47 research outputs found

    Logic and intuition in architectural modelling: philosophy of mathematics for computational design

    Get PDF
    This dissertation investigates the relationship between the shift in the focus of architectural modelling from object to system and philosophical shifts in the history of mathematics that are relevant to that change. Particularly in the wake of the adoption of digital computation, design model spaces are more complex, multidimensional, arguably more logical, less intuitive spaces to navigate, less accessible to perception and visual comprehension. Such spatial issues were encountered much earlier in mathematics than in architectural modelling, with the growth of analytical geometry, a transition from Classical axiomatic proofs in geometry as the basis of mathematics, to analysis as the underpinning of geometry. Can the computational design modeller learn from the changing modern history, philosophy and psychology of mathematics about the construction and navigation of computational geometrical architectural system model space? The research is conducted through a review of recent architectural project examples and reference to three more detailed architectural modelling case studies. The spatial questions these examples and case studies raise are examined in the context of selected historical writing in the history, philosophy and psychology of mathematics and space. This leads to conclusions about changes in the relationship of architecture and mathematics, and reflections on the opportunities and limitations for architectural system models using computation geometry in the light of this historical survey. This line of questioning was motivated as a response to the experience of constructing digital associative geometry models and encountering the apparent limits of their flexibility as the graph of dependencies grew and the messiness of the digital modelling space increased. The questions were inspired particularly by working on the Narthex model for the Sagrada Família church, which extends to many tens of thousands of relationships and constraints, and which was modelled and repeatedly partially remodelled over a very long period. This experience led to the realisation that the limitations of the model were not necessarily the consequence of poor logical schema definition, but could be inevitable limitations of the geometry as defined, regardless of the means of defining it, the ‘shape’ of the multidimensional space being created. This led to more fundamental questions about the nature of Space, its relationship to geometry and the extent to which the latter can be considered simply as an operational and notational system. This dissertation offers a purely inductive journey, offering evidence through very selective examples in architecture, architectural modelling and in the philosophy of mathematics. The journey starts with some questions about the tendency of the model space to break out and exhibit unpredictable and not always desirable behaviour and the opportunities for geometrical construction to solve these questions is not conclusively answered. Many very productive questions about computational architectural modelling are raised in the process of looking for answers

    The benefits of an additional practice in descriptive geomerty course: non obligatory workshop at the Faculty of Civil Engineering in Belgrade

    Get PDF
    At the Faculty of Civil Engineering in Belgrade, in the Descriptive geometry (DG) course, non-obligatory workshops named “facultative task” are held for the three generations of freshman students with the aim to give students the opportunity to get higher final grade on the exam. The content of this workshop was a creative task, performed by a group of three students, offering free choice of a topic, i.e. the geometric structure associated with some real or imagery architectural/art-work object. After the workshops a questionnaire (composed by the professors at the course) is given to the students, in order to get their response on teaching/learning materials for the DG course and the workshop. During the workshop students performed one of the common tests for testing spatial abilities, named “paper folding". Based on the results of the questionnairethe investigation of the linkages between:students’ final achievements and spatial abilities, as well as students’ expectations of their performance on the exam, and how the students’ capacity to correctly estimate their grades were associated with expected and final grades, is provided. The goal was to give an evidence that a creative work, performed by a small group of students and self-assessment of their performances are a good way of helping students to maintain motivation and to accomplish their achievement. The final conclusion is addressed to the benefits of additional workshops employment in the course, which confirmhigherfinal scores-grades, achievement of creative results (facultative tasks) and confirmation of DG knowledge adaption

    The contemporary visualization and modelling technologies and the techniques for the design of the green roofs

    Get PDF
    The contemporary design solutions are merging the boundaries between real and virtual world. The Landscape architecture like the other interdisciplinary field stepped in a contemporary technologies area focused on that, beside the good execution of works, designer solutions has to be more realistic and “touchable”. The opportunities provided by Virtual Reality are certainly not negligible, it is common knowledge that the designs in the world are already presented in this way so the Virtual Reality increasingly used. Following the example of the application of virtual reality in landscape architecture, this paper deals with proposals for the use of virtual reality in landscape architecture so that designers, clients and users would have a virtual sense of scope e.g. rooftop garden, urban areas, parks, roads, etc. It is a programming language that creates a series of images creating a whole, so certain parts can be controlled or even modified in VR. Virtual reality today requires a specific gadget, such as Occulus, HTC Vive, Samsung Gear VR and similar. The aim of this paper is to acquire new theoretical and practical knowledge in the interdisciplinary field of virtual reality, the ability to display using virtual reality methods, and to present through a brief overview the plant species used in the design and construction of an intensive roof garden in a Mediterranean climate, the basic characteristics of roofing gardens as well as the benefits they carry. Virtual and augmented reality as technology is a very powerful tool for landscape architects, when modeling roof gardens, parks, and urban areas. One of the most popular technologies used by landscape architects is Google Tilt Brush, which enables fast modeling. The Google Tilt Brush VR app allows modeling in three-dimensional virtual space using a palette to work with the use of a three dimensional brush. The terms of two "programmed" realities - virtual reality and augmented reality - are often confused. One thing they have in common, though, is VRML - Virtual Reality Modeling Language. In this paper are shown the ways on which this issue can be solved and by the way, get closer the term of Virtual Reality (VR), also all the opportunities which the Virtual reality offered us. As well, in this paper are shown the conditions of Mediterranean climate, the conceptual solution and the plant species which will be used by execution of intensive green roof on the motel “Marković”

