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ABSTRACT 

Articulatory-based Speech Processing Methods for Foreign Accent Conversion. 

(August 2011) 

Daniel Lee Felps, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ricardo Gutierrez-Osuna 

 

 

 

The objective of this dissertation is to develop speech processing methods that enable 

the modification of a speaker’s accent without altering their identity. We envision accent 

conversion primarily as a tool for pronunciation training, allowing non-native speakers to hear 

their native-accented selves. With this application in mind, we present two methods of accent 

conversion. The first assumes that the voice quality/identity of speech resides in the glottal 

excitation, while the linguistic content is contained in the vocal tract transfer function. Accent 

conversion is achieved by convolving the glottal excitation of a non-native speaker with the 

vocal tract transfer function of a native speaker. The result is perceived as 60% less accented, but 

it is no longer identified as the same individual. The second method of accent conversion selects 

segments of speech from a corpus of non-native speech based on their acoustic or articulatory 

similarity to segments from a native speaker. We predict that articulatory features provide a 

more speaker-independent representation of speech and are therefore better gauges of linguistic 

similarity across speakers. To test this hypothesis, we collected a custom database containing 

simultaneous recordings of speech and the positions of important articulators (e.g. lips, jaw, 

tongue) for a native and non-native speaker. Resequencing speech from a non-native speaker 

based on articulatory similarity with a native speaker achieved a 20% reduction in accent. The 

approach is particularly appealing for applications in pronunciation training because it modifies 
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speech in a way that produces realistically achievable changes in accent (i.e., since the technique 

uses sounds already produced by the non-native speaker).  

A second contribution of this dissertation is the development of subjective and objective 

measures to assess the performance of accent conversion systems. This is a difficult problem 

because, in most cases, no ground truth exists. Subjective evaluation is further complicated by 

the interconnected relationship between accent and identity, but modifications of the stimuli (i.e. 

reverse speech and voice disguises) allow the two components to be separated. Algorithms to 

measure objectively accent, quality, and identity are shown to correlate well with their subjective 

counterparts.   
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1. INTRODUCTION 

Despite years or decades of immersion in a new culture, older learners of a second 

language (L2) typically speak with a so-called ―foreign accent,‖ sometimes despite concerted 

efforts at improving pronunciation. Among the many aspects of proficiency in a second language 

(e.g., lexical, syntactic, semantic, phonological), native-like pronunciation can be the most 

difficult to master because of the neuro-musculatory basis of speech production (Scovel, 1988). 

A foreign accent does not necessarily affect a person’s ability to be understood (Munro and 

Derwing, 1995), but it may subject them to discriminatory attitudes and negative stereotypes 

(Anisfeld et al., 1962; Arthur et al., 1974; Lippi-Green, 1997; Ryan and Carranza, 1975; 

Schairer, 1992). Thus, by achieving near-native pronunciation, L2 learners stand to gain more 

than just better intelligibility. 

During the last two decades, a handful of studies have suggested that it would be 

beneficial for L2 speakers to be able to listen to their own voices producing native-accented 

utterances (Jilka and Möhler, 1998; Sundström, 1998; Tang et al., 2001; Watson and Kewley-

Port, 1989). The rationale is that, by stripping away information that is only related to the 

teacher’s voice quality, it easier to perceive differences between their accented utterances and 

accent-free counterparts. This dissertation seeks to transform foreign-accented speech into its 

native-accented counterpart. The problem of accent conversion (AC) is related to but distinct 

from that of voice-conversion (Stylianou et al., 1998). Whereas voice conversion seeks to 

transform the voice of a speaker to sound like a different speaker, accent conversion seeks to 
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transform only those features of an utterance that contribute to accent while maintaining those 

that carry the identity of the speaker.  

This dissertation investigates several issues surrounding the automatic generation of 

accent-modified speech. Two methods of AC are presented: 1) spectral foreign accent 

conversion (SpFAC), which modifies non-native speech based on the source/filter 

decomposition of speech, and 2) concatenative foreign accent conversion (ConFAC), which 

resequences existing non-native speech based on acoustic or articulatory similarity to a native 

speaker. The primary objective of the work is to explore the potential benefits of relying on 

physical movements of the tongue, lips, and jaw to perform accent conversion. We hypothesize 

that the articulatory domain is better suited to separate features that cue accent from those related 

to voice quality. To achieve this objective we collected two specialized corpora (one from a 

native of American English; another from a non-native speaker) containing simultaneous 

recordings of articulatory and acoustic waveforms. Accent conversion was then performed in 

both domains (articulatory and acoustic) and evaluated using subjective and objective measures 

designed specifically for this work. 

