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Abstract—This paper explores the asymptotic spectral decom-
position of periodically Toeplitz matrices with finite summable
elements. As an alternative to polyphase decomposition and other
approaches based on Gladyshev representation, the proposed
route exploits the Toeplitz structure of cyclic autocorrelation ma-
trices, thus leveraging on known asymptotic results and providing
a more direct link to the cyclic spectrum and spectral coherence.
As a concrete application, the problem of cyclic linear prediction
is revisited, concluding with a generalized Kolmogorov-Szegö
theorem on the predictability of cyclostationary signals. These
results are finally tested experimentally in a prediction setting for
an asynchronous mixture of two cyclostationary pulse-amplitude
modulation signals.

Index Terms—Szegö’s theorem, cyclostationarity, cyclic Wiener
filtering, periodically Toeplitz matrices, spectral coherence.

NOTATION

• IP : P × P identity matrix.

• |A|: determinant of matrix A.

• [A]r,c: (r, c) entry of R× C matrix A.

• di: canonical column N -vector,
[

di
]

r
, δr−i.

• si: steering column N -vector, [si]r , ej2π
ri
N /

√
N .

• FN ,
[

s0, s1, . . . , sN−1
]

: unitary N×N Fourier matrix.

• a⊙ b: element-wise product, [a⊙ b]r , [a]r [b]r.

I. INTRODUCTION

C
YCLOSTATIONARY or periodically correlated pro-

cesses are those exhibiting periodically time-variant

statistics and arise in different fields of science and engi-

neering [1], [2]. Under appropriate modeling, improved signal

processing techniques to exploit them have been proposed in

multiple works [3], [4], both for time and frequency domains.

In spectrum sensing for cognitive radio, for instance, robust

techniques for detecting the presence of users immersed in

stationary noise have been designed [5], [6]. Cyclostationarity

has also been exploited in [7] to estimate the signal to noise

ratio of communications signals from second order statistics,

as well as in [8] for linear prediction of geophysical and

climatological processes, which are usually strongly phase

locked with the daily/seasonal cycle. Further applications can

be found in [9].

The spectral decomposition of signal statistics (especially

its rank) plays an important role in the analysis of detection

and estimation problems, as studied in [10]–[13]. In this

sense, preliminary works such as [5], [7] root on the fact that
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cyclostationary signals span a reduced-dimension subspace

structure compared to the one given by their overall spectral

support, with implications also on rate-distortion theory [14].

Furthermore, theoretical asymptotic bounds are useful to

evaluate the performance of signal processing methods ob-

tained with a finite amount of data [15]. In the context of

stationary signals, Szegö’s theorem [16], [17], which deals

with the asymptotic eigenanalysis of Toeplitz matrices, is

commonly used to characterize this limiting performance. It

has the additional advantage of unveiling intimate structures

and physical insights in the frequency domain, which finds

application on information theoretic learning [18], [19].

Motivated by the aforementioned ideas, the objective of

this paper is to provide a succinct and novel study on the

asymptotic eigenanalysis of periodically Toeplitz matrices ex-

hibited by the statistics of cyclostationary signals [20]. Instead

of using the complete Gray’s machinery [17], the Toeplitz

structure of cyclic autocorrelation matrices is explicitly ex-

ploited, resulting in a general Theorem 1 for cyclostationary

signals. This approach is an alternative to the polyphase

decomposition from [14], [21] or other techniques based

on Gladyshev representation [22], [23], which transforms a

cyclostationary scalar time series into a stationary vector-

valued stochastic process [24], [25]. The theoretical results

obtained are applied afterwards to the estimation problem

of linear prediction, culminating in Theorem 2 for one-step

linear prediction of cyclostationary signals. These findings

extend Kolmogorov-Szegö formula without the need for its

Wiener-Masani complete extension for vector processes [26],

providing new insights and a simpler connection to the cyclic

spectrum and spectral coherence.