    History of Construction Cultures Volume 1

    Get PDF
    History of Construction Cultures Volume 1 contains papers presented at the 7ICCH – Seventh International Congress on Construction History, held at the Lisbon School of Architecture, Portugal, from 12 to 16 July, 2021. The conference has been organized by the Lisbon School of Architecture (FAUL), NOVA School of Social Sciences and Humanities, the Portuguese Society for Construction History Studies and the University of the Azores. The contributions cover the wide interdisciplinary spectrum of Construction History and consist on the most recent advances in theory and practical case studies analysis, following themes such as: - epistemological issues; - building actors; - building materials; - building machines, tools and equipment; - construction processes; - building services and techniques ; -structural theory and analysis ; - political, social and economic aspects; - knowledge transfer and cultural translation of construction cultures. Furthermore, papers presented at thematic sessions aim at covering important problematics, historical periods and different regions of the globe, opening new directions for Construction History research. We are what we build and how we build; thus, the study of Construction History is now more than ever at the centre of current debates as to the shape of a sustainable future for humankind. Therefore, History of Construction Cultures is a critical and indispensable work to expand our understanding of the ways in which everyday building activities have been perceived and experienced in different cultures, from ancient times to our century and all over the world

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF
    The thesis consist of two parts, one part concerns triangulations the other the structure of the universe. 1 Images in films such as Shrek or Frozen and in computer games are often made using small triangles. Subdividing a figure (such as Shrek) into small triangles is called triangulating. This may be done in two different ways. The first method makes use of straight triangles and is used most often. Because computer power is limited, we want to use as few triangles as possible, while maintaining the quality of the image. This means that one has to choose the triangles in a clever manner. Much is known about the choice of triangles if the surface is convex (egg-shaped). This thesis contributes to our understanding of non-convex surfaces. The second and new method uses curved triangles that follow the surface. The triangles we use are determined by the intrinsic geometry of the surface and are called intrinsic triangles. 2 Shortly after the Big Bang the universe was very hot and dense. Quantum mechanical effects introduced structure into the matter distribution in the early universe. The universe expanded according the laws of General Relativity and the matter cooled down. After the matter in the universe had cooled down, clusters of galaxies formed out of the densest regions. These clusters of galaxies are connected by stringy structures consisting of galaxies. This thesis contributes to the understanding of this intricate structure

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF
    The thesis consist of two parts, one part concerns triangulations the other the structure of the universe. 1 Images in films such as Shrek or Frozen and in computer games are often made using small triangles. Subdividing a figure (such as Shrek) into small triangles is called triangulating. This may be done in two different ways. The first method makes use of straight triangles and is used most often. Because computer power is limited, we want to use as few triangles as possible, while maintaining the quality of the image. This means that one has to choose the triangles in a clever manner. Much is known about the choice of triangles if the surface is convex (egg-shaped). This thesis contributes to our understanding of non-convex surfaces. The second and new method uses curved triangles that follow the surface. The triangles we use are determined by the intrinsic geometry of the surface and are called intrinsic triangles. 2 Shortly after the Big Bang the universe was very hot and dense. Quantum mechanical effects introduced structure into the matter distribution in the early universe. The universe expanded according the laws of General Relativity and the matter cooled down. After the matter in the universe had cooled down, clusters of galaxies formed out of the densest regions. These clusters of galaxies are connected by stringy structures consisting of galaxies. This thesis contributes to the understanding of this intricate structure

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF

    Digital photogrammetry for visualisation in architecture and archaeology

    Get PDF
    Bibliography: leaves 117-125.The task of recording our physical heritage is of significant importance: our past cannot be divorced from the present and it plays an integral part in the shaping of our future. This applies not only to structures that are hundreds of years old, but relatively more recent architectural structures also require adequate documentation if they are to be preserved for future generations. In recording such structures, the traditional 2D methods are proving inadequate. It will be beneficial to conservationists, archaeologists, researchers, historians and students alike if accurate and extensive digital 3D models of archaeological structures can be generated. This thesis investigates a method of creating such models, using digital photogrammetry. Three different types of model were generated: 1. the simple CAD (Computer Aided Design) model; 2. an amalgamation of 3D line drawings; and 3. an accurate surface model of the building using DSMs (Digital Surface Models) and orthophotos

    Control of flexure in large astronomical spectrographs

    Get PDF
    This thesis describes the design, construction and testing of an experimental system for improving the imaging stability on the detectors of the Intermediate-dispersion Spectroscopic and Imaging System (ISIS), a Cassegrain spectrograph at the 4.2 metre William Hershel Telescope. This system, called ISAAC (ISIS Spectrograph Automatic Active Collimator) is based on the new concept of active compensation, where spectrum shifts, due to the spectrograph flexing under the effect of gravity, are compensated by the movement of an active optical element. ISAAC is a fine steering tip-tilt collimator mirror. The thesis provides an extensive introduction on astronomical spectrographs, active optics and actuator systems. The new concept of active compensation of flexure is also described. The problem of spectrograph flexure is analyzed, focusing in particular on the case of ISIS and on how an active compensation system can help to solve it. The development of ISAAC is explained, from the component specification and design, to the construction and laboratory testing. The performance and successful testing of the instrument at the William Herschel Telescope is then described in detail. The implications for the future of ISIS and of new spectrograph designs are then discussed, with particular stress on the new High Resolution Optical Spectrograph (HROS) for the 8-metre Gemini telescopes
    corecore