77,867 research outputs found

    A Comparison of Local Authority Procedures in Road Safety.

    Get PDF
    It has been recognised that there are large differences in the working practices of safety teams amongst the highway authorities of Great Britain. This study was undertaken to assist the development of short courses in safety and accident analysis for (amongst others) road safety staff and traffic engineers. The main objective of the study was to discern differences in working practices between three different kinds of highway authority. The study also enabled University and local authority personnel to work together to identify more precisely the teaching objectives in certain proposed courses in safety; and to identify and provide appropriate course material, within the overall aim of making such courses relevant to a wider range of audience

    Response to automatic speed control in urban areas: A simulator study.

    Get PDF
    Speed affects both the likelihood and severity of an accident. Attempts to reduce speed have centred around road design and traffic calming, enforcement and feedback techniques and public awareness campaigns. However, although these techniques have met with some success, they can be both costly and context specific. No single measure has proved to be a generic countermeasure effective in reducing speed, leading to the suggestion that speed needs to be controlled at the source, i.e. within the vehicle. An experiment carried out on the University of Leeds Advanced Driving Simulator evaluated the effects of speed limiters on driver behavionr. Safety was measured using following behaviour, gap acceptance and traffic violations, whilst subjective mental workload was recorded using the NASA RTLX. It was found that although safety benefits were observed in terms of lower speeds, longer headways and fewer traffic light violations, drivers compensated for loss of time by exhibiting riskier gap acceptance behaviour and delayed braking behaviour. When speed limited, drivers' self-reports indicated that their driving performance improved and less physical effort was required, but that they also experienced increases in feelings of frustration and time pressure. It is discussed that there is a need for a total integrated assessment of the long term effects of speed limiters on safety, costs, energy, pollution, noise, in addition to investigation of issues of acceptability by users and car manufacturers

    Smart distribution board overload detector by using microcontroller

    Get PDF
    A statistic by Economic Planning Unit (EPU) on the electricity growth in Malaysia has shown an increment in line with economic growth [1]. In line with government policies, the energy supply industry has been molding itself to cater to the rapid development of the nation in hopes of creating a better and smarter nation [2]. There are many developments and implementation of smart energy consumption to save energy and cater to future energy challenges

    Identifying how automation can lose its intended benefit along the development process : a research plan

    Get PDF
    Doctoral Consortium Presentation © The Authors 2009Automation is usually considered to improve performance in virtually any domain. However it can fail to deliver the target benefit as intended by those managers and designers advocating the introduction of the tool. In safety critical domains this problem is of significance not only because the unexpected effects of automation might prevent its widespread usage but also because they might turn out to be a contributor to incident and accidents. Research on failures of automation to deliver the intended benefit has focused mainly on human automation interaction. This paper presents a PhD research plan that aims at characterizing decisions for those involved in development process of automation for safety critical domains, taken under productive pressure, to identify where and when the initial intention the automation is supposed to deliver can be lost along the development process. We tentatively call such decisions as drift and the final objective is to develop principles that will allow to identify and compensate for possible sources of drift in the development of new automation. The research is based on case studies and is currently entering Year 2

    Accident Analysis and Prevention: Course Notes 1987/88

    Get PDF
    This report consists of the notes from a series of lectures given by the authors for a course entitled Accident Analysis and Prevention. The course took place during the second term of a one year Masters degree course in Transport Planning and Engineering run by the Institute for Transport Studies and the Department of Civil Engineering at the University of Leeds. The course consisted of 18 lectures of which 16 are reported on in this document (the remaining two, on Human Factors, are not reported on in this document as no notes were provided). Each lecture represents one chapter of this document, except in two instances where two lectures are covered in one chapter (Chapters 10 and 14). The course first took place in 1988, and at the date of publication has been run for a second time. This report contains the notes for the initial version of the course. A number of changes were made in the content and emphasis of the course during its second run, mainly due to a change of personnel, with different ideas and experiences in the field of accident analysis and prevention. It is likely that each time the course is run, there will be significant changes, but that the notes provided in this document can be considered to contain a number of the core elements of any future version of the course

    Introducing the STAMP method in road tunnel safety assessment

    Get PDF
    After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative. (C) 2012 Elsevier Ltd. All rights reserved