II. PRELIMINARIES AND PURPOSE

Let x(n) ∈ C be a discrete-time cyclostationary signal with

integer cycle period P and periodic autocorrelation function

R(n,m) , E [x(n+m)x∗(n)] = R(n + P,m). The cyclic

spectrum is defined as

Sk (f) ,
∑

m
Rk(m)e−j2πmf , k = 0, 1, . . . , P − 1, (1)

where Rk(m) , 1
P

∑P−1
n=0 R(n,m)e−j2π nk

P is the cyclic auto-

correlation function. Let xN (n) , [x(n), x(n− 1), . . . , x(n−
N +1)]T be a run-time vector of length N . The N ×N Her-

mitian non-negative definite autocorrelation matrix of xN (n)
and its time-averaged version are given by

RN (n) , E
[

xN (n)xH
N (n)

]

, R̄N , 1
P

P−1
∑

n=0
RN (n), (2)
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respectively, with entries [RN (n)]r,c = R(n − c, c − r) and

[R̄N ]r,c = R0(c − r). Throughout this section and the next

one, we will assume, without loss of generality, that N , LP ,

for some integer L ≥ 1. Matrix R̄LP , which has a Toeplitz

structure (as it happens with RLP (n) for stationary signals),

represents the relevant second order statistics in applications

in which the cyclostationarity of the signal of interest is not

exploited. Note that R̄LP can be seen as an averaged auto-

correlation matrix: R̄LP = Eǫ [RLP (n+ ǫ)], where the un-

known delay parameter ǫ is assumed random, having the least

informative prior for the set {0, 1, . . . , P − 1} (i.e. uniform).

The sequence of stationarized matrices R̄LP for increasing

values of L becomes equivalent to a sequence of circulant

matrices, under mild conditions such as sufficiently large L
and the continuity of the spectrum S0 (f), which guarantees

the absolute summability of column elements of R̄LP [17].

This implies that R̄LP asymptotically diagonalizes within the

unitary Fourier matrix, i.e. limL→∞ R̄LP = FLPD
0
LPF

H
LP .

As a result, its eigenvalues converge to uniform samples of

S0(f) in the range 0 ≤ f < 1: [D0
LP ]r,r = S0

(

r
LP

)

with

r = 0, 1, . . . , LP − 1. This fact is typically used to reveal

the asymptotic behavior of signal processing techniques when

they handle a large amount of data samples.

In applications where cyclostationarity is exploited, more

informative second order statistics are captured by RLP (n),
which is P -periodically Toeplitz (or P -Toeplitz, for short [27]),

determined by [RLP (n)]r,c = [RLP (n)]r+P,c+P . The goal

of this paper is thus understanding the asymptotic structure

of its spectral decomposition as L → ∞, in order to unveil

the ultimate performance of synchronized signal processing

methods as the size of data past is let to grow. This route is

provided in the sequel with a theoretic development of spectral

decomposition, followed by an application to the relevant case

of linear prediction.

III. ASYMPTOTIC SPECTRAL DECOMPOSITION OF

PERIODICALLY TOEPLITZ MATRICES

Let us write the eigenequation of a LP × LP , P -Toeplitz

matrix as follows [28]:

RLP (n)ql,p(n) = λl,p(n)ql,p(n),
0 ≤ l ≤ L− 1
0 ≤ p ≤ P − 1

. (3)

The LP eigenpairs are identified using the tuple of subscripts

(l, p), with the ultimate purpose of studying the case of L →
∞. The matrix-vector product in (3) is explicitly expressed as:

LP−1
∑

c=0
R (n− c, c− r) ql,p(n, c) = λl,p(n)ql,p(n, r). (4)

Since R(n,m) is P -periodic in n, it admits the Fourier series

expansion R(n,m) =
∑P−1

k=0 Rk(m)ej2π
kn
P , so (4) becomes:

P−1
∑

k=0

ej2π
kn
P

LP−1
∑

c=0
Rk(c− r)ql,p(n, c)e

−j2π kc
P

= λl,p(n)ql,p(n, r). (5)

We convert (5) back into matrix form:

P−1
∑

k=0

ej2π
kn
P Rk

LP

(

ql,p(n)⊙
√
LP s−kL

)

= λl,p(n)ql,p(n),

(6)

where, clearly,
[

Rk
LP

]

r,c
, Rk(c − r) are Toeplitz matrices.

