11 research outputs found

    A quantitative assessment of group delay methods for identifying glottal closures in voiced speech

    No full text
    Published versio

    A Quantitative Assessment of Group Delay Methods for Identifying Glottal Closures in Voiced Speech

    Get PDF
    Abstract-Measures based on the group delay of the LPC residual have been used by a number of authors to identify the time instants of glottal closure in voiced speech. In this paper, we discuss the theoretical properties of three such measures and we also present a new measure having useful properties. We give a quantitative assessment of each measure's ability to detect glottal closure instants evaluated using a speech database that includes a direct measurement of glottal activity from a Laryngograph/EGG signal. We find that when using a fixed-length analysis window, the best measures can detect the instant of glottal closure in 97% of larynx cycles with a standard deviation of 0.6 ms and that in 9% of these cycles an additional excitation instant is found that normally corresponds to glottal opening. We show that some improvement in detection rate may be obtained if the analysis window length is adapted to the speech pitch. If the measures are applied to the preemphasized speech instead of to the LPC residual, we find that the timing accuracy worsens but the detection rate improves slightly. We assess the computational cost of evaluating the measures and we present new recursive algorithms that give a substantial reduction in computation in all cases

    A Quantitative Assessment of Group Delay Methods for Identifying Glottal Closures in Voiced Speech

    Get PDF
    Abstract-Measures based on the group delay of the LPC residual have been used by a number of authors to identify the time instants of glottal closure in voiced speech. In this paper, we discuss the theoretical properties of three such measures and we also present a new measure having useful properties. We give a quantitative assessment of each measure's ability to detect glottal closure instants evaluated using a speech database that includes a direct measurement of glottal activity from a Laryngograph/EGG signal. We find that when using a fixed-length analysis window, the best measures can detect the instant of glottal closure in 97% of larynx cycles with a standard deviation of 0.6 ms and that in 9% of these cycles an additional excitation instant is found that normally corresponds to glottal opening. We show that some improvement in detection rate may be obtained if the analysis window length is adapted to the speech pitch. If the measures are applied to the preemphasized speech instead of to the LPC residual, we find that the timing accuracy worsens but the detection rate improves slightly. We assess the computational cost of evaluating the measures and we present new recursive algorithms that give a substantial reduction in computation in all cases

    Phase Minimization for Glottal Model Estimation

    Full text link

    Articulatory-based Speech Processing Methods for Foreign Accent Conversion

    Get PDF
    The objective of this dissertation is to develop speech processing methods that enable without altering their identity. We envision accent conversion primarily as a tool for pronunciation training, allowing non-native speakers to hear their native-accented selves. With this application in mind, we present two methods of accent conversion. The first assumes that the voice quality/identity of speech resides in the glottal excitation, while the linguistic content is contained in the vocal tract transfer function. Accent conversion is achieved by convolving the glottal excitation of a non-native speaker with the vocal tract transfer function of a native speaker. The result is perceived as 60 percent less accented, but it is no longer identified as the same individual. The second method of accent conversion selects segments of speech from a corpus of non-native speech based on their acoustic or articulatory similarity to segments from a native speaker. We predict that articulatory features provide a more speaker-independent representation of speech and are therefore better gauges of linguistic similarity across speakers. To test this hypothesis, we collected a custom database containing simultaneous recordings of speech and the positions of important articulators (e.g. lips, jaw, tongue) for a native and non-native speaker. Resequencing speech from a non-native speaker based on articulatory similarity with a native speaker achieved a 20 percent reduction in accent. The approach is particularly appealing for applications in pronunciation training because it modifies speech in a way that produces realistically achievable changes in accent (i.e., since the technique uses sounds already produced by the non-native speaker). A second contribution of this dissertation is the development of subjective and objective measures to assess the performance of accent conversion systems. This is a difficult problem because, in most cases, no ground truth exists. Subjective evaluation is further complicated by the interconnected relationship between accent and identity, but modifications of the stimuli (i.e. reverse speech and voice disguises) allow the two components to be separated. Algorithms to measure objectively accent, quality, and identity are shown to correlate well with their subjective counterparts
    corecore