4 research outputs found

    Разработка микроштампов для изготовления микроконтейнеров для адресной доставки лекарственных веществ

    Get PDF
    В настоящее время существующие способы доставки лекарственных средств в организм к месту их применения имеют ряд недостатков, главный из которых - наличие побочных эффектов. Последние десятилетия разрабатываются способы адресной (таргетной) доставки лекарственных веществ, позволяющие доставлять препарат непосредственно к очагу патологии. Применение каждого из способов таргетной доставки сопряжено с использованием определенной оснастки, которая в настоящее время изготавливается лишь в нескольких исследовательских центрах в Западной Европе и США. Поэтому целью данной работы является разработка новой российской технологии изготовления металло-керамических штампов для их последующего применения в области таргетной доставки лекарственных веществ.Currently, most used methods of drug delivery have a number of disadvantages. The essential of which is the presence of side effects. The last decades have been developing methods of targeted drug delivery, allowing to deliver the drug directly to the site of pathology. Such delivery methods involves the use of equipment, which is currently being produced in only a few research centers in Western Europe and the USA. The purpose of this work is to develop a new Russian technology for manufacturing metal-ceramic stamps for their subsequent use in the field of targeted drug delivery

    Modifications of Graphene Prepared by Chemical Vapor Deposition for Diagnostic Applications

    Get PDF
    xx, 186 p.El grafeno es un alótropo de carbono que ha demostrado tener excelentes propiedades electrónicas, mecánicas y térmicas. Gracias a ello, tiene un gran potencial en campos como biomedicina o electrónica. Entre sus distintos derivados, el grafeno crecido por deposición química de vapor (CVD) y transferido sobre superficie, ha demostrado ser un material idóneo para este tipo de aplicaciones debido a su elevada conductividad, carácter ambipolar de efecto campo, y una relación calidad/coste de producción conveniente. Sin embargo, la investigación del grafeno aún está en sus inicios y es necesaria una alta reproducibilidad de sus resultados para la futura comercialización y estandarización de los dispositivos de grafeno. Para ello, en esta tesis se ha desarrollado un protocolo de limpieza posterior al proceso de litografía con el fin de eliminar los residuos poliméricos de dicho proceso y obtener el mejor rendimiento electrónico. Además, la implementación de capacidades sensóricas sobre dispositivos electrónicos como los transistores de grafeno permite el desarrollo de herramientas para diagnóstico y tratamiento de diversas condiciones neurológicas como epilepsia o Parkinson. Con este propósito, el grafeno ha sido modificado covalentemente vía una adición radicalaria siguiendo diferentes estrategias compatibles con el diseño del dispositivo, con el fin de anclar los bio-receptores de interés. Como prueba de concepto, el sistema descrito se usó con un aptámero selectivo para trombina, demostrando resultados prometedores.Así mismo, se demostró por primera vez el uso del grafeno CVD en espectrometría de masas MALDI-TOF gracias a su capacidad de ionización/desorción. En concreto, se ha desarrollado un sistema compuesto por diferentes azucares modificados sobre grafeno como herramienta diagnóstica para la detección de proteínas. En este dispositivo se usó el grafeno como superficie asistente para la ionización/desorción láser en espectrometría de masas que, combinado al carácter conductor del grafeno, ha permitido reemplazar ITO como material de soporte y trabajar en condiciones de ausencia de matriz

    Optoelectronic Devices Based on Two Dimensional Materials.

    Get PDF
    Two dimensional (2D) semiconductors have attracted tremendous attention due to their fascinating electrical and optical properties. Transition metal dichalcogenides (TMDs) are semiconductors with band gap ranging from 1.57 eV to 2 eV, which are suitable for optoelectronic applications with visible and near-infrared light regime. Because of the reduced physical dimensions, quantum confinement becomes a dominated factor that strongly modulates TMDs properties, and therefore triggers a series of interesting phenomenon that has never been observed in bulk TMDs, including layer dependent indirect to direct band transition, larger exciton binding energy and enhanced light matter interaction. The strong light matter interaction makes TMDs a robust platform to study the physics of quasi-particles such as exciton, trion and even high order exciton particles. In this dissertation we investigate exciton dynamics and especially exciton modulation in single layer TMDs and two type TMDs heterostructures. Then the dissertation will focus on TMDs based optoelectronic device applications. For two dimensional materials, such as transition metal dichalcogenides (TMDs) and black phosphorus, many novel properties only exist at low dimensional scale. Currently, atomic force microscopy (AFM), the most commonly used method to determine the thickness of two-dimensional (2D) materials, was known to have issues with its low scan speed and inevitable invasion. Fast and non-invasive identification of layer numbers of these 2D materials is important for future materials study. Here, in this dissertation we will first demonstrate that phase-shifting interferometry (PSI) can be used as a rapid and non-invasive method to identify the surface topography of 2D materials. The optical path length (OPL) obtained by PSI shows a good agreement with model calculations and a direct relationship between OPL and the layer number of 2D materials can be established. This technique enables a rapidly study of the surface information of various types 2D materials. Due to the quantum confinement effect and sizeable semiconductor bandgap, exciton in TMDs becomes a centre topic either for physical research or engineering applications. Many efforts have been made to study the exciton dynamics in TMDs, but the exciton modulation is still barely been touched. The first part of this dissertation will focus on the ferroelectric driven method to modulate exciton and trion behaviour in monolayer molybdenum and tungsten diselenides. By using a lithium niobate substrate with substrate domain engineering, it can achieve selectively doping of monolayer TMDs upon it. The inverted and pristine domain has been proved to be able to host two different types of ferroelectric doping as a result of the remnant polarization. The photoluminescence spectroscopy is used to spatially probe the exciton and trion dynamics, and it has demonstrated that these ferroelectric domains can significantly enhance or inhibit photoluminescence, leading to strong exciton and trion modulation. This novel modulation method opens a new routine to create optically active heterostructures that can be used for photodetectors and on-chip light sources. Based on the understanding of the exciton behaviour of TMDs, this dissertation further demonstrates two type of 2D materials optoelectronic device applications. Firstly, the high efficiency monolayer molybdenum ditelluride light emitting diode has been demonstrated. The device is driven by direct current tunnelling effect, and in the meanwhile, the device can be also used as photodetector with low dark current and fast response time. As the counterpart of direct current driven, the alternative current driven monolayer tungsten disulfide light emitting diode has also been successful demonstrated. Due to the emission only happens within the rising and falling edges of AC voltage, the unique pulsed light emission can be achieved in this structure
    corecore