, remove it from the pool

and execute it (by increasing the local simulation clock to the task's finish

time and suspending the process corresponding to the processor atom).

2. If there is a task that has just finished execution, send its results to all its

successors (by forming message packets and passing it along the appropriate

output ports).

3. If there is a message awaiting reception at any of the input ports, receive it.

If it is destined to a task that belongs to the processor's local task pool, then

Chapter 5. AModelling Environment for Parallel Systems 92

digest it (by updating the task's input record); otherwise route the message

along the appropriate output port (since the message is destined to a task

residing elsewhere).

It is only required to express these steps using the appropriate methods provided

by the class Processor. Note that most of the methods the class Processor provides

are properties inherited from the class Atom. Appendix B gives, in terms of these

methods, a detailed description of the dynamic behaviour of a processor executing

DTask objects.

Task preemption is modelled by suitably defining the dynamic behaviour of the

processor. Preemption is particularly needed for the execution of ITask objects

which infinitely iterate through a sequence of compute and communicate steps;

fairness, in this case, can be guaranteed through preemptions.

Routing strategies are realized by setting up the route tables. For instance, con-

sider again the distributed-memory, message-passing system. Every processor

atom maintains a route table that tells to which output port a given message

has to be routed in order to reach a given processor atom. The entries in the route

table are thus determined by the routing strategy employed. Whenever there is

a message that needs to be sent away to another processor, the route table is

consulted to determine the appropriate output port the message has to be sent

to. The message can either be one generated locally at the processor (i.e. message

generated by a task executing locally) or one that is received at an input port for

routing.

Dynamic routing strategies can be realized by updating the route tables at run-

time.

Chapter 5. A Modelling Environment for Parallel Systems 93

5.5 Implementation Notes

Genesis is implemented in C++ [Lip9l], an objected-oriented evolution of the

C language. C++ extends C with several features including:

- A class construct

The class construct supports data abstraction and encapsulation. A class is

an aggregate of variables of any type and a set of member functions designed

to manipulate those variables. The variables can be declared private so that

they cannot be referenced other than by the member functions of the class.

The member functions are often referred to as methods.

Genesis defines a C++ class corresponding to every entity of the software and

hardware hierarchies (figures 5-1 and 5-3). Each class abstracts the static

and dynamic structures of the corresponding entity.

- Class derivation

New classes may be derived from other class definitions, yielding a hierarchy

of classes. The old class is the base class, and the new ones are derived

classes. The public members of the base class become the public members

of the derived classes; and the protected members of the base class become

the private members of the derived classes. A derived class cannot access

the private members of the base class.

Genesis organizes the classes that represent various hardware and software

entities in two powerful hierarchies illustrated in figures 5-1 and 5-3. Class

derivation permits code sharing - code that is common to the children are

owned by the parent so that the children can inherit them without duplicat-

ing.

Chapter 5. A Modelling Environment for Parallel Systems 94

- Virtual functions

These let a derived class provide definitions of functions named in the base

class. This feature allows multiple classes, all derived from the same base

class, to provide type-specific implementations of semantically common func-

tions. Yet, a derived class that does not need a special implementation of

the virtual function need not provide one. Instead, the function of the base

class is used. C++ guarantees that the most specific function is invoked at

run-time.

Most of the methods in the classes of Genesis come with a default implemen-

tation. Yet, being virtual, they let the derived classes provide sophisticated

implementations, perhaps by improving upon the default.

Genesis uses the simulation engine Awesime [Gru91] that provides the building

blocks for constructing process-based discrete event simulations. The Awesime

class Thread implements a process. Several other globally known classes manage

the set of threads within the simulation. The programmer needs to derive all

the active entities in the system from the class Thread. Thread provides a virtual

method called main that needs to be customized by the derived classes. Execution

of a thread is simply the execution of its method main.

The class Atom, the base class of the hardware hierarchy, is derived from Thread,

permitting itself to be an active entity. Thus all the classes of the hardware hi-

erarchy, being derived from the class Atom, are active entities. Recall that every

active entity owns a process that simulates its dynamic behaviour. This process is

defined in the method main of the class the entity belongs to. As has been noted

earlier, execution of an entity is the execution of the corresponding method main.

The active entities are placed in an internal scheduler, maintained by Awesime,

to let them execute. Every active entity is executed in turn, occasionally synchro-

nizing with other active entities using semaphores. When waiting on a semaphore

or when simulating a delay, an active entity permits itself to be descheduled by

Chapter 5. A Modelling Environment for Parallel Systems 95

the internal scheduler, paving way for other active entities to execute. When the

semaphore on which the entity is waiting is acquired, or when the delay is simu-

lated (i.e. when the global simulation clock advances enough), the scheduler will

reschedule the entity'.

5.5.1 Definition of the Class Atom

Implementations of most of the methods required by the hardware entities are

provided by the class Atom. Thus this section gives a brief definition of Atom and

some of its important methods. Figure 5-5 provides a partial definition of Atom.

The method wait lets the atom wait for one of its input ports to get ready. It

suspends the process corresponding to the atom until an item is received at some

input port. The method inReady examines if a given input port has an item. The

method outReady examines if a given output port is ready to accept an item to

send it away. It checks if the buffer of the input port it is wired to has room to

receive an item.

The method send sends an item to a given output port. It blocks if the buffer of

the input port the given output port is wired to is full. The method recv receives

an item from a given input port. If the buffer of the input port has no item to

offer, then recv blocks.

Methods add2rtable and getRtable are used in constructing and consulting the

route table. The method wire wires a given output port to a given atom's input

port. The virtual method main implements the dynamic behaviour of the atom.

'Such descheduling and rescheduling involve saving and retrieving the context. This

may introduce a significant overhead to the simulation time if such context switches

are many. Thus a process-based simulator may not be suitable for those systems that

change state at almost every time step. For such systems, a time-based simulator may

be more suitable.

Chapter 5. A Modelling Environment for Parallel Systems 96

class Atom : public Thread {

protected:

void wait();

short inReady(const int port-no);

short outReady(const int port-no);

int send(const int port-no, Item *const something);

Item *recv(const int port-no);

short *getRtable(const int aid) { return rtab.get(aid);

}

public:

short *add2rtable(const int aid);

int wire(const int outport, Atom *a, const int port-a);

virtual void main() = 0;

Figure 5-5: A partial definition of the class Atom

Since the class Atom is abstract, it does not provide any implementation. Concrete

classes, for instance the class HalfDuplex, implement main.

5.5.2 An Example: Building a Processor Grid

This section presents an example of constructing a simulation model.

Assume that it is required to build a grid of a x b processors with distributed

memory. The processors are identical, have four ports each and are connected

via half-duplex links to their nearest neighbours; no wrap-around connections are

assumed at the grid edges.

The processors communicate with one another by message-passing. A simple mes-

sage routing mechanism is employed. A message is first routed along the row (in

which it originated) until it reaches the correct column. Then it is routed along

the column until it reaches the right row.

Chapter 5. A Modelling Environment for Parallel Systems 97

Deriving a processor class. First a class Proc4 encapsulating the processor

objects of the grid is derived from the class Processor. Proc4 is defined in the

derivation to have four ports. See figure 5-6.

class Proc4 : public Processor {

private:

int rowid, colid;

protected:

int getPort(const int i, const int j);

public:

Proc4() : (4) { } /* Proc4 is a Processor with 4 ports */
void main();

/* Dynamic behaviour of Proc4 gets described in main */

int

Proc4::getPort(const int i, const int j)

{

if (j > colid) return 2; /* Go right */
else if (j < col-ld) return 0; /* Go left */
else { /* j == col_id. Move along the column */

if (i > row-id) return 1; /* Go up */
if (i < row-ld) return 3; /* Go down */
else return -1; /* Stay here */

}

}

Figure 5-6: Creating a processor with four ports

In general, it is required to set up route tables at every processor which indicate to

which output port a given message must be sent in order to reach a given processor.

Since the message routing mechanism in this example is simple, there is no need to

maintain route tables. Whenever there is a message requiring routing, the identity

of the output port is computed using the method getPort. Thus a table space of

0(a2b2) is saved.

Chapter 5. A Modelling Environment for Parallel Systems 98

The dynamic behaviour of the class is assumed to be defined in the method main

according to the execution model the class chooses to describe. For instance, if

the execution model is to be that of a DTask, then the dynamic behaviour will

be similar to the one described in section 5.4; a complete description of dynamic

behaviour for this execution model appears in appendix B. Description in main

will make use of getPort to find the appropriate output port to which a given

message has to be sent.

Chapter 5. A Modelling Environment for Parallel Systems 99

Creating the grid of processors. The processors of class Proc4 are used in

building the required grid. The function makeGrid (see figure 5-7) creates a rect-

angular grid of Proc4 processors. The processors are connected by identical half-

duplex links of a given capacity.

Proc4 *

makeGrid(const int a, const int b, const int capacity)

{

Proc4 *pptr = new Proc4[a*b];

/* create a x b processors of type Proc4 */
Proc4 *processor[a][b]; /* processor indices */
int i, j; /* loop indices */

/* index the processors according to their position in the grid */
for(i=0;i<a;++i)

for(j=0;j<b;++j)
processor[i]D] = pptr + a*i + j;

/* wire them across - do not wrap around the edges */
for(i0;i<a;++i)

for(j=0;j<b;++j){
if(j>0)

wireH(processor[i]D], 0, processor[i]D-1], 2, capacity);

if(i>0)
wireH(processor[i][j], 1, processor[i-1][j], 3, capacity);

}

return pptr;

}

Figure 5-7: Creating a processor grid

The function wireH wires the specified ports of two non-connect atoms with a half-

duplex link of a given capacity. It is a function that instances a new HalfDuplex

Chapter 5. A Modelling Environment for Parallel Systems 100

atom and connects the two given non-connect atoms with this new atom. It uses

the method wire implemented in the class Atom (see figure 5-5).

Firing up the simulation. Figure 5-8 shows a typical code that simulates the

execution of a task graph on the processor grid created. The task graph is read

and mapped onto the processor grid. A call to the global function go-simulate

starts the simulation.

int main(int argc, char *argv[])

{

const int a = 64; const int b = 128; const int capacity = 1;

/* Create an a x b grid of processors */
Proc4 *grid = makeGrid(a, b, capacity);

/* Read in the task graph specified in the command line */
TaskGraph taskGraph(argv[1]);

/* Map the task graph on the grid */
map(taskGraph, grid, a, b, capacity);

/* Start the simulation */
go-simulate();

return 0;

}

Figure 5-8: Firing up the simulation

The function go-simulate passes all the active entities (in this case, the processors

and the half-duplex links) on to Awesime's internal scheduler and the scheduler

then executes the entities' main methods appropriately.