1.1 Organization of this document 

This dissertation is organized as follows. Section 2 reviews perceptual and social 

experiments involving foreign accented speakers as well as selected speech processing methods 

that are used throughout the dissertation work. Section 3 provides a literature review of related 

research and previous approaches to accent conversion. Section 4 presents an accent conversion 

system based on the source/filter decomposition of speech (SpFAC) and evaluates its effect on 

the perception of accent, quality, and identity. Section 5 proposes ways to measure these criteria 

objectively. Section 6 presents an accent conversion system based on concatenative speech 

synthesis (ConFAC). Section 7 evaluates ConFAC and compares the use of acoustic or 
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articulatory features for accent conversion. The final section presents directions for future 

research. 
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2. BACKGROUND 

This section reviews various topics concerning accent, including the perception of 

foreign-accented speech among native speakers, the automatic detection of accent, and the use of 

computer tools to improve one’s pronunciation of a particular language. It also discusses general 

theories of speech production to motivate our choice of using articulatory (rather than acoustic) 

features to perform accent conversion. Finally, it reviews select speech processing algorithms 

relevant to this dissertation.  

2.1 Overview of linguistic terms 

Among the linguistic terminologies found throughout the manuscript, the most 

fundamental concept is that of the phoneme. A phoneme is the smallest structural unit that 

distinguishes meaning in a language. For example, the word ―phoneme‖ is phonetically spelled 

using the six phonemes /foʊnim/ (see APPENDIX A for a full listing). The related term phone is 

used to describe a particular instance of a phoneme in a real utterance. However speech is much 

more than a sequence of phones; the actual production of a phone is influenced by several factors 

including the surrounding phones (coarticulation), the intent of the message (e.g. is the speaker 

informing, requesting, apologizing, or disagreeing?), and speaker-dependent factors (e.g. accent 

and emotion). Phones vary by stress (energy of a sound), length (duration of a sound), tone 

(short pitch variation, i.e. that which changes the meaning of a sound in tonal languages), and 

intonation (long pitch variation, i.e. the difference between a question and a statement). The 

collection of these descriptors makes up the prosody of speech. Prosody helps listeners parse 

speech and it also conveys information related to syntax and pragmatics.  
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2.2 Accent 

The term ―accent‖ describes the way a speaker produces the sounds of a language. An 

accent can indicate the speaker’s first language (native or non-native), where they were born 

(regional accent), religious affiliation, ethnic group, or socio-economic class. Accents affect both 

acoustic (e.g. formants) and prosodic (e.g. intonation, duration, and rate) aspects of speech. The 

related term ―dialect‖ describes a person’s accent in addition to their vocabulary and grammar. 

However, the proposed speech processing algorithms modify only the segmental and prosodic 

aspects of speech and are therefore referred to as methods of ―accent conversion.‖ 

2.2.1 Native speaker reactions to non-native speech 

Various research paradigms have been used to measure the effect of accent on listener 

evaluations of personality, intelligence, socioeconomic status, and degree of desired interaction 

with the speaker (Arthur et al., 1974; Brennan and Brennan, 1981; De La Zerda and Hopper, 

1979; Fielding and Evered, 1980; Giles and Powesland, 1975; Kalin and Rayko, 1978; Ryan et 

al., 1977; Ryan and Carranza, 1975; Strongman and Woosley, 1967). The most powerful of these 

paradigms is the matched guise experiment first proposed by (Lambert et al., 1960), which uses 

bilingual speakers to control for other variables such as voice quality and speaker personality. 

Such speakers typically learn both languages as a child, which is common in situations where 

each parent speaks a different native language or the household language is different than the 

schooling language. Each accent then becomes a ―guise‖ for that speaker; naïve listeners will 

mistakenly assume it is two different people. 

Strongman and Woosley (1967) conducted a matched guise experiment with bilingual 

speakers who could effortlessly switch between Yorkshire and London accents (Yorkshire is 

located in northern England and London is located in southern England). Evaluative reactions 

from northern and southern English participants were collected. The authors found that 
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participants from either location rated the London guises to have higher speaker confidence and 

the Yorkshire guises to have higher honesty, reliability, and generosity. Another significant 

finding was that only northern judges rated the Yorkshire guises to be less irritable and more 

good natured, kind hearted, and industrious; Giles and Powesland (1975) later termed this kind 

of one-sided finding as ―accent loyalty.‖  

Accent discrimination does not only stem from geographic differences. Anisfeld et al. 

(1962) performed a matched guise using Jewish speakers who also had the ability to speak with a 

standard Canadian-English accent. Both Jewish and non-Jewish participants rated the guises on 

14 traits, which spanned from physical evaluations (e.g. height or good looks) to personal 

evaluations (e.g. humor or kindness). Both groups rated the Canadian-English guises more 

favorably on height, good looks, and leadership. In another example of accent loyalty, the Jewish 

participants rated the Jewish guises more favorably on sense of humor and kindness. 