Therefore, for large L, all of them asymptotically diagonalize

under the unitary Fourier transform:

Rk
LP

L→∞

= FLPD
k
LPF

H
LP ,

[

Dk
LP

]

r,r
= Sk

(

r
LP

)

, (7)

for which (6) becomes

√
LP

P−1
∑

k=0

ej2π
kn
P Dk

LPF
H
LP

(

ql,p(n)⊙ s−kL
)

= λl,p(n)F
H
LPql,p(n). (8)

Up until this point, we have used known asymptotic limits to

yield (8). We now state the following main theorem:

Theorem 1. (On large periodically Toeplitz matrices) The

asymptotic eigenvectors of a P -Toeplitz matrix as defined in

(3) are given by the P -periodic (in n) orthonormal vectors

ql,p(n)
L→∞

=
P−1
∑

q=0
bl,p(q)e

−j2π qn

P sl+qL, (9)

for some particular unit-energy complex sequences

{bl,p(q)}q=0,1,...,P−1, and their associated eigenvalues

are asymptotically time-invariant, i.e. λl,p(n)
L→∞

= λl,p.

Proof: The proof is based on checking that (8) is fulfilled

by the structure given in (9). Replacing q by r in (9) and

plugging it into the right hand side of (8) we have

λl,p(n)F
H
LP

(

P−1
∑

r=0
bl,p(r)e

−j2π rn
P sl+rL

)

= λl,p(n)
P−1
∑

r=0
bl,p(r)e

−j2π rn
P dl+rL, (10)

where we have used that FH
Nsi = di. Now, replacing q by c

in (9) and plugging it in the left hand side of (8) yields

P−1
∑

k=0

ej2π
kn
P Dk

LPF
H
LP

(

P−1
∑

c=0
bl,p(c)e

−j2π cn
P sl+(c−k)L

)

=
P−1
∑

c=0
bl,p(c)

P−1
∑

k=0

ej2π
(k−c)n

P Dk
LPd

l+(c−k)L. (11)

To force equality between (10) and (11) for a given l, since the

ones in dl+rL are spaced by L samples for different values of

r, it suffices to set c− k ≡ r in (11). By doing so and using

(7), we obtain the following P -dimensional eigenequation:

P−1
∑

c=0
bl,p(c)e

−j2π rn
P Sc−r

(

l+rL
LP

)

= λl,p(n)bl,p(r)e
−j2π rn

P

P−1
∑

c=0
bl,p(c)S

c−r
(

l
N + r

P

)

= λl,p(n)bl,p(r) (12)

SP

(

l
N

)

bl,p = λl,pbl,p, (13)

where SP (f) ∈ C
P×P is the Hermitian non-negative definite

spectral correlation matrix given by

[SP (f)]r,c = Sc−r
(

f + r
P

)

, (14)

and bl,p ∈ C
P are the eigenvectors of the spectral correlation

that define the P -length sequences in (9): [bl,p]q = bl,p(q).

Notice that, since the common term e−j2πrn/P has been

removed on both sides of (12), the dependence of λl,p on n



has disappeared in (13), since both SP (f) and bl,p are time-

invariant. Thus, while the eigenvectors are time-variant from

(9), the eigenvalues are instead time-invariant.

Thm. 1 generalizes the case explored in [7] where the

noise subspace of the rank-one spectral correlation matrices of

oversampled pulse-amplitude modulation (PAM) signals was

exploited as a means to obtain unbiased estimates of the in-

band noise power using only second order statistics.

IV. PREDICTABILITY OF CYCLOSTATIONARY SIGNALS

As a specific application of the main result given in Thm.

1, let us consider the problem of one-step prediction based on

N past samples of the signal. In particular, we focus on the

minimum mean square error (MMSE) given by

ξN (n) , min
h(n)

E
[

∣

∣x(n)− hH(n)xN (n− 1)
∣

∣

2
]

. (15)

This is a well-known Wiener filtering problem, referred to as

cyclic Wiener filtering for cyclostationary signal processing

[29], which results in a periodic predictor filter h(n) that

implements a synchronous processing by using the prior

knowledge of the cycle period of the signal under analysis.

We are interested in the infinite past predictability of such

a signal, i.e. ξ∞ , limN→∞ ξN (n). While classical linear

prediction theory for stationary signals provides an elegant

answer to this question through a measure of spectral flatness

[28], we aim at generalizing the result by providing a pre-

dictability measure in terms of the cyclic spectrum, thus giving

insights on the achievable predictability gain of synchronous

vs. asynchronous signal processing as a by-product.