Chapter 5. A Modelling Environment for Parallel Systems 101

5.6 Comparison with Related Works

Comparable related works on modelling parallel architectures include PARET

[NE88], ASIM [Jum9O] and OASIS [UBP81]. These are all object-oriented mod-

elling systems - PARET and ASIM are based on C++ and OASIS is based on

Simula.

PARET (Parallel Architecture Research and Evaluation Tool) is targeted for non-

shared memory, MIMD architectures. A specific computer model comprises three

subsystems - the user program, the interconnections and the system functions that

each processor must execute. These subsystems share the same model - a directed

flow graph where the nodes represent units of action and the arcs represent both

data and control flow. PARET provides a graphical user interface that lets the

user draw and edit the graphs representing the algorithm and the architecture.

Run-time statistics are displayed by user-selected meters.

ASIM is a parallel computer simulator that belongs to a family of discrete event

simulators called xSIM. Except a class Processor, all the simulation classes repre-

sent software entities. Processors model the sequential processors in a multipro-

cessor computing system. A process is attached to a processor in order to model

the effect of the process executing on that processor. This attachment of pro-

cesses to processors is under user control and can be changed during simulation.

This enables simulations to model process migration. A process can be an actual

program written in C. Process synchronization primitives are provided by xSIM.

Process Device Processor

Link Memory

Segment Module

Figure 5-9: OASIS class hierarchy

Chapter 5. A Modelling Environment for Parallel Systems 102

OASIS is a library of Simula classes. See figure 5-9. The classes Link and Process

are provided by Simula. The OASIS classes Device, Segment, Memory, Processor

and Module represent an abstract `computer system device', `unit of information',

`information storage device', `information processing element' and an `executable

program' respectively. Each class allows facilities fundamental to the class. For

example, class Processor has a facility for simulating the execution of programs,

or objects belonging to the class Module. Using the appropriate classes and the

facilities they provide, the user creates the simulation model.

In comparison to these works, Genesis is not restricted to any particular category

of computers (cf. PARET, ASIM). It can model anything from a simple bus ar-

chitecture to novel architectures like a dataflow architecture. Classes essential to

construct most of the architectures are provided by Genesis. The choice of classes

is based on the architectural representation scheme underlying Genesis. Thus the

classes are realistic (cf. OASIS).

Hardware components are active objects in Genesis. Every hardware component

is modelled by a black-box that is free to function independently. The user has

control over the way these black-boxes are connected and the way they function.

Software components stay passive. Thus Genesis cannot run a task written in a

high-level language. A high-level program must be translated into an intermediate

form. This is a drawback of Genesis. Simulation systems such as ASIM support

tasks written in high-level languages. Yet, these systems do not have the flexibility

that Genesis has in modelling the hardware.

Genesis provides the means to specify and alter routing and assignment schemes.

Both static and dynamic schemes can be supported. Since Genesis describes both

executable and non-executable objects in a unified framework, it permits migration

of executable objects with as much ease as migrating a non-executable object.

Currently there is no graphical user interface to Genesis. Both the hardware and

the software must be expressed by some code. A graphical interface similar to

that of PARET would be a useful addition to Genesis.

Chapter 5. A Modelling Environment for Parallel Systems 103

5.7 Summary

The design of Genesis is described. Genesis presents a unified, object-oriented

approach to model parallel systems. The approach is based on the architectural

representation scheme developed in chapter 4. Genesis provides the means of de-

scribing and modelling the key parameters determining the performance of a par-

allel system: the architecture, program, assignment method and routing scheme.

It is thus a good laboratory for carrying out experiments in performance analysis.

We now turn our attention back to the assignment problem and, using Genesis as a

modelling platform, report some experiments on the performance of the assignment

schemes described in chapter 3.

Chapter 6

Performance Assessment of

Assignment Schemes

Even though work-greedy assignments give guaranteed solutions, they could be

worse than a non-work-greedy assignment. The following example demonstrates

this. Consider the assignment of the task graph of figure 6-1(a) onto a two proces-

sor system {PO, P1} with zero interprocessor communication delay. Gantt charts

of figures 6-1(b) and 6-1(c) show that a work-greedy assignment fairs poorly in

comparison to a non-work-greedy one (which, in this case, is an optimal assign-

ment).

(a)

(2)

TO T4

t=0 t=7 t=9

TO T3

Tl
T2 T4

(a) Task graph (b) A work-greedy assignment (c) A non-work-greedy assignment

(Numerals in parenthesis denote task execution times.)
I

Figure 6-1: Work-greedy assignments are not always good

However, there is no analytical performance guarantee for a non-work-greedy as-

Chapter 6. Performance Assessment of Assignment Schemes 105

signment. Thus this chapter presents an experimental performance analysis of the

non-work-greedy assignment scheme DFBN.

Comparison of assignment schemes that ignore communication costs have been

reported in the literature [ACD74,SWP90]. However, to our knowledge, no com-

parison of the schemes that consider communication costs has yet been reported.

Thus, this chapter reports an extensive set of results comparing these schemes.

The comparison experiments use the assignment schemes, ETF, ERT, MH and

DFBN. The scheme MCP is not considered here since it is very similar to RMH,

the restricted version of MH.

The assignment schemes are tested with random task graphs as well as task graphs

obtained from real program routines. For some small task graphs, the makespans

of the assignments generated by the heuristic schemes are compared against the

makespans of the optimal assignments.

Both DFBN and the work-greedy assignment schemes assume that the task graph

parameters - task execution times, volumes of information transfer, etc. - are

known a priori. However, in practice, it is hard to measure these parameters ac-

curately. One would expect that such inaccuracies would lead to poor assignments.

Thus, some experiments are conducted to investigate the impact of measurement

inaccuracies on the makespan.

The Experimental Framework. Task dependency graphs are executed on

processor graphs (topologies) using partitions dictated by the assignment schemes.

Genesis is used for building these processor graphs and simulating the execution.

The means of building processor graphs and simulating the execution is discussed

in chapter 5. The simulation method uses a fixed shortest path routing for com-

munication; network contention is taken into account by queueing messages. To

transfer a message of size v through a link that has an information transfer rate

c takes Iv/cl units of time. It is assumed that the processors can do only one

activity at a time: either computation or communication.

Chapter 6. Performance Assessment of Assignment Schemes 106

The following points are to be noted.

The scheme MH uses the number of hops between processors in determining

communication costs. This is fine when the processors are connected by

identical links, but not otherwise. Thus we use the inter-processor distance

(as defined in chapter 3) in determining communication costs under MH.

MH uses an adaptive shortest path routing scheme while finding the assign-

ments. Even though we use this adaptive routing scheme while determining

assignments under MH, we do not use the adaptive scheme when we find the

makespans of the MH-generated assignments. We only use a simple shortest

path routing scheme.

DFBN uses a weighted sum of priorities to calculate the overall priority of

a task. See chapter 3, equation 3.4.1. Since we do not know what choices of

weights will consistently give good assignments, we arbitrarily set wo = 10,

wi = 1 (i = 1 ... 5) and a = 1. This choice gives more weight to the critical

tasks than to the others.

6.1 Optimal Assignments

To see how close to optimal a given assignment is, the optimal makespan (i.e. the

makespan of the optimal assignment) must be known. The best known method to

find an optimal assignment (and the optimal makespan) is exhaustive search. An

exhaustive search looks at every possible assignment and chooses the one with the

minimum makespan.

If the tasks are independent of each other, then the number of possible assignments

that should be looked at is m'. Now if an arbitrary precedence relation is intro-

duced among the tasks, then task ordering within the partitions of an assignment

Chapter 6. Performance Assessment of Assignment Schemes 107

must be taken into account in determining the number of possible assignments, N.

Task ordering increases N, while precedence relation decreases it. The increase

due to task ordering is reflected in the following lemma.

Lemma 6.1. The number of possible assignments a set of n tasks can have on an

m processor system is

(n+m-1)!
W(n, m) _ (rn - 1)!

ignoring the effect of precedence relation among the tasks, but taking into account

the task ordering.

Proof.

The proof is by induction.

Let the number of possible assignments be W (n, m). Since a task can be assigned

to any of them processors, W (l, m) = in. Assume that

W(q,m)=
(q+m-1)!

(m - 1)!

Now increase the number of tasks from q to q + 1. The new task can be added

to a partition after any of the q tasks; it can also be placed at the head of any of

the m partitions. Thus, there are q + m ways of inserting the new task into an

existing assignment. That is,

W(q+1,m) _ (q+m) W(q,m) _ (q+m)!
(m - 1)!

Therefore, if the result holds for n = q, it will hold for n = q + I.

The decrease in N due to precedence relation is hard to determine. This problem is

as hard as finding the number of linear extensions in a poset which has been proved

Chapter 6. Performance Assessment of Assignment Schemes 108

to be #P-completes [BW91]. Given an arbitrary precedence relation among the

tasks, we only have an upper bound on the number of possible assignments. That

is,

N< (n+m-1)t
(m - 1)!

An exhaustive search through the possible assignments is thus enormously time

consuming and is practical only for very small task graphs. Hence, three small-

sized task graphs (see figure 6-3) are chosen and their best-case and worst-case

makespans (corresponding to the best and worst assignments) on the processor

graphs of figure 6-2 are found through an exhaustive search. Table 6-1 lists these

best-case and worst-case makespans; the corresponding assignments are tabulated

in table C-1 of appendix C.

Out of the task graphs of figure 6-3, GT is taken from Hwang et al. [HCAL89];

G' and GT are chosen arbitrarily.

P P3

(a) G
P

P
0

P1

&-i-O
1 1

O 2 O
P1

P2

(c) G
P

(Information transfer rates are shown beside the edges of the graphs.)

Figure 6-2: Example processor graphs

'Any #P-complete problem is as hard as counting the satisfying assignments of a

boolean formula [Va179].

Chapter 6. Performance Assessment of Assignment Schemes 109

TO(8)
T7(6)

i
(a) GT

T
0

(6

T (6)
0

T3(6) T5(4)

T9 (7)

() G3I

(Numerals in parentheses denote task execution times. The volume of

information transfer is shown beside each edge.)

