26,514 research outputs found

    Capillary instability in nanowire geometries

    Full text link
    The vapor-liquid-solid (VLS) mechanism has been applied extensively as a framework for growing single-crystal semiconductor nanowires for applications spanning optoelectronic, sensor and energy-related technologies. Recent experiments have demonstrated that subtle changes in VLS growth conditions produce a diversity of nanowire morphologies, and result in intricate kinked structures that may yield novel properties. These observations have motivated modeling studies that have linked kinking phenomena to processes at the triple line between vapor, liquid and solid phases that cause spontaneous "tilting" of the growth direction. Here we present atomistic simulations and theoretical analyses that reveal a tilting instability that is intrinsic to nanowire geometries, even in the absence of pronounced anisotropies in solid-liquid interface properties. The analysis produces a very simple conclusion: the transition between axisymmetric and tilted triple lines is shown to occur when the triple line geometry satisfies Young's force-balance condition. The intrinsic nature of the instability may have broad implications for the design of experimental strategies for controlled growth of crystalline nanowires with complex geometries.Comment: 10 pages, 5 figure

    Numerical simulation of single droplet dynamics in three-phase flows using ISPH

    Get PDF
    In this study, a new surface tension formulation for modeling incompressible, immiscible three-phase fluid flows in the context of incompressible smoothed particle hydrodynamics (ISPH) in two dimensions has been proposed. A continuum surface force model is employed to transform local surface tension force to a volumetric force while physical surface tension coefficients are expressed as the sum of phase specific surface tension coefficients, facilitating the implementation of the proposed method at triple junctions where all three phases are present. Smoothed color functions at fluid interfaces along with artificial particle displacement throughout the computational domain are combined to increase accuracy and robustness of the model. In order to illustrate the effectiveness of the proposed method, several numerical simulations have been carried out and results are compared to analytical data available in literature. Results obtained by simulations are compatible with analytical data, demonstrating that the ISPH scheme proposed here is capable of handling three-phase flows accurately

    The influence of short range forces on melting along grain boundaries

    Get PDF
    We investigate a model which couples diffusional melting and nanoscale structural forces via a combined nano-mesoscale description. Specifically, we obtain analytic and numerical solutions for melting processes at grain boundaries influenced by structural disjoining forces in the experimentally relevant regime of small deviations from the melting temperature. Though spatially limited to the close vicinity of the tip of the propagating melt finger, the influence of the disjoining forces is remarkable and leads to a strong modification of the penetration velocity. The problem is represented in terms of a sharp interface model to capture the wide range of relevant length scales, predicting the growth velocity and the length scale describing the pattern, depending on temperature, grain boundary energy, strength and length scale of the exponential decay of the disjoining potential. Close to equilibrium the short-range effects near the triple junctions can be expressed through a contact angle renormalisation in a mesoscale formulation. For higher driving forces strong deviations are found, leading to a significantly higher melting velocity than predicted from a purely mesoscopic description.Comment: 10 page

    Li-diffusion accelerates grain growth in intercalation electrodes: a phase-field study

    Full text link
    Grain boundary migration is driven by the boundary's curvature and external loads such as temperature and stress. In intercalation electrodes an additional driving force results from Li-diffusion. That is, Li-intercalation induces volume expansion of the host-electrode, which is stored as elastic energy in the system. This stored energy is hypothesized as an additional driving force for grain boundaries and edge dislocations. Here, we apply the 2D Cahn-Hilliard−-phase-field-crystal (CH-PFC) model to investigate the coupled interactions between highly mobile Li-ions and host-electrode lattice structure, during an electrochemical cycle. We use a polycrystalline FePO4_{4}/ LiFePO4_{4} electrode particle as a model system. We compute grain growth in the FePO4_{4} electrode in two parallel studies: In the first study, we electrochemically cycle the electrode and calculate Li-diffusion assisted grain growth. In the second study, we do not cycle the electrode and calculate the curvature-driven grain growth. External loads, such as temperature and stress, did not differ across studies. We find the mean grain-size increases by ∼11%\sim11\% in the electrochemically cycled electrode particle. By contrast, in the absence of electrochemical cycling, we find the mean grain-size increases by ∼2%\sim2\% in the electrode particle. These CH-PFC computations suggest that Li-intercalation accelerates grain-boundary migration in the host-electrode particle. The CH-PFC simulations provide atomistic insights on diffusion-induced grain-boundary migration, edge dislocation movement and triple-junction drag-effect in the host-electrode microstructure.Comment: 11 pages, 9 figure
    • …
    corecore