377 research outputs found

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    On infinite past predictability of cyclostationary signals

    Get PDF
    This paper explores the asymptotic spectral decomposition of periodically Toeplitz matrices with finite summable elements. As an alternative to polyphase decomposition and other approaches based on Gladyshev representation, the proposed route exploits the Toeplitz structure of cyclic autocorrelation matrices, thus leveraging on known asymptotic results and providing a more direct link to the cyclic spectrum and spectral coherence. As a concrete application, the problem of cyclic linear prediction is revisited, concluding with a generalized Kolmogorov-Szeg theorem on the predictability of cyclostationary signals. These results are finally tested experimentally in a prediction setting for an asynchronous mixture of two cyclostationary pulse-amplitude modulation signals.This work has been supported by the Spanish Ministry of Science and Innovation through project RODIN (PID2019-105717RB-C22 / MCIN / AEI / 10.13039/501100011033). Authors are within Signal Processing and Communications group (SPCOM) (Signal Theory and Communications Department) at Technical University of Catalonia (UPC).Peer ReviewedPostprint (author's final draft

    Applications and Simulation of Femtocells in a Cognitive Radio Environment

    Get PDF
    Femtocells are small base stations that provide radio coverage for mobile devices in offices or homes.Throughout our project work we put forth a femtocell based cognitive radio architecture for enabling efficient multi-tiered access in next generation broadband wireless systems. The key requirements for femtocell deployment, its benefits, the usage model, design challenges and market issues will be investigated. This architecture combines the conventional femtocell concept with an infrastructure based overlay of a cognitive network. The merits of using a femtocell is enhanced coverage minimized interference and increased capacity. By incorporating a femtocell in a cognitive radio environment problems such as spectrum under-utilization can be solve. This is achieved by allowing secondary users to use the free and available spectrum. We provide experimental results to demonstrate the feasibility of such a model. The advantages and several bottlenecks in administering this concept are also illustrated. The purpose of this project is to explore the use of femtocells in present cellular systems to provide better coverage and deal with resource allocation by employing it in a cognitive radio environment

    A Linear Subspace Approach to Burst Communication Signal Processing

    Get PDF
    This dissertation focuses on the topic of burst signal communications in a high interference environment. It derives new signal processing algorithms from a mathematical linear subspace approach instead of the common stationary or cyclostationary approach. The research developed new algorithms that have well-known optimality criteria associated with them. The investigation demonstrated a unique class of multisensor filters having a lower mean square error than all other known filters, a maximum likelihood time difference of arrival estimator that outperformed previously optimal estimators, and a signal presence detector having a selectivity unparalleled in burst interference environments. It was further shown that these improvements resulted in a greater ability to communicate, to locate electronic transmitters, and to mitigate the effects of a growing interference environment
    corecore