T1(5) T2(4)

Figure 6-3: Example task graphs

Chapter 6. Performance Assessment of Assignment Schemes

GT Gp The best-case

makespan

The worst-case

makespan

GT GP 32 65

GT GP 39 65

GT GP 32 68

G7. GP 53 92

G7. GP 54 92

G7. GP 53 98

G7. G o 17 39

G7. GP 22 39

GT G p 17 42

Table 6-1: Best-case and worst-case and makespans

-110

The worst-case execution time is never less than the sequential execution time; in

general, it may be greater because of delays due to message latencies.

For each task graph and processor graph combination (figures 6-3 and 6-2), as-

signments are generated using each of the assignment schemes (see table C-2 of

appendix C). The execution of the task graph on the processor graph is then

simulated, and the makespan of the task graph on the chosen processor graph is

tabulated in table 6-2. As an example, figure 6-4 illustrates the execution of GT

on GP with a best-case assignment. Note that DFBN generates a best-case (or

optimal) assignment in this case.

Busy computing S Waiting for communication

P
0

P

P.,

T, T5 T7 i4 T3 T6

T1 T4 T4

0 8 16 24 32

Idling

Figure 6-4: Gantt chart showing an execution of GT on GP

Table 6-2 lists also the total execution times of task graphs under a random

assignment. The time complexity of a random assignment is 0(n).

Chapter 6. Performance Assessment of Assignment Schemes

GT Gp ETF ERT MH/RMH DFBN Random

GT GP 34 34 33 32 47

GT G p 41 40 42 48 47

GT G3 34 34 33 32 44

G2 GP 53 55 55 53 58

GT G2 61 57 55 54 69

GT G3 54 55 55 53 66

G3 GP 18 18 18 18 23

GT GP 24 24 25 24 26

GT G3 17 17 23 19 30

Table 6-2: Makespans of the task graphs

Examination of tables 6-1 and 6-2 leads us to the following observations:

111

DFBN generates optimal assignments in five cases; ETF in two cases; and

ERT in one case.

The heuristic assignments, in general, perform better than a random assign-

ment.

Effect of Routing on the Makespan. Consider the assignment of G7. onto

G3 under MH. See table C-2 of appendix C for the partitions and figure 6-5 for

a Gantt chart showing execution. To and T2 finish their execution at instances

6 and 4 respectively. To start T3 on P2 output message from To on Po should

reach P2; and to start T4 on PO output message from T2 on P2 should reach Po.

The non-adaptive shortest path routing scheme used in the simulation requires

messages to and from Po and P2 to be routed via P1. Since Pl is busy executing

T5, these messages do not get routed until T5 is completed. Therefore, T3 and T4

have to start as late as instance 11. Had the messages been routed via P3, the

makespan would have been shorter. (Alternatively, if P1 could be interrupted to

handle message routing, then also the makespan could be shorter.)

Chapter 6. Performance Assessment of Assignment Schemes

0 Busy computing . Waiting for communication

P
0

P
1

P2

P3

Idling

TO T4

T1
T5 T6

T2 T3

0 5 10 15 20 23

Figure 6-5: Effect of routing on the makespan

112

It is thus seen that smart routing schemes can be employed to shorten the make-

spans. However, since our goal is only to study the performance changes due to

different assignment techniques, we do not need to use any smart routing scheme;

we only have to fix a routing scheme and use it consistently.

6.2 Assigning Random Graphs

This experiment tests the assignment schemes using a number of random task de-

pendency graphs. Random dependency graphs help to predict the performance of

assignment schemes without any assumption about specific workloads. Processor

graphs of figure 6-2 are used in executing these random task graphs. Random task

dependency graphs are generated following the technique outlined in [ACD74]. 111

random graphs2 with the following characteristics are generated for the test.

2The number 111 has no special significance. It is an arbitrary selection.

Chapter 6. Performance Assessment of Assignment Schemes - 113

Range of number of vertices 8-35
Average number of vertices 21

Range of number of edges 15 - 44

Average number of edges 27

Range of mean execution time of a task 13 - 42

Average mean execution time of a task 28

Range of mean volume of information transfer 4- 18

Average mean volume of information transfer 11

Task execution times and volumes of information transfer have negative exponen-

tial distributions with the mean values given above. Thus the execution times and

volumes of information transfer tend to vary widely within a task graph.

I
Gp ETF ERT MH RMH DFBN

GP 278 274 274 274 265

GP 362 352 361 361 346

GP 269 264 275 275 255

Table 6-3: Average makespan of the random graphs

Table 6-3 shows the average makespan of the assignments generated by different

assignment schemes. The average is taken over the 111 random graphs.

Some graphs may favour a particular heuristic. For example, consider the task

graph of figure 2-3(a). The best-case work-greedy assignment of this graph is

the one shown in the Gantt chart of figure 2-3(c) whereas the best-case non-

work-greedy assignment is the one in figure 2-3(a). The best-case work-greedy

assignment is worse than the best-case non-work-greedy assignment. Now consider

the same task graph with all its precedence relations inverted. The best-case

assignments under both work-greedy and non-work-greedy schemes will then be

the assignment shown in figure 2-3(c) (but with the chart reversed). That is, by

inverting the precedence relation of the task graph we see that both schemes fair

equally well.

Chapter 6. Performance Assessment of Assignment Schemes 114

To investigate the possibility of the graph generation process favouring a particular

heuristics, we repeat the experiment with the same random graphs but with all the

precedence relationships inverted. Table 6-4 shows the average makespan of the

precedence-inverted random graphs under different assignment schemes. Tables 6-

3 and 6-4 show no evidence that the random graph generation is biased.

GP ETF ERT MH RIM DFBN

GP 262 254 261 261 250

GP 351 341 345 345 336

GP 244 242 250 248 236

Table 6-4: Average makespan of the precedence-inverted random graphs

Examination of tables 6-3 and 6-4 reveals that

DFBN does consistently better than the rest of the assignment schemes. Per-

formance of DFBN is up to 8% better than the rest of the schemes considered

here.

MH does not exhibit any significant performance improvement over RMH.

In fact, there are cases where RMH does better than MH. This may be due

to the fact that the simulator that executes the task graphs uses a fixed

shortest path routing scheme rather than the adaptive routing embedded in

MH.

Note that the random graphs used in obtaining tables 6-3 and 6-4 are sparse.

Sparse random graphs are used because they closely model real programs.

6.2.1 Assessing the Effect of Estimation Errors

Due to many non-deterministic factors affecting program execution, it is not always

possible to determine the exact values of the task graph parameters. Compile time

Chapter 6. Performance Assessment of Assignment Schemes 115

analysis cannot predict the task execution times when there are run-time depen-

dencies. Even in the case of instruction scheduling, where the compiler knows the

instruction execution times, load and store instructions may take longer to execute

than predicted, because of cache misses3. Run-time estimation of parameters may

also be inaccurate. For instance, execution time of a task in a multiprogramming

system may not be deterministic due to the interference by other tasks executing

in the system.

This experiment examines the effect of estimation error on the makespans of ran-

dom task graphs. The sparse random graphs of the previous experiment are re-

used.

40

35

Average gain
over random
assignment 30

(percent)

25

20

V_
0

8 x 2
0

0
O & O

x 0
x

x

0

LEGEND:
I

O-GP x-GP
I

-G3
0 20 40 60 80 100

Standard deviation of estimation error (percent of mean)

Figure 6-6: Effect of estimation error on the makespan under ETF

Assignments under the schemes ETF, ERT, RMH, MH and DFBN are deter-

mined with random errors added to both the task execution times and the volumes

of information transfer. A random error is assumed to be normally-distributed.

Makespans of the task graphs on the processor graphs of figure 6-2 under these

3Normally, in such cases, the entire instruction pipeline is frozen to maintain the

state of the schedule.

Chapter 6. Performance Assessment of Assignment Schemes

40

35

Average gain
over random

30 assignment
(percent)

25

6d

X
O O O 6d 0

O O 0

X

O m

20 I

LEGEND: O - GP x - GP 0 - GP

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

Figure 6-7: Effect of estimation error on the makespan under ERT

116

assignments are found through simulation. The simulation uses the correct task

graph parameters in executing the task graphs (i.e. it does not add any random

error to the task graph parameters).

40

35

Average gain
over random
assignment 30

(percent)

25

20 I

LEGEND: O - GP x - GP 0 - GP

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

Figure 6-8: Effect of estimation error on the makespan under RMH

The graphs of figures 6-6 to 6-9 illustrate the effect of estimation errors on the

makespan. The average gain in the makespan of a heuristic assignment is com-

puted with respect to the makespan of a random assignment and is plotted against

the standard deviation of estimation error. The gain in the makespan is defined

Chapter 6. Performance Assessment of Assignment Schemes

as

Wran - W x 100
Wran

117

where Wran is the makespan of the random assignment and w is the makespan of

the heuristic assignment. The average is taken over the 111 random graphs used

in the previous experiment.

40

35

Average gain
over random
assignment 30

(percent)

25

LEGEND: O - GP x - GP - GP

20

E

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

Figure 6-9: Effect of estimation error on the makespan under DFBN

Since the makespans produced by RMH and MH are very close to each other, only

the results from RMH are reported here.

These graphs show that the estimation errors have very little impact on the

makespan. A 70% standard deviation of estimation error results in no more than

6% variation in the average gain. The prime reason for this low sensitivity for

estimation errors is that the assignment schemes depend more on the structure

(or the layout) of the task graph than on the parameters of the graph.

This important result implies that accurate estimation of task graph parameters

is not necessary to produce reasonably good assignments. As long as the structure

of the task graph and some estimate of the task graph parameters are determined

at compile time, the assignment schemes will generate good assignments. This

Chapter 6. Performance Assessment of Assignment Schemes 118

means that, if the task graph structure is known at compile time, one need not

postpone the assignment until run time.

Observe also that DFBN has the maximum average gain over the random assign-

ment.

6.3 Dependency Graphs from Programs

Synthetic random graphs often lack the complex embedded correlations that real

task graphs contain. It is thus desirable to validate the results obtained using

synthetic random graphs by experiments conducted on real task graphs. This sec-

tion thus repeats the experiments carried out in the last section using dependency

graphs extracted from real program routines.

