# Complete directed minors and chromatic number 

Tamás Mészáros ${ }^{1}$ | Raphael Steiner ${ }^{\mathbf{2}}$ (©)

${ }^{1}$ Departement of Mathematics and Computer Science, Institut für Mathematik, Freie Universität Berlin, Berlin, Germany
${ }^{2}$ Fakultät II-Mathematik und Naturwissenschaften, Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

## Correspondence

Raphael Steiner, Institute of Theoretical Computer Science, Departement Computer Science, ETH Zürich, Universitätsstrasse 6, 8092 Zürich, Switzerland.
Email: steiner@math.tu-berlin.de

## Funding information

Deutsche Forschungsgemeinschaft


#### Abstract

The dichromatic number $\vec{\chi}(D)$ of a digraph $D$ is the smallest $k$ for which it admits a $k$-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger's conjecture for undirected graphs, several groups of authors have recently studied the containment of complete directed minors in digraphs with a given dichromatic number. In this note we exhibit a relation of these problems to Hadwiger's conjecture. Exploiting this relation, we show that every directed graph excluding the complete digraph $\overleftrightarrow{K}_{t}$ of order $t$ as a strong minor or as a butterfly minor is $O\left(t(\log \log t)^{6}\right)$ colorable. This answers a question by Axenovich, Girão, Snyder, and Weber, who proved an upper bound of $t 4^{t}$ for the same problem. A further consequence of our results is that every digraph of dichromatic number $22 n$ contains a subdivision of every $n$-vertex subcubic digraph, which makes progress on a set of problems raised by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé.


## KEYWORDS

chromatic number, directed graphs, graph minors, Hadwiger's conjecture

[^0]
## 1 | INTRODUCTION

For a given integer $t \geq 1$ let $m_{\chi}(t)$ be the smallest integer for which it is true that every graph with chromatic number at least $m_{\chi}(t)$ contains a $K_{t}$-minor. Hadwiger's conjecture [8], which is one of the most important open problems in graph theory, states that $m_{\chi}(t)=t$ for all $t \geq 1$. The conjecture remains unsolved for $t \geq 7$. For many years the best general upper bound on $m_{\chi}(t)$ was due to Kostochka [13,14] and Thomason [27], who independently proved that every graph of average degree at least $O(t \sqrt{\log t})$ contains a $K_{t}$-minor, implying that $m_{\chi}(t)=O(t \sqrt{\log t})$. Recently, however, there has been progress. First, Norin, Postle, and Song [22] showed that $m_{\chi}(t)=O\left(t(\log t)^{\beta}\right)$ (for any $\beta>\frac{1}{4}$ ), which was then further improved by Postle [23] to $m_{\chi}(t)=O\left(t(\log \log t)^{6}\right)$. For more details about Hadwiger's conjecture the interested reader may consult the recent survey by Seymour [26].

This famous conjecture has influenced many researchers and different variations of it have been studied in various frameworks, one of which is directed graphs.

The chromatic number of a digraph was introduced by Neumann-Lara [21] in 1982 as the smallest number of acyclic subsets that cover the vertex set of the digraph. The dichromatic number has received increasing attention since 2000 and has been an extremely active research topic in recent years, we refer to [3,4,9,10] as examples of important results on the topic.

In the case of digraphs there are multiple ways to define a minor. Here we consider three popular variants: strong minors, butterfly minors, and topological minors. The containment of these different minors in dense digraphs as well as their relation to the dichromatic number has already been studied in several previous works, see, for example, [2,12,15] for strong minors, [5,11,16,20] for butterfly minors, and [1,6,7,17-19,25] for topological minors. Given digraphs $D$ and $H$, we say that $D$ is a strong $H$-minor model if $V(D)$ can be partitioned into nonempty sets $\left\{X_{v}: v \in V(H)\right\}$ (called branch sets) such that the digraph induced by $X_{v}$ is strongly connected for all $v \in V(H)$, and for every $\operatorname{arc}(u, v)$ in $H$ there is an arc in $D$ from $X_{u}$ to $X_{v}$. More generally, we also say that $D$ contains $H$ as $a$ strong minor and write $D \geqslant_{s} H$ if a subdigraph of $D$ is a strong $H$-minor model. Pause to note that strong minor containment defines a transitive relation on digraphs, that is, if $D_{1} \succcurlyeq_{s} D_{2}$ and $D_{2} \succcurlyeq_{s} D_{3}$ for digraphs $D_{1}, D_{2}, D_{3}$, then $D_{1} \succcurlyeq_{s} D_{3}$.

At some places in the manuscript, we will use the following notation: If $D$ is a strong $H$-minor model witnessed by the partition $\left\{X_{v}: v \in V(H)\right\}$ into branch sets, for an arc $e=\left(u_{1}, u_{2}\right) \in A(H)$ we denote by $v\left(e, u_{1}\right)$ and $v\left(e, u_{2}\right)$ the endpoints of an arc in $D$ which connects $X_{u_{1}}$ to $X_{u_{2}}$, where $v\left(e, u_{1}\right)$ is the tail of the $\operatorname{arc}$ in $X_{u_{1}}$ and $v\left(e, u_{2}\right)$ is the head of the arc in $X_{u_{2}}$.