The well-known normal equations [28] applied to the gen-

eral cyclostationary case lead to

ξN (n) = R(n, 0)− rH(n)R−1
N (n− 1)r(n), (16)

with r(n) , E [xN−1(n− 1)x∗(n)]. Since matrix RN+1(n)
admits the block partitioning

RN+1(n) =

[

R(n, 0) rH(n)
r(n) RN (n− 1)

]

, (17)

its determinant can be expressed as:

|RN+1(n)| =
(

R(n, 0)− rH(n)R−1
N (n− 1)r(n)

)

|RN (n− 1)| , (18)

for which, using (16) and (18), the MMSE becomes:

ξN (n) =
|RN+1(n)|
|RN (n− 1)| . (19)

Given (19), we can now state the following theorem:

Theorem 2. (Generalized Kolmogorov-Szegö for cyclosta-

tionary signals) A lower bound on the MMSE of one-step

prediction of a cyclostationary signal of cycle period P is

given by

ξ(P )
∞

= exp

∫ 1/P

0

ln |SP (f)| df ≤ ξN (n), (20)

with SP (f) defined as in (14). It is asymptotically achieved for

infinite past samples (N → ∞), in which case the prediction

error becomes stationary. The synchronous vs. asynchronous

prediction gain is given by

g ,
ξ
(P )
∞ /Px

ξ
(1)
∞ /Px

= exp

∫ 1/P

0

ln |CP (f)| df ≤ 1, (21)

where Px is the signal power, and the spectral coherence

matrix is defined as:

[CP (f)]r,c ,
Sc−r

(

f + r
P

)

S0
(

f + r
P

) . (22)

The equality in (21) is achieved iff the signal is stationary.

Proof: From Thm. 1, the eigenvalues of RN+1(n) and

RN (n − 1) converge to the identical time-invariant λl,p in

(13), for which the denominator of (19) behaves as follows:

lim
N→∞

|RN (n− 1)| = lim
L→∞

L−1
∏

l=0

P−1
∏

p=0
λl,p

= lim
L→∞

L−1
∏

l=0

∣

∣SP

(

l
N

)∣

∣ . (23)

Then, by taking the power 1/N and the logarithm,

lim
N→∞

ln
(

|RN (n− 1)|1/N
)

= lim
L→∞

1
LP

L−1
∑

l=0

ln
∣

∣SP

(

l
LP

)∣

∣

= 1
P

∫ 1

0

ln
∣

∣

∣
SP

(

f
P

)∣

∣

∣
df =

∫ 1/P

0

ln |SP (f)| df , JP , (24)

which is the result of expressing the asymptotic average in l
as an integral. Therefore, limN→∞ |RN (n− 1)|1/N = eJP .

With similar reasoning, for the numerator of (19) we have

lim
N→∞

|RN+1(n)|1/(N+1)
= eJP , (25)

for which (19) becomes:

ξ(P )
∞

= lim
N→∞

ξN (n) = lim
N→∞

e((N+1)JP )

e(NJP )
= eJP , (26)

yielding (20). Regarding gain g in (21), we compute it as:

g =
ξ
(P )
∞

ξ
(1)
∞

=
exp

∫ 1/P

0
ln |SP (f)| df

exp
∫ 1

0
lnS0(f)df

=

exp

∫ 1/P

0

(

ln |SP (f)| −
P−1
∑

r=0
lnS0

(

f + r
P

)

)

df, (27)

where we have changed the limits of integration of the denom-

inator. Notice that the second term in the integral is simply

the sum of the diagonal elements of SP (f) or, equivalently,

the determinant of S̄P (f) , SP (f) ⊙ IP . Thus, by splitting

this matrix into its square roots and using properties of the

logarithm and the determinant, we complete the proof:

g = exp

∫ 1/P

0

(

ln |SP (f)|+ ln
∣

∣

∣
S̄
−1/2
P (f)S̄

−1/2
P (f)

∣

∣

∣

)

df

= exp

∫ 1/P

0

ln
∣

∣

∣
S̄
−1/2
P (f)SP (f)S̄

−1/2
P (f)

∣

∣

∣
df

= exp

∫ 1/P

0

ln |CP (f)| df. (28)



Kolmogorov-Szegö theorem [28] is thus generalized in the

following sense. While for stationary signals having high

predictability requires exhibiting (exponentially) deep nulls on

the spectrum, for cyclostationary ones it suffices to display

spectral correlation matrices with small determinant. In other

words, the smaller the determinant of the spectral correlation

matrices is without having spectral nulls (high condition num-

ber), the higher the gain of synchronous processing becomes.

Additionally, the asymptotic stationarity of the prediction error

stated in Thm. 2, coming from the time-invariance of the

eigenvalues stated in Thm. 1, adds up to its well-known

asymptotic whiteness property.