    Management of Road Infrastructure Safety

    Get PDF
    Road Infrastructure Safety Management (RISM) refers to a set of procedures that support a road authority in decision making related to the improvement of safety on a road network. Some of these procedures can be applied to existing infrastructure, thus enabling a reactive approach; and other procedures are used in early stages of a project's life-cycle allowing a proactive approach. The objective of this paper is to provide an overview of the most well-known procedures and present a series of recommendations for successful road infrastructure safety management. The work described in the paper was completed by the IRTAD sub-working group on Road Infrastructure Safety Management and presented in detail in the respective Report. The methodology followed on this purpose included the description of the most consolidated RISM procedures, the analysis of the use of RISM procedures worldwide and the identification of possible weaknesses and barriers to their implementation, the provision of good practice examples and the contribution to the scientific assessment of procedures. Specifically, the following RISM procedures were considered: Road Safety Impact Assessment (RIA), Efficiency Assessment Tools (EAT), Road Safety Audit (RSA), Network Operation (NO), Road Infrastructure Safety Performance Indicators (SPI), Network Safety Ranking (NSR), Road Assessment Programs (RAP), Road Safety Inspection (RSI), High Risk Sites (HRS) and In-depth Investigation. Each procedure was described along with tools and data needed for its implementation as well as relevant common practices worldwide. A synthesis summarizing the key information for each procedure was also drafted. Based on a survey on 23 IRTAD member countries from worldwide, the lack of resources or tools is the most commonly stated reason for not applying a RISM procedure. This has been frequently found mainly in European countries. Another common reason is the absence of recommendations/guidelines, especially for SPI, RAP, RSI and RSA. This highlights the importance of the presence of some legislation regulating the application of the procedures. Lack of data was found important mainly for SPI, HRS and EAT. Good practices of road infrastructure safety management have been explored in order to find solutions to the issues highlighted by the survey and provide examples about how these issues have been overcome in some countries. Specifically, issues related to data, legal framework, funding, knowledge, tools and dealing with more RISM procedures were addressed. Finally, nine key messages and six recommendations for better Road Infrastructure Safety Management were developed based on the conclusions made

    Road safety analysis of urban roads. Case study of an Italian municipality

    Get PDF
    Attention to the most vulnerable road users has grown rapidly over recent decades. The experience gained reveals an important number of fatalities due to accidents in urban branch roads. In this study, an analytical methodology for the calculation of urban branch road safety is proposed. The proposal relies on data collected during road safety inspections; therefore, it can be implemented even when historical data about traffic volume or accidents are not available. It permits us to identify geometric, physical, functional, and transport-related defects, and elements which are causal factors of road accidents, in order to assess the risk of death or serious injuries for users. Traffic volume, average speed, and expected consequences on vulnerable road users in case of an accident allow us to calculate both the level of danger of each homogeneous section which composes the road, and the hazard index of the overall branch. A case study is presented to implement the proposed methodology. The strategy proposed by the authors could have a significant impact on the risk management of urban roads, and could be used in decision-making processes to design safer roads and improve the safety of existing roads

    Unstable Slope Management Program

    Get PDF
    INE/AUTC 11.1

    Effects of Transit Signal Priority on Traffic Safety: Interrupted Time Series Analysis of Portland, Oregon, Implementations

    Full text link
    Transit signal priority (TSP) has been implemented to transit systems in many cities of the United States. In evaluating TSP systems, more attention has been given to its operational effects than to its safety effects. Existing studies assessing safety effects of TSP reported mixed results, indicating that the safety effects of TSP vary in different contexts. In this study, TSP implementations in Portland, Oregon, were assessed using interrupted time series analysis (ITSA) on month-to-month changes in number of crashes from January 1995 to December 2010. Single-group and controlled ITSA were conducted for all crashes, property-damage-only crashes, fatal and injury crashes, pedestrian-involved crashes, and bike-involved crashes. Evaluation of the post-intervention period (2003 to 2010) showed a reduction in all crashes on street sections with TSP (-4.5 percent), comparing with the counterfactual estimations based on the control group data. The reduction in property-damage-only crashes (-10.0 percent) contributed the most to the overall reduction. Fatal and injury crashes leveled out after TSP implementation but did not change significantly comparing with the control group. Pedestrian and bike-involved crashes were found to increase in the post-intervention period with TSP, comparing with the control group. Potential reasons to these TSP effects on traffic safety were discussed.Comment: Published in Accident Analysis & Preventio
    corecore