Given an undirected graph $G$ we denote by $\overleftrightarrow{G}$ the directed graph on the same vertex set where for every edge $u v \in E(G)$ the vertices $u$ and $v$ are connected in $\overleftrightarrow{G}$ by an arc in each direction. We are particularly interested in forcing strong $\overleftrightarrow{K}_{t}$-minors, as those also yield a strong $H$-minor for every digraph $H$ on at most $t$ vertices. Analogously to the undirected case, one can ask how large the dichromatic number of a digraph should be to guarantee that it contains a strong $\overleftrightarrow{K}_{t}$-minor. More precisely, we consider the function $s m_{\vec{\chi}}(t)$, which is the smallest integer for which it is true that every digraph $D$ with $\vec{\chi}(D) \geq s m_{\vec{\chi}}(t)$ satisfies $D \succcurlyeq_{s} \overleftrightarrow{K}_{t}$. In a recent work, Axenovich, Girão,

Snyder, and Weber [2] investigated the function $\operatorname{sm} \vec{\chi}(t)$. They showed that $\operatorname{sm_{\vec {\chi }}}(t)$ exists for every $t \geq 2$ and proved the bounds

$$
t+1 \leq \operatorname{sm}_{\vec{\chi}}(t) \leq t 4^{t}
$$

They then raised the problem of improving in particular the upper bound and expressed that they think that $\operatorname{sm} \vec{\chi}^{(t)}$ should be much closer to the lower than to the upper bound. Here we confirm this belief by improving their upper bound substantially as follows.

Theorem 1. For every $t \geq 1$ we have

$$
\operatorname{sm}_{\vec{\chi}}(t) \leq 2 m_{\chi}(t)-1=O\left(t(\log \log t)^{6}\right)
$$

Now let us turn to butterfly minors. Given a digraph $D$ and an $\operatorname{arc}(u, v) \in A(D)$, this arc is called (butterfly-)contractible if $v$ is the only out-neighbor of $u$ or if $u$ is the only in-neighbor of $v$ in $D$. Given such a contractible arc $e$, the digraph $D / e$ is obtained from $D$ by merging $u$ and $v$ into a new vertex and joining their in- and out-neighborhoods, ignoring parallel arcs. A butterfly minor of a digraph $D$ is any digraph that can be obtained by repeatedly deleting arcs, deleting vertices or contracting arcs.

In [20], inspired by Hadwiger's conjecture, Millani, Steiner, and Wiederrecht raised the following question: For a given integer $k \geq 1$, what is the largest butterfly minor-closed class $\mathcal{D}_{k}$ of $k$-colorable digraphs? They gave a precise characterization of $\mathcal{D}_{2}$ as the noneven digraphs. The question concerning a characterization of $\mathcal{D}_{k}$ for $k \geq 3$ is closely related to the question of forcing complete butterfly minors in digraphs. For an integer $t \geq 1$, let us define $b m_{\vec{\chi}}(t)$ as the smallest integer such that every digraph $D$ with $\vec{\chi}(D) \geq b m_{\vec{\chi}}(t)$ contains $\overleftrightarrow{K}_{t}$ as a butterfly minor, and put

$$
b(x):=\max \left\{t \geq 1 \mid b m_{\vec{\chi}}(t) \leq x\right\}
$$

for the integer inverse function of $b m_{\vec{\chi}}(\cdot)$. Let us further denote by $\mathcal{K}_{t}$ the class of all digraphs with no $\overleftrightarrow{K}_{t}$ as a butterfly minor. Then, on the one hand, every digraph excluding $\overleftrightarrow{K}_{b(k+1)}$ as a butterfly minor is colorable with $b m_{\vec{\chi}}(b(k+1))-1 \leq k$ colors. On the other hand, every digraph in $\mathcal{D}_{k}$ must exclude $\overleftrightarrow{K}_{k+1}$ as a butterfly minor, since its dichromatic number exceeds $k$. Therefore, for every $k$ we have

$$
\mathcal{K}_{b(k+1)} \subseteq \mathcal{D}_{k} \subseteq \mathcal{K}_{k+1}
$$

To see how tight the above inclusions are one needs to obtain good lower bounds on $b(k+1)$, or equivalently good upper bounds on $b m_{\vec{\chi}}(t)$. In this direction, as an application of Theorem 1 we prove the following corollary. The previously best-known upper bound on $b m_{\vec{\chi}}(t)$ mentioned in [20] was $4^{t^{2}-t}(t-1)+1$ and followed from the work of Aboulker et al. [1].

Corollary 1. For $t \geq 1$ we have $b m_{\vec{\chi}}(t) \leq 2 m_{\chi}(2 t)-1=O\left(t(\log \log t)^{6}\right)$.