More than 500 dependency graphs obtained from an extensive dependency analysis

of Fortran subroutines are used in this section to test the assignment schemes. The

subroutines are part of one of the Perfect Club Benchmarks [B+89,CKPK90]. The

benchmark implements a QCD (Quantum Chromodynamics) simulation using the

Cabbibo-Marinari pseudo heat-bath algorithm [CM82]. The QCD simulation is

required in high energy Physics for understanding subnuclear processes and is

extremely computationally demanding.

The dependency graphs correspond to the basic blocks (i.e. the maximal blocks of

instruction sequences containing no branches) of the source subroutines. Tasks are

thus fine-grained, representing individual instructions. They have execution times

of 1 - 8 clock cycles. Each dependency is taken to mean a unit information transfer

between the dependent instructions. The biggest graphs have 63 instructions. No

graph having less than 8 instructions is used. These graphs are grouped into two:

a set of small graphs each with 8-15 instructions; and a set of large graphs each

with 16-63 instructions.

-' -Chapter 6. Performance Assessment of Assignment Schemes 119

The processor graphs of figure 6-2 are used in executing these dependency graphs

under different assignment schemes. Makespans of the assignments under ETF,

ERT, MH and RMH are compared to the makespan of the DFBN generated as-

signment. The performance gain of DFBN over the other assignment schemes is

expressed by the makespan difference

AX WX - WDFBN x 100 where X E {ETF, ERT, MH, RMH}.
WDFBN

Since MH produced makespans very close to those of RMH, results from MH are

not reported here.

60- 60

.50t (a)
®G1 P

G2
P .50

i

It 20

10

0

GP

40

30

V
20

10

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

Makespan Difference (percent) Makespan Difference (percent)

(a) Small graphs (8-15 instructions) (b) Large graphs (16-63 instructions)

Figure 6-10: Frequency of makespan difference between ETF and DFBN

Chapter 6. Performance Assessment of Assignment Schemes

60

Makespan Difference (percent)

60-

---120

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

Makespan Difference (percent)

(a) Small graphs (8-15 instructions) (b) Large graphs (16-63 instructions)

Figure 6-11: Frequency of makespan difference between ERT and DFBN

60--

,50--

40

10

0

(a)

-5 -4 -3 -2 -1 0 +1

GP

+2 +3 +4 +5

'Makespan Difference (percent)

W r

-3 -2 -1 0 +1 +2 +3 +4

Makespan Difference (percent)

(a) Small graphs (8-15 instructions) (b) Large graphs (16-63 instructions)

Figure 6-12: Frequency of makespan difference between RMH and DFBN

The histograms of figures 6-10 to 6-12 show the frequency of Ax, where X is either

ETF, ERT or RMH. The positive values of OX imply an advantage for DFBN over

the assignment scheme X. Figures 6-10 to 6-12 show a definite advantage of using

DFBN over the other schemes. Table 6-5 summarizes the advantage of DFBN

over these schemes. It shows the percentage of cases where DFBN performs better

than or equal to the assignment scheme under comparison. The figures in the table

are averages over the small and large instruction graphs and the three processor

graphs.

Chapter 6. Performance Assessment of Assignment Schemes

301

6.3.1 Effect of Estimation Errors

121

Section 6.2.1 reported experimental evidence suggesting that the assignment sche-

mes considered here are fairly insensitive to estimation errors. The experiment

used random graphs. Here we repeat those experiments with the instruction de-

pendency graphs extracted from QCD subroutines.

35

25
Average gain
over random 20

assignment
(percent) 15

10

DFBN advantage

82% over ETF

83% over ERT

81% over RMH

Table 6-5: The DFBN advantage

a

O

x

a

O

x

O O O O

x x

a

O O

a

O

X x x

5 F LEGEND: O- GP x- GP 0- GP
1 0

1 I I I

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

Figure 6-13: Effect of estimation error on the makespan under ETF

Assignments of the instruction graphs on the processor graphs of figure 6-2 are

determined using the heuristic schemes ETF, ERT, RMH and DFBN. Normally-

distributed random errors are added to the instruction execution times while deter-

mining the heuristic assignments. As before, the makespans of these assignments

are found through simulations using the error-free instruction execution times.

The average gain in the makespan of heuristic assignments is calculated with re-

Chapter 6. Performance Assessment of Assignment Schemes 122

spect to the makespan of a random assignment. See section 6.2.1 for a definition

of makespan gain.

35

Average gain

30

25

over random 20
assignment

15 (percent)
10

5

0 0

O

x x

0 0 0 0 0 0

O O

x
x x

O O

LEGEND: O - GP x - GP 0- GP

Figure 6-14: Effect of estimation error on the makespan under ERT

0

m

m

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

0

35

30

Average gain

L X

O

x

0 0 0 0

O O

10

5 LEGEND: O - GP x - G2 0 - GP

0

O

x x x

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

Figure 6-15: Effect of estimation error on the makespan under RMH

Figures 6-13 to 6-16 show the effect the maximum estimation error has on the

average makespan. Maximum estimation errors up to 100% result in no more than

6% variation in the average makespan.

25

0 u

O

over random 20

assignment
15 (percent)

0

O

0 0

Chapter 6. Performance Assessment of Assignment Schemes 123

35

30

25

Average gain
over random 20

assignment
(percent)

15

I I I

O O 0

0 0 O O O
O O

x
x x x x x x x X

10

I 0 1 1 1 1 1

0 20 40 60 80 100
Standard deviation of estimation error (percent of mean)

5 LEGEND: 0-G1
P

x - GP - GP
I

Figure 6-16: Effect of estimation error on the makespan under DFBN

Out of the assignment schemes tested, DFBN has the maximum average gain over

the random assignment. One exception to this is the assignment onto GP; RMH

performs slightly better than DFBN in this case.

To summarize, all the assignment schemes exhibit a good deal of insensitivity to

estimation errors. This has two important implications:

1. Inaccuracies in the estimation of task graph parameters can be mostly tol-

erated.

2. An instruction schedule generated for a particular architecture can be exe-

cuted on a slightly different architecture, where some instructions have dif-

ferent execution times, without incurring a large penalty.

6.3.2 On the Assignment of Loops

The dependency analysis carried out to extract dependency graphs from the QCD

subroutines does not utilize the parallelism that may be present across the loops

- it just extracts the dependency graph corresponding to the loop body. However,

Chapter 6. Performance Assessment of Assignment Schemes 124

it is possible to extract more parallelism (than is visible in the body) from a loop

by unrolling it several times.

Consider the loop of figure 6-17(a). The task Tb is dependent on Ta during any

iteration; and the task Ta during iteration I is dependent on Ta during iteration

I-1.

DO I = 1,2*N,2

DO I = 1,2*N Ta X(I) = X(I-1) + 10

Ta:X(I)=X(I-1)+10 TV :Y(I)=X(I)+Y(I)
Tb : Y(I) = X(I) + Y(I) Ta : X(I+1) = X(I) + 10

END DO Tb : Y(I+1) = X(I+1) + Y(I+1)

END DO

Figure 6-17: (a) An example loop. (b) Loop (a) unrolled once.

Data dependence in loops are classified as follows: (a) loop-carried dependence that

arises when data are passed between different iterations; and (b) loop-independent

dependence that arises when data are passed from one task to another within the

same iteration. See [ERL91]. The example loop of figure 6-17(a) has a loop-

carried dependence from Ta to itself, and there is a loop-independent dependency

from Ta to Tb. Both loop-independent and loop-carried dependencies make a loop

less parallelizable.

Taking into account the dependencies within a loop body, a dependency graph

corresponding to the loop body can be constructed. This dependency graph can

then be assigned onto a parallel execution system using one of the assignment

heuristics discussed thus far.

The dependency graph corresponding to the loop body of figure 6-17(a) is depicted

in figure 6-18(a). Assuming Ta and Tb take unit time for their execution, the

makespan of the entire loop is 4N.

Now consider unrolling the loop. When a single loop is unrolled u times, the loop

Chapter 6. Performance Assessment of Assignment Schemes 125

(a) (b)

(a) Task graph corresponding to the loop body of figure 6-17(a)

(b) Task graph corresponding to the loop body of figure 6-17(b)

Figure 6-18: Task graphs for the example loops

body is replicated u times, the loop control variable is adjusted for each copy and

the step value of the loop is multiplied by u + 1. Figure 6-17(b) shows the loop

of figure 6-17(a) unrolled once.

The dependency graph corresponding to the unrolled loop body of figure 6-17(b)

is depicted in figure 6-18(b). Ignoring communication delays, the makespan of this

dependency graph on a system with more than one processor is 3. The makespan

of the entire loop is thus 3N. As before, tasks Ta, and Tb are assumed to take unit

time for their execution. A speed-up of 4/3 has been achieved by unrolling the

loop once.

In general, the makespan of an entire loop depends on u (the number of times

the loop is unrolled) and the assignment heuristics employed in assigning the loop

body. Good assignment heuristics would result in shorter makespans. A discussion

on the influence of u on the makespan and the treatment of nested loops are found

in [ERL91].

Loop unrolling, however, has one main disadvantage. It produces significant code

expansion, increasing the pressure on an instruction cache. Thus an overlapped

loop execution (that pipelines the execution of tasks within and across the loop

Chapter 6. Performance Assessment of Assignment Schemes 126

body) has been proposed [DHB89]. However, such overlapped execution requires

complex hardware support in addition to the compiler efforts. When the code size

is not of great concern, loop unrolling is a good technique to expose the parallelism

in the loops. Good assignment schemes find applicability in assigning the unrolled

loops.

6.4 Varying the Size of the Processor Graphs

This experiment examines the effect the size of the processor graph has on the

assignment. It uses two-dimensional processor grids of different sizes. These pro-

cessor grids are constructed using the methodology outlined in section 5.5.2. The

grids, however, have wrap-around connections in order to exploit all the processor

links. The wrap-around connections enable faster routing.

The experiment uses the assignment schemes ETF, ERT, RMH and DFBN to find

assignments of task graphs onto these processor grids and simulates the execution

to find the makespans.

MH has a time-complexity cubic in the number of processors. When the processor

graphs are large, MH spends a lot of time updating the route tables used in its

embedded adaptive routing scheme. Since the earlier experiments have shown that

RMH (the restricted version of MH) is equally good, this experiment uses RMH

instead of MH and avoids the extra time-complexity of MH.