Finally, we may relate Thm. 2 with other noteworthy works

in the literature, such as [6]. Within it, the authors prove the

generalized likelihood-ratio test (GLRT) and the locally most

powerful invariant test (LMPIT) for detecting cyclostationarity

vs. stationarity asymptotically reduce to functionals of coher-

ence matrices expressed in terms of the Loève spectrum. As

a result, these detectors become asymptotically invariant to

linear filtering. It is remarkable that identical invariant second

order statistics emerge on the apparently different problem

of evaluating the gain in one-step error prediction power by

exploiting cyclostationarity studied here.

V. AN ILLUSTRATION: MIXTURE OF PAM SIGNALS

We next test the validity of the previous theoretical results

by considering the following asynchronous mixture of two

cyclostationary PAM signals of cycle period P = 2:

x(n) = x1(n− 2ε) + x2(n− 2(ε− δ)) + w(n), (29)

where xi(n) =
∑

k ai(k)p(n − 2k) for i ∈ {1, 2} with

Raiai′
(m) = δi−i′δm and independent stationary additive

noise such that Rww(m) = σ2δm. A 100% excess bandwidth

pulse p(n) = (
√
8/π)(−1)n/(1 − 4n2) is considered, with

Fourier transform P (f) =
√
2 cos (πf), which is clearly non-

null for −0.5 < f < 0.5. It can be shown that

Sk(f) = e−j2πkε cos (2πkδ)P (f + k/2)P ∗(f) + σ2, (30)

for k ∈ {0, 1}. This model permits a full transition from

stationary x(n) (δ = 0.5) to full cyclostationarity (δ = 0)

with rank-one spectral coherence matrices [7]. Therefore,

parameter δ ∈ [0, 0.5] will be used to check the convergence

of predictability to the theoretical lower bound for large data,

and parameter ε ∈ [0, 1) will be uniformly distributed in

the setting of different experiments in order to show the

asymptotic stationarity of the prediction error.

Fig. 1 depicts the prediction error power as a function of

N for different values of δ, showing its convergence to the

corresponding asymptotic lower bounds. For moderate values

of N , the prediction error power depends on the values of ε,

as seen from the width of the plotted lines, which represents a

full sweep across the full range of ε values. On the contrary,

this dependency vanishes for large N , which confirms its

asymptotic stationarity.

Fig. 2 shows the asymptotic predictability as a function of

the noise variance. If δ decreases, the process exhibits a higher

degree of cyclostationarity and the prediction error power floor

10
0

10
1

10
2

10
-2

10
-1

Fig. 1. Prediction error power as a function of N for different values of δ

and the full range of ε values. The asymptotic lower bounds are plotted as
well with dashed lines. Noise power is set to σ2

= 5× 10
−5.
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Fig. 2. Asymptotic predictability for different values of δ as a function of
the noise power σ2.

for σ2 → 0 decreases. When δ = 0 the cyclostationarity is

maximum, yielding rank-one plus identity spectral correlation

matrices and thus autocorrelation matrices with N/2 eigenval-

ues (asymptotically) equal to the noise power. Therefore, the

predictability value becomes dominated by σ2. As a result,

the asymptotic prediction error power converges to zero for

σ2 → 0, as seen by the lack of error floor in the δ = 0 curve.

VI. DISCUSSION AND FUTURE WORK

Kolmogorov-Szegö theorem for stationary signals, which

requires an integral operator of the spectrum logarithm, has

been extended to cyclostationary signals, involving an integral

operator of the determinant logarithm of spectral correlation

matrices. The presented succinct derivation (compared with

more general Wiener-Masani extensions and polyphase de-

compositions) is the result of applying known asymptotic re-

sults to Toeplitz cyclic autocorrelation matrices after re-stating

the spectral decomposition problem of P -Toeplitz matrices.

The obtained lower bounds on the one-step predictability have

been validated for different degrees of cyclostationarity.

As highlighted in [27], P -Toeplitz matrices whose size

is a multiple of P (such as in Section III) become block-

Toeplitz with block-size P . This structure has been widely used

as a tool in detection problems dealing with cyclostationary

signals [6], [11], [30]. Future lines of research can aim at

revealing further relationships between the presented work and

the aforementioned literature. The ideas developed can also

provide new insights onto other signal processing problems,

such as data compression [14], [31].
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