For the sake of completeness we remark that a lower bound of $t+1 \leq b m_{\vec{\chi}}(t)$ follows by taking $D=\overleftrightarrow{G}$ where $G$ is the complete graph on $t+2$ vertices with a 5 -cycle removed. It is a simple exercise to verify that $\overleftrightarrow{\chi}(D)=t$ and that it contains no butterfly $\overleftrightarrow{K}_{t}$-minor.

Finally, we consider topological minors. Given a digraph $H$, a subdivision of $H$ is any digraph obtained by replacing every $\operatorname{arc}(u, v) \in A(H)$ by a directed path from $u$ to $v$, such that subdivision paths of different arcs are internally vertex-disjoint. Then $H$ is said to be a topological minor of some digraph $D$ if $D$ contains a subdivision of $H$ as a subgraph.

Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé [1] initiated the study of the existence of various subdivisions in digraphs of large dichromatic number. For a digraph $H$ they introduced the parameter mader $\vec{\chi}_{\vec{\prime}}(H)$, the dichromatic Mader number of $H$, as the smallest integer such that any digraph $D$ with $\vec{\chi}(D) \geq \operatorname{mader}_{\vec{\chi}}(H)$ contains a subdivision of $H$. In their main result they proved that if $H$ is a digraph with $n$ vertices and $m$ arcs, then

$$
n \leq \operatorname{mader}_{\vec{\chi}}(H) \leq 4^{m}(n-1)+1 .
$$

Gishboliner, Steiner, and Szabó [6] conjectured that $\operatorname{mader}_{\vec{\chi}}\left(\overleftrightarrow{K}_{t}\right) \leq C t^{2}$ for some absolute constant $C$. However, it seems surprisingly hard to find a polynomial upper bound even for quite simple digraphs $H$. An indication for this increased difficulty compared with the undirected case could be that for digraphs it is not even possible to force a $\overleftrightarrow{K}_{3}$-subdivision by means of large minimum out- and in-degree (compare Mader [17]).

Gishboliner et al. [6] still managed to identify a wide class of graphs, called octus graphs, ${ }^{1}$ for which the lower bound above is tight. Their result means that given a digraph $D$ with $\vec{\chi}(D) \geq n$ it contains the subdivision of every octus graph on at most $n$ vertices.

Here, along the same line of thinking, as a corollary of Theorem 1 we prove a similar result for another class of digraphs. By slightly abusing the terminology, we call a digraph $D$ subcubic if $D$ is an orientation of a graph with maximum degree at most three such that the in- and outdegree of any vertex is at most two.

Corollary 2. For $n \geq 1$ if $D$ is a digraph with $\vec{\chi}(D) \geq 22 n$ then it contains a subdivision of every subcubic digraph on at most $n$ vertices.

## 1.1 | Notation

For a digraph $D$ and a set $S \subseteq V(D)$ we denote by $D[S]$ the subdigraph spanned by the vertices in $S$. The set $S$ is called acyclic if $D[S]$ is an acyclic digraph. We call $D$ strongly connected if for every ordered pair $u, v$ of vertices in $D$ there is a directed path in $D$ from $u$ to $v$. An in-/outarborescence is a rooted directed tree where every arc is directed towards/away from the root. For the starting/ending point of an arc we will also use the names tail/head.

[^1]A (proper) coloring of an undirected graph $G$ with colors in a set $A$ is a map $f: V(G) \rightarrow A$ where neighboring vertices are mapped to different colors, or equivalently $f^{-1}(a)$ is an independent set for every $a \in A$. If $|A|=k$ then $f$ is called a $k$-coloring. Analogously, an (acyclic) $k$-coloring of a digraph $D$ is a map $f: V(D) \rightarrow A$ with $|A|=k$ where $f^{-1}(a)$ is an acyclic set for every $a \in A$. The minimum $k$ for which a $k$-coloring exists is the chromatic (resp., dichromatic) number of the undirected graph $G$ (resp., digraph $D$ ), which we shall denote by $\chi(G)$ (resp., $\vec{\chi}(D)$ ).

## 2 | PROOFS

## 2.1 | Strong minors

The proof of Theorem 1 will be based on the following result.

Theorem 2. For every digraph $D$ there is an undirected graph $G$ such that
(i) $D$ is a strong $\overleftrightarrow{G}$-minor model, and
(ii) $\vec{\chi}(D) \leq 2 \chi(G)$.

Proof. To start with, let us first fix a partition $X_{1}, X_{2}, \ldots, X_{m}$ of $V(D)$ such that for every $i \in\{1,2, \ldots, m\}$ the set $X_{i}$ is an inclusionwise maximal subset of $V(D) \backslash\left(X_{1} \cup \cdots \cup X_{i-1}\right)$ with $D\left[X_{i}\right]$ strongly connected and $\vec{\chi}\left(D\left[X_{i}\right]\right) \leq 2$. Note that the $X_{i}^{\prime}$ 's are well defined since the one vertex-digraph is strongly connected and 2 -colorable. Now we define $G$ to be the undirected simple graph with vertex set $\left\{X_{1}, \ldots, X_{m}\right\}$ and $X_{i} X_{j} \in E(G)$ if and only if there are arcs in both directions between $X_{i}$ and $X_{j}$ in $D$. Then, by definition, $D$ is a strong $\overleftrightarrow{G}$-minor model, as one can simply take $X_{1}, X_{2}, \ldots, X_{m}$ as the branch sets.