The average makespans of the task graphs of the QCD benchmark are found to be

the same for all assignment schemes on all processor grids. We thus report results

from experiments that use the sparse random graphs of section 6.2. Note that the

number of tasks (n) in the random graphs varies from 8 to 35 with an average of

21. Table 6-6 summarizes the average makespans of the assignments of these task

graphs on different processor grids.

Chapter 6. Performance Assessment of Assignment Schemes

Grid size (m) ETF ERT RMH DFBN

1 x 1 623 623 623 623

2 x 2 248 249 250 238

2 x 4 218 218 218 224

4 x 4 212 212 212 228

8 x 4 213 212 213 230

Table 6-6: Average makespans for different grid sizes

127

When the grid size is small, DFBN has the minimum average makespan. For large

grid sizes, average makespans of the work-greedy assignments are smaller than

those of DFBN generated assignments.

The deficiency of DFBN for large grid sizes arises from the fact that it does not

make use of the topology of the processor graphs in the same way as work-greedy

assignment schemes. DFBN simply uses the `distance' of processors from the `most

capable' processor in determining processor priorities. In contrast, work-greedy

assignments choose a processor according to how quickly the processor can start

executing a given task.

However, choosing processors in the way work-greedy assignment schemes do re-

quires a time-complexity higher than that of DFBN. Work-greedy schemes have a

time-complexity of 0(n2m) whereas the time-complexity of DFBN is just

0((n + m). log m + e). The improvement the work-greedy schemes achieve for

large grid sizes does not thus match the effort and time spent. Judging the schemes

by their time-complexity and the results they produce, DFBN is certainly a very

promising assignment scheme even for large grid sizes.

It is possible to show a performance guarantee for DFBN for grid sizes larger than

the task graph widths (as in the lower rows of table 6-6) if the communication costs

are small compared to computation costs. As has been pointed out in section 3.4.5,

the makespan generated by DFBN in this case is within a factor of two of the

optimal makespan. This same guarantee holds for the work-greedy schemes too.

Chapter 6. Performance Assessment of Assignment Schemes 128

Thus the makespan of a DFBN-generated assignment is within a factor of two of

the makespan of a work-greedy assignment. It will be interesting to investigate if

one could prove a similar guarantee when communication costs are comparable to

the computation costs.

6.5 Task Assignment on Meiko

This section discusses the viability of testing the assignment schemes for depen-

dency graphs on Meiko [Mei89], the Edinburgh Concurrent Supercomputer. Meiko

is a multi-transputer machine consisting of T800 transputers. The set of transput-

ers is divided into domains that a user can reserve for use. Parallel programming

is supported through CS Tools [CST], a development toolset for the Meiko. User

programs are written in a high-level language, C for example. The programmer

needs to think in parallel and code a number of sequential tasks. These tasks

operate concurrently, passing messages amongst themselves when necessary. CS

Tools provides the programmer with a set of library routines that let explicit

message-passing.

Within each domain, tasks communicate using the same library calls regardless of

whether or not a direct physical link can be made between the transputers. CS

Tools provides all the message re-transmission, multiplexing and buffering that

are necessary. The programmer sees the hardware as an idealized, fully connected

and homogeneous system. The mechanism that underlies the communication and

routing services of CS Tools is called CSN (Computing Surface Network). CSN

takes the form of a background process that resides on every transputer of the

domain. User tasks do not directly interact with one another; they have to interact

via CSN.

In addition to the application program, the user must prepare a configuration file

that states which tasks are involved in the application and where they are to run.

Chapter 6. Performance Assessment of Assignment Schemes 129

Typically, a configuration file consists of task name and transputer id pairs. In the

configuration file the user can specify how the transputers are to be connected. If
no such specification is given, CS Tools connects the transputers in a line and uses

up the spare links for random cross connections.

There are several points about CS Tools worth noting.

Task assignment is left to the user.

Processor interconnection is also left to the user. If the user fails to specify

the interconnection then an interconnection pattern, that in no way corre-

sponds to the communication structure within the program, is chosen.

Message-passing is strictly via CSN even if the two communicating tasks re-

side in the same processor. This is very desirable, but the efficiency depends

solely on the way CSN uses the locality in communication to minimize the

communication time.

1200

O
1000

O

Transfer
time

800

(µs) 600

400

O

0
200

O

1000 2000 3000 4000
Volume of information transfer (bytes)

Figure 6-19: Average intraprocessor information transfer time

A simple experiment conducted to measure the time for interprocessor and in-

traprocessor message-passing shows that the time to pass a message between two

Chapter 6. Performance Assessment of Assignment Schemes 130

3500

3000

2500

Transfer 2000
time
(ps) 1500

1000

500 jO
0L

0

O

O

O

O

1000 2000 3000 4000
Volume of information transfer (bytes)

Figure 6-20: Average interprocessor information transfer time

tasks residing in the same processor is comparable to the time to pass the same

message between tasks residing in two adjacent processors4. Figures 6-19 and 6-

20 show that the time t (in microseconds) to transfer a message of volume v (in

bytes) is given by

t 210 + 0.25v if the tasks are in the same processor, and

t ti 210 + 0.75v if the tasks are in adjacent processors.

Intra-processor communication time is more than one third of the inter-processor

communication time. This implies that CS Tools fails to exploit the locality to

minimize communication times.

Now let us see how viable it is to use the automated assignment schemes for

dependency graphs with CS Tools.

In CS Tools, the tasks and their communication and are modelled by an interac-

tion graph. It is, however, possible to restrict the communication so that the tasks

'The experiment transfers back and forth a message of size v bytes between two tasks

and finds the average time for a single transfer.

Chapter 6. Performance Assessment of Assignment Schemes 131

would receive messages when they start and send messages when they terminate.

By imposing such a restriction one can create a dependency graph model. The

tasks forming the dependency graph can then be assigned using one of the au-

tomated assignment schemes for dependency graphs, thus relieving the user from

having to create a configuration file.

Since CS Tools does not efficiently exploit the locality in communication, the in-

traprocessor communication cost is comparable to that of the communication cost

between any two processors. Automated assignment schemes, however, assume

that the intraprocessor communication cost is negligible when compared to the

interprocessor communication. Assessing the performance of these assignment

schemes on Meiko under CS Tools is thus not appropriate.

In order to have an efficient automated assignment, one needs to take a global

view of the application program. There should be a compile-time analysis of

the program, and the compiler, rather than the user, must determine the program

decomposition. The decomposition may make use of user directives in determining

the potential parallelism. This is an exercise in its own merit and we do not deal

with it in this thesis. Once such a decomposition is made, the compiler can make

use of an appropriate assignment scheme to generate an assignment automatically.

In such a case, intraprocessor message-passing can be achieved by passing pointers;

and it will be reasonable to assume that the intraprocessor communication cost is

negligible, an assumption that does not hold with CS Tools.

Chapter 6. Performance Assessment of Assignment Schemes 132

6.6 Summary

Comparison of assignment schemes that consider communication costs has not

been reported in the literature. This chapter thus presented an extensive set of

experimental results comparing these schemes.

Task graphs, either generated randomly or extracted from real program routines,

are executed on processor topologies under different assignments and the resulting

makespans are compared. For some small task graphs makespans under heuristic

assignments are compared against optimal makespans.

The results indicate that DFBN is a promising alternative to work-greedy schemes.

It has a time-complexity less than those of work-greedy schemes and achieves a

performance better than, or comparable to, that of work-greedy schemes.

These assignment schemes operate under a common assumption: the task graph

parameters - the task execution times, volumes of information transfers, etc. - are

known prior to the assignment. Accurate estimation of these parameters is often

hard due to run-time dependencies, interference from other programs, etc. It is

generally thought that such inaccuracies will result in poor assignments. However,

the error-sensitivity experiments reported in this chapter suggest that estimation

errors have very little impact on the quality of the assignments.

Chapter 7

Summary and Conclusions

This thesis showed some new analytical and experimental results relating to the

assignment problem and proposed a new scheme for assignment. It also reported

the development of a generic simulation environment for parallel architectures

and used this environment to compare the performance of a number of assignment

schemes.

Chapter 2 proposed a hierarchical taxonomy for automated assignment schemes.

The taxonomy was based on program models. It broadly classified assignment

schemes into schemes dealing with interaction graphs and those dealing with de-

pendency graphs. Desirable properties for efficient assignments under different

program models were discussed.

As opposed to the assignment of an interaction graph, an assignment of a de-

pendency graph, in general, can be proved to be close to the optimal assignment.

Moreover, the explicit temporal information made available by dependency graphs

helps in establishing better assignment heuristics.

Chapter 3 thus chose to examine in detail the assignment of dependency graphs.

The impact of task ordering on the makespan was established. It was shown that

an assignment with a poor task ordering can perform m times worse than an equiv-

alent assignment with a good task ordering, m being the number of processors.

Chapter 7. Summary and Conclusions 134

Factors that must determine the task ordering were discussed. Tasks with long

execution times, task involving large communication times, tasks with large num-

bers of successors, tasks with long-length successors and tasks with large memory

requirements were identified to be those that need high priority in a task ordering.

Most of the assignment schemes for dependency graphs are work-greedy. Their

heuristics is based on satisfying the following rule of thumb: keeping the processors

busy will lead to a `good' assignment. These schemes do not let a processor idle

if there is a task the processor could execute. Many of these work-greedy schemes

assume that the communication costs are negligible compared to the computation

costs. With such an assumption, any work-greedy assignment can be proved close

to the optimal by no more than a factor of two. Chapter 3 proved such performance

guarantees for the work-greedy assignments of:

independent tasks, and

dependency graphs with zero communication costs.

The performance guarantees depend on the degree of average software parallelism

and the hardware parallelism (i.e. the number of processors available).

Recent assignment schemes extend the work-greedy heuristics to take commu-

nication costs into account. However, when the communication costs are taken

into account, they lose two important characteristics of zero-communication work-

greedy assignment schemes. That is, with arbitrary communication costs, it was

shown that

there is no guarantee that a processor will not idle when there is a task it

could execute, and

a work-greedy assignment can be worse than the optimal assignment by a

Chapter 7. Summary and Conclusions 135

large factor (determined by the communication costs along some path in the

dependency graph).

There was thus a case for examining an assignment scheme that moves away from

the work-greedy heuristics. Chapter 3 proposed such an assignment scheme. It is

based on satisfying two desirable properties put forward in chapter 2:

DP1. Assignment of independent tasks to different processors.

DP2. Assignment of dependent tasks to the same processor.

