5 research outputs found

    Complete directed minors and chromatic number

    Get PDF
    The dichromatic number χ→(D) of a digraph D is the smallest k for which it admits a k-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger's conjecture for undirected graphs, several groups of authors have recently studied the containment of complete directed minors in digraphs with a given dichromatic number. In this note we exhibit a relation of these problems to Hadwiger's conjecture. Exploiting this relation, we show that every directed graph excluding the complete digraph K↔t of order t as a strong minor or as a butterfly minor is O(t(log log t)6)-colorable. This answers a question by Axenovich, Girão, Snyder, and Weber, who proved an upper bound of t4t for the same problem. A further consequence of our results is that every digraph of dichromatic number 22n contains a subdivision of every n-vertex subcubic digraph, which makes progress on a set of problems raised by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé

    Adapting the Directed Grid Theorem into an FPT Algorithm

    Full text link
    The Grid Theorem of Robertson and Seymour [JCTB, 1986], is one of the most important tools in the field of structural graph theory, finding numerous applications in the design of algorithms for undirected graphs. An analogous version of the Grid Theorem in digraphs was conjectured by Johnson et al. [JCTB, 2001], and proved by Kawarabayashi and Kreutzer [STOC, 2015]. Namely, they showed that there is a function f(k)f(k) such that every digraph of directed tree-width at least f(k)f(k) contains a cylindrical grid of size kk as a butterfly minor and stated that their proof can be turned into an XP algorithm, with parameter kk, that either constructs a decomposition of the appropriate width, or finds the claimed large cylindrical grid as a butterfly minor. In this paper, we adapt some of the steps of the proof of Kawarabayashi and Kreutzer to improve this XP algorithm into an FPT algorithm. Towards this, our main technical contributions are two FPT algorithms with parameter kk. The first one either produces an arboreal decomposition of width 3k−23k-2 or finds a haven of order kk in a digraph DD, improving on the original result for arboreal decompositions by Johnson et al. The second algorithm finds a well-linked set of order kk in a digraph DD of large directed tree-width. As tools to prove these results, we show how to solve a generalized version of the problem of finding balanced separators for a given set of vertices TT in FPT time with parameter ∣T∣|T|, a result that we consider to be of its own interest.Comment: 31 pages, 9 figure

    A more accurate view of the Flat Wall Theorem

    Full text link
    We introduce a supporting combinatorial framework for the Flat Wall Theorem. In particular, we suggest two variants of the theorem and we introduce a new, more versatile, concept of wall homogeneity as well as the notion of regularity in flat walls. All proposed concepts and results aim at facilitating the use of the irrelevant vertex technique in future algorithmic applications.Comment: arXiv admin note: text overlap with arXiv:2004.1269
    corecore