Therefore, what remains to prove is property (ii). For this let us assume that $\chi(G)=k$ and fix a proper coloring $f_{G}: V(G) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ of $G$. Now, for every $i \leq m$ take an arbitrary acyclic two-coloring of $D\left[X_{i}\right]$ (which exists by assumption) with colors $\left\{c_{i}^{\prime}, c_{i}^{\prime \prime}\right\}$. The rest of the proof is about showing that by putting these colorings together we obtain an acyclic coloring $f_{D}$ of $D$ with the $2 k$ colors $\left\{c_{1}^{\prime}, c_{1}^{\prime \prime}, c_{2}^{\prime}, c_{2}^{\prime \prime}, \ldots, c_{k}^{\prime}, c_{k}^{\prime \prime}\right\}$.

Assume for contradiction that this is not the case, and there is a directed cycle $C$ in $D$ which is monochromatic. We may, without loss of generality, assume that $C$ is a shortest such cycle, in particular, it is an induced cycle. Let $i_{0}$ be the smallest index for which $C$ contains a vertex from $X_{i_{0}}$. Note that, in particular, $V(C) \subseteq V(D) \backslash\left(X_{1} \cup \cdots \cup X_{i_{0}-1}\right)$ and, as $f_{D}$ is a proper coloring on $D\left[X_{i_{0}}\right]$, the cycle $C$ cannot be fully contained in $X_{i_{0}}$. Hence, $C$ contains a subsequence $u, w_{1}, \ldots, w_{\ell}, v$ of consecutive vertices on $C$ with $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right), \ldots,\left(w_{\ell}, v\right) \in A(C)$, such that $u, v \in X_{i_{0}}$ (possibly $u=v$ ), $w_{1}, \ldots, w_{\ell} \in X_{i_{0}+1} \cup \cdots \cup X_{m}$, and $\ell>0$.

Let $s \in\{1, \ldots, \ell\}$ be the smallest index such that $w_{s}$ has an out-neighbor in $X_{i_{0}}$, and denote this out-neighbor by $x \in X_{i_{0}}$. Note that $s$ is well defined, since $\left(w_{e}, v\right) \in A(D)$ and $v \in X_{i_{0}}$. We claim that $w_{s}$ has no in-neighbor in $D$ that is contained in $X_{i_{0}}$. Suppose towards a contradiction that there exists $y \in X_{i_{0}}$ such that $\left(y, w_{s}\right) \in A(D)$. Let $j>i_{0}$ be such that $w_{s} \in X_{j}$. Then, because of the $\operatorname{arcs}\left(y, w_{s}\right),\left(w_{s}, x\right) \in A(D)$, we have $X_{i_{0}} X_{j} \in E(G)$ and hence $f_{G}\left(X_{i_{0}}\right) \neq f_{G}\left(X_{j}\right)$. This in turn implies that $f_{D}(u) \neq f_{D}\left(w_{s}\right)$ and
$f_{D}(v) \neq f_{D}\left(w_{s}\right)$ which contradicts the monochromaticity of $C$. Hence, we may assume that $w_{s}$ has no in-neighbor contained in $X_{i_{0}}$. In particular, this implies $s \geq 2$. Let us now consider the set

$$
X=X_{i_{0}} \cup\left\{w_{1}, \ldots, w_{s}\right\} \subseteq V(D) \backslash\left(X_{1} \cup \cdots \cup X_{i_{0}-1}\right) .
$$

It is clearly strongly connected, as $X_{i_{0}}$ is so and $u, w_{1}, \ldots, w_{s}, x$ induce a directed path (or cycle in case $u=x$ ) starting and ending in $X_{i_{0}}$. Moreover, any extension of an acyclic $\{1,2\}$-coloring of $D\left[X_{i_{0}}\right]$ to a $\{1,2\}$-coloring of $D[X]$ where $w_{1}, \ldots, w_{s-1}$ receive color 1 and $w_{s}$ receives color 2 is acyclic. Indeed, by the definition of $s$, there are no arcs starting in $\left\{w_{1}, \ldots, w_{s-1}\right\}$ and ending in $X_{i}$, and by the inducedness of $C$ there are no arcs spanned between nonconsecutive vertices inside $\left\{w_{1}, \ldots, w_{s-1}\right\}$. Adding the fact that $w_{s}$ has no inneighbors in $X_{i_{0}}$, these imply that any directed cycle in $D[X]$ is either fully contained in $D\left[X_{i_{0}}\right]$, or contains both $w_{s}$ and at least one vertex in $\left\{w_{1}, \ldots, w_{s-1}\right\}$. In any case, it is not monochromatic. However, the existence of the set $X$ then contradicts with the maximality of $X_{i_{0}}$, which finishes the proof.