This new scheme, called DFBN (depth-first breadth-next), uses a combination of

the familiar depth-first and breadth-first search algorithms to arrive at an assign-

ment.

DFBN does not primarily aim to keep the processors busy. It does not provide

any analytical performance guarantee as do the work-greedy schemes. However,

it has a time-complexity lower than that of the work-greedy schemes. The time-

complexity is linear in the number of tasks and task graph edges.

Comparisons of assignment schemes when the communication costs are zero have

been reported in the literature. However, since most of the assignment schemes

that consider communication are recent, no comparison of these schemes has yet

been published. This thesis thus reported an extensive set of experimental results

comparing these recent assignment schemes including DFBN.

An object-oriented simulation platform for parallel systems was developed in order

to carry out simulations comparing the performance of assignment schemes. Chap-

ter 5 discussed the design and significant implementation issues involved in the

development of this simulation platform. The platform, called Genesis, is generic,

in the sense that it can model the key parameters that describe a parallel system:

the architecture, the program, the assignment scheme and the routing strategy.

Chapter 7. Summary and Conclusions 136

Genesis uses as its basis a sound architectural representation scheme reported in

chapter 4.

A number of experiments on the performance of assignment schemes was carried

out using Genesis. Chapter 6 reported the results of these experiments. Task

graphs, either generated randomly or extracted from real program routines, are

executed on processor topologies under different assignment schemes. For some

small synthetic task graphs, makespans under the heuristic assignment schemes

are compared against the optimal makespans. Genesis was used in constructing

the simulation models. Real task graphs were extracted from the subroutines of a

Perfect Club benchmark.

The comparison results indicated that DFBN is a promising alternative for work-

greedy schemes. It has a time-complexity less than those of the work-greedy

schemes and achieves an average performance better than, or comparable to, that

of work-greedy schemes. The linear time-complexity of DFBN will make it a

suitable scheme for the assignment of large task graphs.

All these assignment schemes assume that the task graph parameters - the task

execution times, volumes of information transfer, etc. - are known a priori. How-

ever, due to many non-deterministic factors, these parameters cannot always be

estimated correctly. It is generally thought that such inaccuracies will result in

poor assignments. Experiments were conducted to investigate this; the effect of

estimation errors on the performance of different assignment schemes were stud-

ied. Chapter 6 reported results of these experiments. The results indicated that

estimation errors have very little impact on the makespan. They showed that all

the assignment schemes exhibit a good deal of insensitivity to estimation errors.

Two important implications of these results were pointed out:

1. Inaccuracies in the estimation of task graph parameters can be mostly tol-

erated. Therefore, an accurate estimation of task graph parameters is not

Chapter 7. Summary and Conclusions 137

necessary (nor, in many cases, is possible) to produce reasonably good as-

signments.

2. An instruction schedule generated for an architecture can be executed on a

slightly different architecture, where some instructions have different execu-

tion times, without incurring a large penalty.

7.1 Future Directions

This section outlines some of the possible directions in future research.

Chapter 2 noted that the two-step non-work-greedy assignment schemes are com-

plex. These schemes, in the first step, assign the task graph onto an unbounded

number of virtual processors that are completely connected and have equal inter-

processor communication times. In the second step, they map the virtual proces-

sors onto physical processors. Table 7-1 shows the time-complexities of the known

two-step non-work-greedy assignment schemes.

Scheme 15t step 2"d step

Kim [Kim88]

Sarkar [Sar89]

O(ne3)

O(ne + e2)

O(n3m)

O(nnm + e)

Table 7-1: Time-complexities of two-step non-work-greedy schemes

Recall that n is the number of tasks and m is the number of processors. The

number of virtual processors that have been actually used is n (< n). The time-

complexity of DFBN is much lower than the time-complexities of these two-step

non-work-greedy schemes. Since these two-step schemes are complex and require

large time-complexities, the comparison experiments reported in chapter 6 did not

take them into account. However, it will be interesting to compare the performance

of these two-step non-work-greedy schemes in a framework similar to the one

reported in chapter 6.

Chapter 7. Summary and Conclusions 138

Chapter 3 showed the impact task ordering has on the makespan. Poor task

orderings can result in long makespans. The factors that determine the task

ordering were pointed out. Tasks with long execution times, task involving large

communication times, tasks with large numbers of successors, tasks with long-

length successors and tasks with large memory requirements were identified to be

those that need high priority in a task ordering. But a task graph may contain a

mixture of such tasks. How should one determine a unique task ordering in a task

graph like this? DFBN, when determining a task ordering, took a weighted sum of

various priorities. Is there be a better way of doing this? We need more exploration

- either analytical or experimental - to provide an answer. An interesting direction

would be to explore the relative significance of the task priorities.

Another direction for future work is to find analytical performance guarantees for

DFBN. This may be hard, since DFBN does not predict when to execute a task;

it only finds where to execute it. With no start and finish times of the tasks

predicted, it may be hard to quantify the makespan in terms of the task and

processor graph parameters.

If two concurrently-executable tasks communicate heavily with a common suc-

cessor task, it may be advantageous to assign these two concurrently-executable

tasks to the same processor (that will then be assigned the common successor).

Such an assignment produces a communication-based clustering. DFBN and the

other work-greedy assignment schemes always assign these concurrently-executable

tasks to different processors, if there are sufficient processors. That is, they do not

produce a communication-based clustering. When the tasks graphs have a small

computation to communication ratio, there is a case for extending an assignment

heuristics to produce communication-based clusterings.

The thesis did not take into account the possibility of task replication. There is

a definite performance gain by executing some tasks on more than one processor

when the average communication to computation ratio is more than one [KL87].

However, the time-complexity of the assignment scheme will then be large. For

Chapter 7. Summary and Conclusions 139

instance, the scheme proposed by Kruatrachue and Lewis [KL87] has a time-

complexity of O(n4m). One future direction is to compare the assignment schemes

reported in chapter 3 to that of DSH. Besides, it will be interesting to extend

theorem 3.5 of chapter 3 taking task replication into account.

On a more general direction, it will be interesting to explore the suitability of as-

signment schemes to programming languages. Automated assignment schemes are

well suited to dataflow languages [Sar89]. Other languages need to be translated

into dependency graphs first. For the translation exercise, tools that perform de-

pendency analysis of programs and generate dependency graphs will be useful. If

the language does not support explicit parallelism, then such tools should also be

able to automatically detect and extract parallelism embedded in the programs.

Tool kits such as Sigma II [Sig92] take this direction.

Bibliography

[ACD74] Thomas L Adam, K M Chandy, and J R Dickson. A comparison of

list schedules for parallel processing systems. Communications of the

ACM, 17(12):685-690, December 1974.

[A1m85] G S Almasi. Overview of parallel processing. Parallel Computing,

2:191-203, 1985.

[AM90] Mayez A Al-Mouhamed. Lower bound on the number of processors

and time for scheduling precedence graphs with communication costs.

IEEE Transactions on Software Engineering, 16(12):1390-1401, De-

cember 1990.

[AP91] Silvano Antonelli and Susanna Pelagatti. On the complexity of the

mapping problem for massively parallel architectures. Technical Re-

port TR-5/91, Dipartimento di Informatica, University di Pisa, March

1991.

[B+89] M Berry et al. The perfect club benchmarks: Effective performance

evaluation of supercomputers. The International Journal of Supercom-

puter Applications, 3:5-40, 1989.

[BDW86] Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz. Scheduling

multiprocessor tasks to minimize schedule length. IEEE Transactions

on Computers, C-35(5):389-393, May 1986.

Bibliography 141

[BLUL85] Graham Birtwistle, Greg Lomow, Brian Unger, and Paul Lucker. Pro-

cess style packages for discrete event modelling: Experience from the

transaction, activity and event approaches. Transactions of the Society

for Computer Simulation, 2(1):27-56, May 1985.

[BMRS88] F Warren Burton, G P McKeown, and V J Rayward-Smith. On pro-

cess assignment in parallel computing. Information Processing Letters,

29:31-34, 1988.

[Bok8l] Shahid H Bokhari. On the mapping problem. IEEE Transactions on

Computers, C-30(3):207-214, March 1981.

[Bok88] Shahid H Bokhari. Partitioning problems in parallel, pipelined, and

distributed computing. IEEE Transactions on Computers, 37(1):48-

57, Jan 1988.

[BPTS91] Peter L Bird, Uwe F Pleban, Nigel P Topham, and Henrik Scheuer.

Semantics driven computer architectures. In Proceedings of Parallel

Computing, September 1991.

[BW91] Graham Brightwell and Peter Winker. Counting linear extensions is

#P-complete. In Proceedings 23°d STOC, pages 175-181, 1991.

[CA82] Timothy C K Chou and Jacob A Abraham. Load balancing in dis-

tributed systems. IEEE Transactions on Software Engineering, SE-

8(4):401-412, July 1982.

[CK88] Thomas L Casavant and Jon G Kuhl. A taxonomy of scheduling in

general-purpose distributed computing systems. IEEE Transactions

on Software Engineering, 14(2):141-154, Feb 1988.

Bibliography 142

[CKPK90] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Su-

percomputer performance evaluation and the perfect benchmarks. In

Proceedings of the International Conference on Supercomputing, pages

254-266, Amsterdam, The Netherlands, June 11-15, 1990. ACM Press.

[CM82] N Cabbibo and E Marinari. A new method of updating SU(N) matrices

in computer simulations of gauge theories. Physics Letters, 119B(387),

1982.

[Cof76] E G Coffman, editor. Computer and Job Shop Scheduling Theory.

John Wiley and Sons, 1976.

[Co189] Murray Cole. Algorithmic Skeletons: Structured Management of Par-

allel Computation. MIT Press, 1989.

[CST] CS Tools: A technical overview. Technical Report S0205-09S, Meiko

Ltd.

[Cve87] Z Cvetanovic. The effects of problem partitioning, allocation, and

granularity on the performance of multiple-processor systems. IEEE

Transactions on Computers, C-36(4):421-432, April 1987.

[Dad9l] Luigi Dadda. The evolution of computer architectures. In Proceedings

of the 5th Annual European Computer Conference: CompEuro '91,

pages 9-16, Bologna, Italy, May 13-16, 1991. IEEE Computer Society

Press.

[Das90] Subrata Dasgupta. A hierarchical taxonomic system for computer ar-

chitectures. Computer, pages 64-74, March 1990.