Now we can easily deduce Theorem 1 from Theorem 2.
Proof of Theorem 1. Let $D$ be a digraph with $\vec{\chi}(D) \geq 2 m_{\chi}(t)-1$. By Theorem 2 there exists an undirected graph $G$ such that $\vec{\chi}(D) \leq 2 \chi(G)$ and $D \geqslant_{s} \overleftrightarrow{G}$. This implies that $\chi(G) \geq m_{\chi}(t)$, and hence $G$ contains a $K_{t}$-minor. Taking the same branch sets in $\overleftrightarrow{G}$ which give a $K_{t}$-minor in $G$ shows that $\overleftrightarrow{G} \geqslant_{S} \overleftrightarrow{K}_{t}$, and by transitivity $D \geqslant_{S} \overleftrightarrow{K}_{t}$. Since $D$ was arbitrarily chosen such that $\vec{\chi}(D) \geq 2 m_{\chi}(t)-1$, this proves that $s m_{\vec{\chi}}(t) \leq 2 m_{\chi}(t)-1$, as required.

We would like to remark that the above proof of Theorem 2 actually yields a slightly stronger conclusion: Let the partition $X_{1}, \ldots, X_{m}$ of $V(D)$ and the graph $G$ be defined as in the proof of Theorem 2. We then claim that for every edge $X_{i} X_{j} \in E(G)$ with $i<j$ there are at least two arcs in $D$ which go from $X_{i}$ to $X_{j}$, and at least two arcs which go from $X_{j}$ to $X_{i}$.

To see this, note that by the definition of $G$ there are edges in both directions spanned between $X_{i}$ and $X_{j}$, which implies that $D\left[X_{i} \cup X_{j}\right]$ is also a strongly connected digraph. Then suppose that contrary to our claim, there would be at most one edge from $X_{i}$ to $X_{j}$ (or at most one edge from $X_{j}$ to $X_{i}$ ) in $D$. Let $e \in A(D)$ be such an edge, and note that removing $e$ from $D\left[X_{i} \cup X_{j}\right]$ destroys the strong connectivity and creates the two strong components $X_{i}$ and $X_{j}$ of $D\left[X_{i} \cup X_{j}\right]-e$. By choice of $X_{1}, \ldots, X_{m}$, we know that there exists an acyclic 2 -coloring $f_{i}: X_{i} \rightarrow\{1,2\}$ of $D\left[X_{i}\right]$ and an acyclic 2-coloring $f_{j}: X_{j} \rightarrow\{1,2\}$ of $D\left[X_{j}\right]$. Possibly after swapping colors 1 and 2 in $f_{j}$, we may assume that the vertices $u \in X_{i}$ and $v \in X_{j}$ which form the endpoints of $e$ satisfy $f_{i}(u) \neq f_{j}(v)$. Now the common extension of $f_{i}$ and $f_{j}$ to $D\left[X_{i} \cup X_{j}\right]$ forms an acyclic 2-coloring, since every directed cycle in $D\left[X_{i} \cup X_{j}\right]$ intersecting both $X_{i}$ and $X_{j}$ must use the edge $e$ and can therefore not be monochromatic. This however means that $X_{i} \cup X_{j}$ induces a strongly connected and 2-colorable subgraph of $D$ which properly contains $X_{i}$ and is disjoint from $X_{1} \cup \cdots \cup X_{i-1}$. Finally, this contradicts the maximality of $X_{i}$ in our choice of the partition of $V(D)$, and proves our above claim. This stronger conclusion can then be used in the proof of Theorem 1 to yield the stronger conclusion that every digraph of dichromatic
number at least $2 m_{\chi}(t)-1$ in fact contains a strong $\overleftrightarrow{K}_{t}$-minor model in which between every pair of branch sets, at least two arcs are spanned in each direction.

## 2.2 | Butterfly minors

Corollary 1 follows directly from Theorem 1 and the following proposition.
Proposition 1. Every strong $\overleftrightarrow{K}_{2 t}$-minor model contains $\overleftrightarrow{K}_{t}$ as a butterfly minor.

Proof. Let $D$ be a strong $\overleftrightarrow{K}_{2 t}$-minor model and let $\left\{X_{1}^{+}, X_{1}^{-}, \ldots, X_{t}^{+}, X_{t}^{-}\right\}$be a corresponding partition of $V(D)$ into $2 t$ branch sets. In particular, for every $i \in\{1, \ldots, t\}$ there exist $r_{i}^{+} \in X_{i}^{+}$ and $r_{i}^{-} \in X_{i}^{-}$such that $\left(r_{i}^{-}, r_{i}^{+}\right) \in A(D)$. Since $D\left[X_{i}^{-}\right]$and $D\left[X_{i}^{+}\right]$are strongly connected digraphs, there exist ${ }^{2}$ oriented spanning trees $T_{i}^{-} \subseteq D\left[X_{i}^{-}\right]$and $T_{i}^{+} \subseteq D\left[X_{i}^{+}\right]$such that $T_{i}^{-}$is an in-arborescence rooted at $r_{i}^{-}$and $T_{i}^{+}$is an out-arborescence rooted at $r_{i}^{+}$. Let us consider the spanning subdigraph $D^{\prime}$ of $D$ consisting of the arcs contained in

$$
T:=\bigcup_{i=1}^{t}\left(\left\{\left(r_{i}^{-}, r_{i}^{+}\right)\right\} \cup A\left(T_{i}^{+}\right) \cup A\left(T_{i}^{-}\right)\right),
$$

as well as all arcs of $D$ starting in $X_{i}^{+}$and ending in $X_{j}^{-}$for $i \neq j$. Then every arc of $D^{\prime}$ contained in $T$ is either the unique arc in $D^{\prime}$ emanating from its tail or the unique arc in $D^{\prime}$ entering its head. It follows that all arcs in $T$ are butterfly-contractible. Note that the contraction of an arc does not affect the butterfly-contractibility of other arcs, hence the digraph $D^{\prime} / T$, obtained from $D^{\prime}$ by successively contracting all arcs in $T$, is a butterfly minor of $D$. The vertices of $D^{\prime} / T$ can be labeled $v_{1}, \ldots, v_{t}$, where $v_{i}$ denotes the vertex corresponding to the contraction of the (weakly) connected component of $D^{\prime}$ inside $X_{i}^{+} \cup X_{i}^{-}$. As $D$ is a strong $\overleftrightarrow{K}_{2 t}$-minor model, by definition of $D^{\prime}$ for every $(i, j) \in\{1, \ldots, k\}^{2}$ with $i \neq j$, there exists an arc in $D^{\prime}$ starting in $X_{i}^{+}$and ending in $X_{j}^{-}$. Therefore, $D^{\prime} / T$ is a butterfly minor of $D$ isomorphic to $\overleftrightarrow{K}_{t}$, concluding the proof.

## 2.3 | Topological minors

Finally, we prove Corollary 2.
Proof of Corollary 2. As a first step note that given $n \in \mathbb{N}$, every undirected graph $G$ with a minimum degree at least $10.5 n>n+6.291 \cdot \frac{3}{2} n$ contains every $n$-vertex subcubic graph as a minor. This follows directly from a result of Reed and Wood [24], who proved that every graph with an average degree at least $n+6.291 m$ contains every graph with $n$ vertices and $m$ edges as a minor.

[^2]Let now $D$ be any digraph with $\vec{\chi}(D) \geq 22 n, F$ a subcubic digraph on $n \geq 2$ vertices and $H$ its underlying undirected subcubic graph. By Theorem 2 there exists an undirected graph $G$ such that $D$ is a strong $\overleftrightarrow{G}$-minor model and $\chi(G) \geq 11 n$. In particular, $G$ contains a subgraph of minimum degree at least $11 n-1>10.5 n$ and hence, by our earlier remark, an $H$-minor. This implies that $\overleftrightarrow{G}$ contains a strong $\overleftrightarrow{H}$ minor and hence $D$ does so. However, as $F \subseteq \overleftrightarrow{H}$, it also follows that $D$ contains a strong $F$-minor, that is, a subdigraph $D^{\prime}$ which is a strong $F$-minor model. Let $\left\{X_{f}: f \in V(F)\right\}$ be a branch set partition of $V\left(D^{\prime}\right)$ witnessing this. Recall that, by definition, for every arc $e=\left(u_{1}, u_{2}\right) \in A(F)$ there exist vertices $v\left(e, u_{1}\right) \in X_{u_{1}}$ and $v\left(e, u_{2}\right) \in X_{u_{2}}$ such that $\left(v\left(e, u_{1}\right), v\left(e, u_{2}\right)\right) \in A\left(D^{\prime}\right) \subseteq A(D)$.

Let next $u \in V(F)$ be an arbitrary vertex with total degree $d=d(u) \in\{0,1,2,3\}$ and let us denote the arcs incident to $u$ by $e_{1}, \ldots, e_{d}$. Furthermore, for $i=1, \ldots, d$ we put $v_{i}:=v\left(e_{i}, u\right)$. We claim that there exists a vertex $b(u) \in X_{u}$ and for every $i=1, \ldots, d$ a directed path $P_{i}^{u}$ in $D\left[X_{u}\right]$ such that

- $P_{1}^{u}, \ldots, P_{d}^{u}$ only intersect at $b(u)$;
- if $u$ is the tail of $e_{i}$, then $P_{i}^{u}$ is a directed path from $b(u)$ to $v_{i}$;
- if $u$ is the head of $e_{i}$, then $P_{i}^{u}$ is a directed path from $v_{i}$ to $b(u)$.

This claim holds trivially if $d=0$, and if $d=1$ then we can simply put $b(u)=v_{1}$ and let $P_{1}^{u}$ be the trivial one-vertex path consisting of $v_{1}$.