Bibliography 143

[DHB89] James C Dehnert, Peter Y-T Hsu, and Joseph P Bratt. Overlapped

loop support in cydra 5. In Proceedings ASPLOS-III, pages 26-38.

ACM Press, 1989.

[DSS88] J G Donnett, M Starkey, and D B Skillicorn. Effective algorithms for

partitioning distributed programs. In Proceedings 7" Annual Interna-

tional Conference on Computers and Communications, Scotsdale AR,

March 1988.

[Dun90] Ralph Duncan. A survey of parallel computer architectures. Com-

puter, pages 5-16, February 1990.

[Efe82] Kemal Efe. Heuristic models of task assignment scheduling in dis-

tributed systems. Computer, pages 50-56, June 1982.

[ERL90] Hesham El-Rewini and T G Lewis. Scheduling parallel program tasks

onto arbitrary target machines. Journal of Parallel and Distributed

Computing, 9:138-153, 1990.

[ERL91] Hesham El-Rewini and Ted Lewis. Loop scheduling on distributed-

memory parallel processors. Technical Report 91-60-1, Computer Sci-

ence Department, Oregon State University, Corvallis OR, 1991.

[FB73] Eduardo B Fernandez and Bertram Bussell. Bounds on the number

of processors and time for multiprocessor optimal schedules. IEEE

Transactions on Computers, C-22(8):745-751, August 1973.

[F1y72] Michael J Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, C-21:948-960, 1972.

Bibliography 144

[GJ79] Michael R Garey and David S Johnson. Computers and Intractability

- A Guide to the Theory of NP-Completeness. W H Freeman and

Company, 1979.

[GKS87] Michael Granski, Israel Koren, and Gabriel M Silberman. The effect

of operation scheduling on the performance of a data flow computer.

IEEE Transactions on Computers, C-36(9):1019-1029, Sept 1987.

[GLLK79] R L Graham, E L Lawler, J K Lenstra, and A H G Rinnooy Kan. Op-

timization and approximation in deterministic sequencing and schedul-

ing: A survey. Annals of Discrete Mathematics, 3:287-326, 1979.

[GPC88] J L Gaudiot, J I Pi, and M L Campbell. Program graph allocation in

distributed multicomputers. Parallel Computing, 7:227-247, 1988.

[Gra69] R L Graham. Bounds on multiprocessing timing anomalies. SIAM

Journal of Applied Mathematics, 17(2):416-429, March 1969.

[Gra76] R L Graham. Bounds on the performance of scheduling algorithms.

In E G Coffman, editor, Computer and Job Shop Scheduling Theory,

pages 165-227. John Wiley and Sons, 1976.

[Gru91] Dirk C Grunwald. A users guide to AWESIME: An object oriented

parallel programming and simulation system. Technical Report CU-

CS-552-91, Department of Computer Science, University of Colorado,

November 1991.

[GVY90] Apostolos Gerasoulis, Sesh Venugopal, and Tao Yang. Clustering task

graphs for message passing architectures. In Proceedings of the Inter-

national Conference on Supercomputing, pages 447-456, Amsterdam,

The Netherlands, June 11-15, 1990. ACM Press.

Bibliography 145

[HCAL89] Jing-fang Hwang, Yuan-Chieh Chow, Frank D Anger, and Chung-

Yee Lee. Scheduling precedence graphs in systems with interprocessor

communication times. SIAM Journal of Computing, 18(2):244-257,

April 1989.

[HMS] G Haring, W Mullner, and K Sharma. The application of simulated

annealing for optimal module placement in a multiprocessor system.

Preliminary Draft.

[Hoa78] C A R Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666-677, August 1978.

[Hoc85] Roger W Hockney. MIMD computing in the USA - 1984. Parallel

Computing, 2:119-136, 1985.

[Hoc87] Roger W Hockney. Classification and evaluation of parallel computer

systems. In Lecture Notes in Computer Science, volume 295, pages

13-25. Springer-Verlag, 1987.

[HS78] Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures.

Computer Science Press, 1978.

[Jaf80] Jeffrey M Jaffe. Bounds on the scheduling of typed task systems.

SIAM Journal of Computing, 9(3):541-551, August 1980.

[Jum90] J Robert Jump. xSIM User's Manual. Dept of Electrical and Com-

puter Engineering, Rice University, July 1990.

[K+83] S Kirkpatrick et al. Optimization by simulated annealing. Science,

220(4598):671-680, May 1983.

Bibliography 146

[Ka187] L V Kale. Comparing the performance of two dynamic load distribu-

tion methods. Technical Report UIUCDC-R-87-1776, Dept. of Com-

puter Science, University of Illinois at Urbana-Champaign, 1987.

[Kim88] Sung Jo Kim. A general approach to multiprocessor scheduling. Tech-

nical Report TR-88-04, Department of Computer Science, University

of Texas, Austin, Texas, February 1988.

[KL87] Boontee Kruatrachue and Ted Lewis. Duplication scheduling heuris-

tics, a new precedence task scheduler for parallel systems. Technical

Report 87-60-3, Computer Science Department, Oregon State Univer-

sity, Corvallis OR, 1987.

[KN84] Hironori Kasahara and Seinosuke Narita. Practical multiprocessor

scheduling algorithms for efficient parallel processing. IEEE Trans-

actions on Computers, C-33(11):1023-1029, Nov 1984.

[Kri90] Sanjay M Krishnamurthy. A brief survey of papers on scheduling for

pipelined processors. SIGPLAN Notices, 25(7):97-106, July 1990.

[LA87] S Lee and J K Aggarwal. A mapping strategy for parallel processing.

IEEE Transactions on Computers, C-36(4):433-442, April 1987.

[LHCA88] Chung-Yee Lee, Jing-Jang Hwang, Yuan-Chieh Chow, and Frank D

Anger. Multiprocessor scheduling with interprocessor communication

delays. Operations Research Letters, 7(3):141-145, June 1988.

[Lip9l] Stanley B Lippman. C++ Primer. Addison-Wesley Publishing Com-

pany, 1991.

Bibliography 147

[LK87] Frank C H Lin and Robert M Keller. The gradient model load bal-

ancing method. IEEE Transactions on Software Engineering, SE-

13(1):32-38, January 1987.

[LL78] Jane W S Liu and C L Liu. Performance analysis of multiprocessor sys-

tems containing functionally dedicated processors. Acta Informatica,

10:95-104, 1978.

[Mac87] M H MacDougall. Simulating Computer Systems: Techniques and

Tools. MIT Press, 1987.

[Man9l] Sathiamoorthy Manoharan. A taxonomy for assignment in parallel

processor systems. In Proceedings of the 5th Annual European Com-

puter Conference: CompEuro '91, pages 143-147, Bologna, Italy, May

13-16, 1991. IEEE Computer Society Press.

[Man92] Sathiamoorthy Manoharan. Genesis: A generic simulation subsystem

for parallel architectures. In Proceedings of the 6th Annual European

Computer Conference: CompEuro '92, The Hague, The Netherlands,

May 4-8, 1992. IEEE Computer Society Press.

[McN59] R McNaughton. Scheduling with deadlines and loss functions. Man-

agement Science, 6, October 1959.

[ME67] David Martin and Gerald Estrin. Models of computational systems -
cyclic to acyclic graph transformation. IEEE Transactions on Elec-

tronic Computers, EC-16(1):70-79, Feb 1967.

[Mei89] Computing Surface Hardware Reference Manual. Meiko Ltd, 1989.

[Mi189] Robin Milner. Communication and Concurrency. Prentice Hall Inter-

national, 1989.

Bibliography 148

[MT90] Sathiamoorthy Manoharan and Nigel P Topham. A general bound on

schedule length for independent tasks. Parallel Computing, 16(1):69-

73, November 1990.

[MT91] Sathiamoorthy Manoharan and Peter Thanisch. Assigning dependency

graphs onto processor networks. Parallel Computing, 17(1):63-73,

April 1991.

[NE88] Kathleen M Nichols and John T Edmark. Modeling multicomputer

systems with PARET. Computer, pages 39-48, May 1988.

[NW88] David M Nicol and Frank H Willard. Problem size, parallel architec-

ture, and optimal speedup. Journal of Parallel and Distributed Com-

puters, 5:404-420, 1988.

[PB87] C D Polychronopoulos and U Banerjee. Processor allocation for hor-

izontal and vertical parallelism and related speedup bounds. IEEE

Transactions on Computers, C-36(4):410-420, April 1987.

[RAP87] D A Reed, L M Adams, and M L Patrick. Stencils and problem par-

titionings: Their influence on the performance of multiple processor

systems. IEEE Transactions on Computers, C-36(7):845-858, July

1987.

[RF87] D A Reed and R M Fujimoto. Multicomputer Networks - Messaged

based Parallel Processing. MIT Press, 1987.

[RG69] C V Ramamoorthy and M J Gonzalez. A survey of techniques for

recognizing parallel processable streams in computer programs. In

Proceedings AFIPS Fall Joint Computer Conference, pages 1-17, 1969.

Bibliography 149

[RS87] V J Rayward-Smith. UET scheduling with unit interprocessor com-

munication delays. Discrete Applied Mathematics, 18:55-71, 1987.

[Sah84] Sartaj Sahni. Scheduling multipipeline and multiprocessor computers.

IEEE Transactions on Computers, C-33(7):637-645, July 1984.

[Sar89] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Mul-

tiprocessors. MIT Press, Cambridge MA, 1989.

[SE87] Ponnuswamy Sadayappan and Fikret Ercal. Nearest-neighbour map-

ping of finite element graphs onto processor meshes. IEEE Transac-

tions on Computers, C-36(12):1408-1424, Dec 1987.

[Sig92] Sigma II Documentation. University of Illinois, Urbana-Champaign,

1992.

[Ski88] David B Skillicorn. A taxonomy for computer architectures. Com-

puter, pages 46-57, November 1988.

[Squ90] Mark S Squillante. Issues in shared-memory multiprocessor schedul-

ing: A performance evaluation. Technical Report 90-10-04, Dept of

Computer Science, University of Washington, October 1990.

[ST85] Chien-Chung Shen and Wen-Hsiang Tsai. A graph matching approach

to optimal task assignment in distributed computing systems using a

minimax criterion. IEEE Transactions on Computers, C-34(3):197-

203, March 1985.

[Str88] Bjarne Stroustrup. What is object-oriented programming? IEEE

Software, pages 10-20, May 1988.