If $d=2$ then, without loss of generality, by the symmetry of reversing all $\operatorname{arcs}$ in $D$ and $F$, we may assume that $u$ is the head of $e_{1}$. We then can put $b(u):=v_{2}$, let $P_{1}^{u}$ be any directed path in $D\left[X_{u}\right]$ from $v_{1}$ to $v_{2}$, and take $P_{2}^{u}$ to be the trivial one-vertex path consisting only of $v_{2}$.

Finally suppose $d=3$. Since $F$ is subcubic, $u$ either has in-degree one and out-degree two, or vice versa. As before, without loss of generality, by symmetry we may assume that the first case occurs, and it is $e_{1}$ that enters $u$ and $e_{2}$ and $e_{3}$ that emanate from it. Take now $P_{12}$ and $P_{13}$ to be directed paths in $D\left[X_{u}\right]$ starting at $v_{1}$ and ending at $v_{2}$ and $v_{3}$, respectively. We define now $b(u)$ as the first vertex in $V\left(P_{12}\right)$ that we meet when traversing $P_{13}$ backwards (starting at $\left.v_{3}\right), P_{1}^{u}$ as the subpath of $P_{12}$ directed from $v_{1}$ to $b(u), P_{2}^{u}$ as the subpath of $P_{12}$ directed from $b(u)$ to $v_{2}$, and $P_{3}^{u}$ as the subpath of $P_{13}$ directed from $b(u)$ to $v_{3}$. It follows by definition that $P_{1}, P_{2}, P_{3}$ are internally vertex-disjoint, and hence the claim follows.

To finish the proof, let $S \subseteq D$ be a subdigraph with vertex set

$$
V(S):=\bigcup_{u \in V(F)}\left(\bigcup_{i=1}^{d(u)} V\left(P_{i}^{u}\right)\right),
$$

and arcs

$$
A(S):=\left\{\left(v\left(e, u_{1}\right), v\left(e, u_{2}\right)\right) \mid e=\left(u_{1}, u_{2}\right) \in A(F)\right\} \cup\left(\bigcup_{u \in V(F)}\left(\bigcup_{i=1}^{d(u)} A\left(P_{i}^{u}\right)\right)\right) .
$$

$S$ is a digraph isomorphic to a subdivision of $F$ in which a vertex $u \in V(F)$ is represented by the branch-vertex $b(u)$. This concludes the proof.

## 3 | CONCLUDING REMARKS

In this note we showed that $s m_{\vec{\chi}}(t) \leq 2 m_{\chi}(t)-1$ and $b m_{\vec{\chi}}(t) \leq 2 m_{\chi}(2 t)-1$ for any $t \geq 1$. As far as lower bounds are concerned, it is not hard to see that $m_{\chi}(t) \leq \min \left\{\operatorname{sm}_{\vec{\chi}}(t), b m_{\vec{\chi}}(t)\right\}$ for every $t \geq 1$. Indeed, for any graph $G$ with $\chi(G) \geq \min \left\{s m_{\vec{\chi}}(t), b m_{\vec{\chi}}(t)\right\}$, as $\vec{\chi}(\overleftrightarrow{G})=\chi(G)$, by definition $\overleftrightarrow{G}$ contains $\overleftrightarrow{K}_{t}$ either as a strong minor or as a butterfly minor, each of which implies that $G$ contains a $K_{t}$-minor. Therefore, our results reduce the question about the asymptotics of $s m_{\vec{\chi}}(t)$ and $b m_{\vec{\chi}}(t)$ to the well-studied undirected version of the problem. Also, as Hadwiger's conjecture is known to be true for small values, for $3 \leq t \leq 6$ we have

$$
t+1 \leq s m_{\vec{\chi}}(t) \leq 2 t-1 \quad \text { and } \quad t+1 \leq b m_{\vec{\chi}}(t) \leq 4 t-1 .
$$

We believe that the upper bounds should not be tight. To support this intuition, recall from our remark after the proof of Theorem 1 that a more careful analysis of the proof yields the stronger statement that any digraph $D$ with $\vec{\chi}(D) \geq 2 m_{\chi}(t)-1$ contains a strong $\overleftrightarrow{K}_{t}$-minor model in which between any two branch sets, there are at least two arcs spanned in both directions. Under the assumption that Hadwiger's conjecture is true, the bound $2 t-1$ for this stronger property would be sharp, as shown by $\overleftrightarrow{K}_{2 t-2}$. This indicates that our proof should not be expected to give a tight bound for the problem of forcing a strong $\overleftrightarrow{K}_{t}$-minor. Instead it seems plausible that $\operatorname{sm}_{\vec{\chi}}(t)=t+1$ (and maybe $b m_{\vec{\chi}}(t)=t+1$ ) for any $t \geq 3$.

Problem 1. Does every digraph $D$ with $\vec{\chi}(D) \geq t+1$ contain $\overleftrightarrow{K}_{t}$ as a strong minor (butterfly minor)?

Already resolving the first open case $t=3$ would be quite interesting.