Bibliography 150

[SWP90] Behrooz Shirazi, Mingfang Wang, and Girish Pathak. Analysis and

evaluation of heuristic methods for static task scheduling. Journal of

Parallel and Distributed Computing, 10:222-232, 1990.

[Tow86] Don Towsley. Allocating programs containing branches and loops

within a multiprocessor system. IEEE Transactions on Software En-

gineering, SE-12(10):1018-1024, Oct 1986.

[TSS88] Charles P Thacker, Lawrence C Stewart, and Edwin H Satterthwaite.

Firefly: A multiprocessor workstation. IEEE Transactions on Com-

puters, 37(8):909-920, August 1988.

[UBP81] Brian Unger, Don Bidulock, and Jim Parker. OASIS 3.0 reference

manual. Technical Report 81/58/10, Dept of Computer Science, Uni-

versity of Calgary, 1981.

[U1176] J D Ullman. Complexity of sequencing problems. In E G Coffman,

editor, Computer and Job Shop Scheduling Theory, pages 139-164.

John Wiley and Sons, 1976.

[V+85] D Vrsalovic et al. The influence of parallel decomposition strategies on

the performance of multiprocessor systems. In Proceedings of the 1,21h

International Symposium on Computer Architecture, pages 396-405,

1985.

[V+88] D Vrsalovic et al. Performance prediction and calibration for a class of

multiprocessors. IEEE Transactions on Computers, 37(11):1353-1365,

Nov 1988.

[Va,179] L G Valiant. The complexity of computing the permanent. Theoretical

Computer Science, 8:189-201, 1979.

Bibliography 151

[VLL90] B Veltman, B J Lageweg, and J K Lenstra. Multiprocessor scheduling

with communication delays. Parallel Computing, 16:173-182, 1990.

[WG88] Min-You Wu and Daniel D Gajski. A programming aid for hypercube

architectures. The Journal of Supercomputing, 2(3):349-372, Novem-

ber 1988.

[Win84] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, 1984.

[WM85] Yung-Terng Wang and Robert J T Morris. Load sharing in distributed

systems. IEEE Transactions on Computers, C-34(3):204-217, March

1985.

[YG91] Tao Yang and Apostolos Gerasoulis. A fast scheduling algorithm for

DAGs on an unbounded number of processors. In Proceedings of Super-

computing, pages 633-642, Albuquerque, November 18-22, 1991. IEEE

Press.

Appendix A

Definition of the Watchdog

Each atom of Genesis owns a watchdog in order not to busy-wait for the arrival

of items on the atom's input ports. The definition of the watchdog is presented

here.

Watchdog is a boolean variable w which can be either true or false. The only

permissible operations on w are wait(w) and notify(w). These two are indivisible

or atomic operations:

wait(w) : if (! w) { set w; go to sleep; }

else error;

notify(w) : if (w) { wake up the process waiting on w; reset w; }

else do nothing;

Two processes cannot wait on the same watchdog. That is, only one process has

the right to set w; however, any process can reset w.

Another example of the use of watchdogs is in interrupt-handlers. An interrupt-

handler is a process that needs to be waken up only when one or more other

Appendix A. Definition of the Watchdog 153

processes needs service. Hence, an interrupt-handler can own a watchdog and

wait on it. The processes needing service may notify the watchdog, thus waking

up the interrupt-handler.

Appendix B

Dynamic Behaviour of a Processor

Executing a Dependency Graph

The following C++ code describes the dynamic behaviour of a processor executing

a dependency graph (consisting of DTask objects). The code would appear in the

member function main of the processor class derived from Processor. The routing

mechanism in the code assumes that the processors are connected to form a grid.

See section 5.5.2.

for (; ;) { /* repeat for ever */
/* execute the ready task in the task pool */
/* and convey their outputs to their successors.

while ((task = pop-pool()) 0) {

::hold(task--exec _time() / speed()); /* execute task */
/* for all successors of task do the following */

destination-task == task--+succo;

destination_processor = destination task--whereO;

if (destination -processor == this) { /* successor in this processor */
destination _task--input(); /* the successor gets an input */
/* if the succ is ready after getting the input, */
/* add it to the task pool. */

Appendix B. Dynamic Behaviour of a Processor

if (destination_task->ready())

add2pool(destination_task, destination -task--+ prioritYO);

}

else { /* successor elsewhere */
/* form a new message packet */
/* and send it to the destination processor */

send (get -port (destination-processor ->xid(),

destination_processor->yid()), msg);

}

/* end for */

/* nothing to do now. wait for some input port to get a message

wait();

/* there is message. */

/* if it is for this processor, input it to the task it is destined to. */
/* otherwise route the message. */

for (int p = 0; p < inports(); ++p)

if (in-ready(p)) { /* input port p has a message */
msg = (Mesg *) recv(p); /* receive the message */

if (msg->where() == this) {

/* task t to which the message is destined is in this processor */
Task *t = (Task *)msg->destination(;

/* t gets an input */
t->inputQ;

/* if t is ready, add it to the task pool */
if (t->ready())

add2pool(t, t->priority()):

}

else { /* message destined elsewhere */

/* route the message */

155

Appendix B. Dynamic Behaviour of a Processor 156

send(get-port ((msg-->where())-xid(),

(msg-where())-yid(), msg);

Appendix C

Tables

GP, GP and GP refer to the processor graphs of figure 6-2. GT, GT and GT refer

to the task graphs of figure 6-3.

Appendix C. Tables 158

GT Gp A best-case Makespan A worst-case Makespan

assignment assignment

Po: 0, 2, 5, 7 Po: 0, 7

GT G1 Pl: 6, 3 32 Pl: 1, 2, 3, 4, 5, 6 65

P2: 1,4 P2: -
GT GP Po: 3, 5, 6, 7 39 Po: 0, 7 65

P1: 0, 2, 1, 4 P1: 1, 2, 3, 4, 5, 6

Po: 0, 2, 5, 7 Po: -
GT G3 P1: 3, 6 32 P1: 5, 1, 6, 2, 7 68

P2: - P2: 3

P3: 1,4 P3: 0, 4

Pb: 0, 2, 3, 5, 8, 9 Po: 0, 5, 9

GT. G1 P1: 4, 6, 7 53 P1: 1, 2, 4, 6, 3, 7, 8 92

P2: 1 P2: -
Po: 0, 2, 3, 5, 8, 9 54 Po: 0, 5, 9 92

GT GP Pl: 1,4,6,7 Pl: 1,2,4,6,3,7,8
Po: 0, 2, 3, 5, 8, 9 Po: 0, 5, 9

G. G3 Pl: 4, 6, 7 53 Pl: - 98

P2: - P2: 1, 2, 4, 6, 3, 7, 8

P3: 1 P3: -
Pb: 1, 3, 6 Po: 0, 1, 2, 6

GT G1 P1: 2, 5 17 P1: 3, 4, 5 39

P2: 0, 4 P2: -
GT G , Pb: 1, 3, 5, 6 22 Po: 0, 1, 2, 6 39

P1: 0, 2, 4 P1: 3,4,5
Po: 1, 3, 6 Po: 6

GT 3 GP Pl: 2, 5 17 Pl: 4, 5 42

P2: - P2: 3

P3: 0, 4 P3: 0, 1, 2

Table C-1: Best-case and worst-case assignments and makespans

Appendix C. Tables 159

GT Gp ETF ERT MH/RMH DFBN

Po: 3, 6 Po: 3, 6 Po: 0, 2, 5, 7 Pb: 0, 2, 5, 7

GT GP P1: 2, 5, 7 P1: 2, 5, 7 P1: 1, 4 P1: 6, 3

P2: 0, 1, 4 P2: 0, 1, 4 P2: 3, 6 P2: 1, 4

GT Gp Po: 3,5,6,7 Po: 2,3,5,7 Po:0,2,3,4 Po:0,2,5,7
P1: 0, 1, 2, 4 P1: 0, 1, 4, 6 P1: 1, 5, 6, 7 P1: 1, 4, 6, 3

Po: 3, 6 Po: 3, 6 Po: 0, 2, 5, 7 Po: 0, 2, 5, 7

GT GP P1: - P1: - P1: 1,4 P1: 6, 3

P2: 2, 5, 7 P2: 2, 5, 7 P2: - P2: -
P3: 0, 1, 4 P3: 0, 1, 4 P3: 3, 6 P3: 1, 4

Po: 2, 6, 7 Po: 2, 6 Po: 0, 1, 4, 7 Po: 0, 2, 5, 3, 8, 9

GT G, P1: 3, 5, 8, 9 P1: 3, 5, 7 P1: 2,3,5,8,9 P1:6

P2:0,1,4 P2: 0, 1,4,8,9 P2: 6 P2: 1, 7,4

GT GP Po: 2, 6, 8, 9 Po: 2, 3, 5, 7 Po: 0, 1, 6, 4, 7 Po: 0, 2, 5, 3, 8, 9

P1: 0, 1, 3, 4, 5, 7 P1: 0, 1, 4, 6, 8, 9 P1: 2, 3, 5, 8, 9 P1: 1, 7, 6, 4

Po: 2, 6 Po: 2, 6 Po: 0, 1, 4, 7 Po: 0, 2, 5, 3, 8, 9

GT G3 P1: 7 P1: 8, 9 P1: 2, 3, 5, 8,9 P1: 6

P2: 3,5,8,9 P2: 3, 5, 7 P2: 6 P2: -
P3: 0, 1, 4 P3: 0, 1, 4 P3: - P3: 1, 7, 4

Po: 0, 4 Po: 0, 4 Po: 0, 4 Po: 0, 4, 6

GT G1 P1: 1,3,6 P1: 1,3 P1: 1,5 P1: 2,5

P2: 2, 5 P2: 2, 5, 6 P2: 2, 3, 6 P2: 1, 3

GT G2 Po: 1, 4, 5, 6 Po: 1, 4, 5, 6 Po: 0, 3, 5, 6 Po: 0, 4, 6

P1: 0,2,3 P1: 0,2,3 P1: 1,2,4 P1: 1,3,2,5
Po: - Po: - Po: 0, 4 Po: 0, 4, 6

GT G3 P1: 0,4 P1: 0,4 P1: 1,5,6 P1: 2,5

P2: 1,3,6 P2: 1,3,6 P2: 2, 3 P2:-
P3: 2, 5 P3: 2, 5 P3: - P3: 1, 3

Table C-2: Task partitions under various assignment schemes

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-92-015