## ACKNOWLEDGMENTS

We would like to thank Patrick Morris for fruitful discussions on the topic. The research of the first author was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-The Berlin Mathematics Research Center MATH + (EXC-2046/1, project ID: 390685689). The research of the second author was funded by Deutsche Forschungsgemeinschaft-DFG-GRK 2434 Facets of Complexity. Open Access funding enabled and organized by Projekt DEAL.

## ORCID

Raphael Steiner (D) http://orcid.org/0000-0002-4234-6136

## REFERENCES

1. P. Aboulker, N. Cohen, F. Havet, W. Lochet, P. S. Moura, and S. Thomassé, Subdivisions in digraphs of large out-degree or large dichromatic number, Electron. J. Combin. 26 (2019), no. 3, P3.19.
2. M. Axenovich, A. Girão, R. Snyder, and L. Weber, Strong complete minors in digraphs, Comb. Probab. Comput. 31 (2020), no. 3, 489-506.
3. E. Berger, K. Choromanski, M. Chudnovsky, J. Fox, M. Loebl, A. Scott, P. Seymour, and S. Thomassé, Tournaments and colouring, J. Combin. Theory Ser. B. 103 (2013), no. 1, 1-20.
4. Z. Chen, J. Ma, and W. Zang, Coloring digraphs with forbidden cycles, J. Combin. Theory Ser. B 115 (2015), 210-223.
5. A. C. Giannopulou, K. Kawarabayashi, K. Kreutzer, and O. Kwon, The directed flat wall theorem, (S. Chawla, eds.), Society for Industrial and Applied Mathematics, USA, Proceedings of SODA 2020, 2020, pp. 239-258.
6. L. Gishboliner, R. Steiner, and T. Szabó, Dichromatic number and forced subdivisions, J. Comb. Theory. Ser. B. 153 (2020), 1-30.
7. A. Girão, K. Popielarz, and R. Snyder, Subdivisions of digraphs in tournaments, J. Combin. Theory Ser. B. 146 (2021), 266-285.
8. H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zürich. 88 (1943), 133-142.
9. A. Harutyunyan, T.-N. Le, A. Newman, and S. Thomassé, Coloring dense digraphs, Combinatorica. 39 (2019), 1021-1053.
10. A. Harutyunyan, T.-N. Le, S. Thomassé, and H. Wu, Coloring tournaments: From local to global, J. Combin. Theory Ser. B. 138 (2019), 166-171.
11. K. Kawarabayashi and K. Kreutzer, The directed grid theorem, Proceedings of STOC 2015, 2015, pp. 655-664.
12. I. Kim and P. D. Seymour, Tournament minors, J. Combin. Theory Ser. B. 112 (2015), 138-153.
13. A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskretn. Analiz. 38 (1982), 37-58.
14. A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica. 4 (1984), no. 4, 307-316.
15. C. Jagger, An extremal function for digraph subcontraction, J. Graph Theory. 21 (1996), no. 3, 343-350.
16. T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas, Directed tree-width, J. Combin. Theory Ser. B. 82 (2001), no. 1, 138-154.
17. W. Mader, Degree and local connectivity in digraphs, Combinatorica. 5 (1985), 161-165.
18. W. Mader, Existence of vertices of local connectivity $k$ in digraphs of large outdegree, Combinatorica. 15 (1995), 533-539.
19. W. Mader, On topological tournaments of order 4 in digraphs of outdegree 3, J. Graph Theory. 21 (1996), 371-376.
20. M. G. Millani, R. Steiner, and S. Wiederrecht, Colouring non-even digraphs, arXiv:1903.02872 (2019). (Submitted for publication, revisions under review).
21. V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory Ser. B. 33 (1982), no. 3, 265-270.
22. S. Norin, L. Postle, and Z. X. Song, Breaking the degeneracy barrier for coloring graphs with no $K_{t}$ minor, arXiv:1910.09378 (2019).
23. L. Postle, An even better density increment theorem and its application to Hadwiger's Conjecture, arXiv:2006.14945 (2020).
24. B. Reed and D. R. Wood, Forcing a sparse minor, Combin. Probab. Comput. 25 (2016), no. 2, 300-322.
25. A. D. Scott, Subdivisions of transitive tournaments, European J. Combin. 21 (2000), 1067-1071.
26. P. Seymour, Hadwiger's conjecture, Open Problems in Mathematics (J. Forbes Nash Jr. and M. Th. Rassias, eds.), Springer, Cham, Switzerland, 2016, pp. 417-437.
27. A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 2, 261-265.

How to cite this article: T. Mészáros and R. Steiner, Complete directed minors and chromatic number, J. Graph Theory. 2022;101:623-632. https://doi.org/10.1002/jgt.22844


[^0]:    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    © 2022 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

[^1]:    $\overline{{ }^{1} \text { We note that this class, in particular, includes orientations of cactus graphs (and hence orientations of cycles), as well }}$ as bioriented forests.

[^2]:    ${ }^{2}$ Such trees can easily be obtained by considering a breadth-first in-search (resp., out-search) starting from $r_{i}^{-}$(resp., $r_{i}^{+}$).