A few authors have investigated the effect of different degrees of the same accent on 

evaluations of socioeconomic status. Brennan and Brennan (1981) recorded nine Mexican 

Americans with varying degrees of accent. The speakers were then evaluated by a panel of 

linguists to assign each speaker an accent index based on 18 pronunciation variables. The 

speakers were evaluated by 43 Mexican American and 37 Anglo American high school students; 

each student rated the speakers on status variables (e.g. level of education or success) and 

solidarity variables (e.g. trustworthiness or friendliness). They found accent index to be highly 

correlated with the status variables (i.e. the higher the accent, the lower the status). These results 

parallel those found independently by Ryan et al. (1977), who found that small increases in 

accentedness were associated with gradually less favorable ratings of status and solidarity. 

Furthermore, Sebastian et al (1979) concluded that not only were Spanish accented speakers 
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thought to be in a lower social class, but the participants also had less desire to be in a social 

relationship with them.  

These previous studies tested the ability of accent to convey stereotypes and prejudices 

in an academic setting (i.e. through a questionnaire). Other studies have shown that non-native 

speakers can be at a serious disadvantage in real-world situations such as when looking for 

employment and housing. One investigation (De La Zerda and Hopper, 1979) asked employers 

to evaluate simulated interviews with potential employees with various degrees of Mexican-

American accent. The employers rated each potential employee with respect to three job 

positions: supervisor, skilled technician, and semi-skilled worker. The results show that 

employers favored standard English speakers as supervisors and accented speakers for the semi-

skilled worker position. In a similar experiment, Kalin and Rayko (1978) tested if this effect was 

second-language dependent. For this purpose, the authors asked Canadian employers to rate four 

varieties of speakers for four levels of job status. Employers favored Canadian-English speakers 

for the highest status jobs over German, then south-Asian, and finally west-Indian speakers; the 

order was reversed for the lowest status jobs.  

Housing is a scenario where potential tenants are at the mercy of landlords. Purnell et al. 

(1999) employed a matched guise experiment with a single talented speaker who was able to 

speak three dialects of American English: standard, African American vernacular, and Chicano. 

The speaker called a landlord three times over a short period requesting to look at an apartment. 

The results show that landlords discriminated against prospective tenants on the basis of their 

accent. Further analysis revealed that the number of callbacks for African American and Chicano 

guises was positively correlated with the demographics of the neighborhood (i.e. fewer callbacks 

in areas with small minority populations). Another study uncovered a surprising relationship 

between accent and the diagnosis of an illness. Fielding and Evered (1980) asked physicians to 
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diagnose an illness from a recording of a speaker describing their illness. They found that the 

physicians were more likely to diagnose a speaker with a Received Pronunciation English accent 

as having a psychosomatic problem, whereas speakers with a rural English accent were more 

likely to be diagnosed with a physical problem. In conclusion, even if a speaker’s accent does 

not hinder their ability to be understood, they may still stereotyped by those with whom they 

communicate.  

2.2.2 Relationship between accent and identity 

The main goal of accent conversion (i.e., altering the perceived accent of a speaker) 

simultaneously and unavoidably alters the perceived identity. Criminals are aware of this fact 

and, in addition to disguising their face, often disguise their voice; statistics from the German 

Federal Police Office show that criminals employed some form of voice disguise (e.g. creaky 

voice, whispering, faking an accent, or pinching one’s nose) in 15-25% of criminal cases 

involving speaker identification (Künzel, 2000). Sjӧstrӧm et al. (2006) simulated this experience 

to determine the effect of a dialect switch on voice identification. They employed a bidilectal 

speaker who was born near Stockholm (ST), but moved to Scania (SC) when he was five years 

old. As an adult, he continued to use both dialects on a daily basis. Stimuli for a voice line-up 

were collected from the speaking talent and four foil speakers (2 mono-dialectal speakers from 

either SC or ST). The experiment was composed of a familiarization stage and an identification 

stage. Participants first became familiar with one of the dialects from the bidialectal speaker (ST 

or SC) by listening to a recorded passage. They were then presented with one of the four voice 

line-ups in Table 1 and asked to select the speaker that most closely resembles the voice used 

during familiarization. The results show that the speaker was not recognized when he switched 

dialects (i.e. ST-SC and SC-ST). Thus, dialect is an important clue for speaker identification. 
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This issue complicates the evaluation of accent conversion and reinforces the ambiguous nature 

of the result. 

Table 1  

The experimental conditions of a voice identification task. This study investigated the potential use of 

accent as a voice disguise [reprinted from (Sjöström et al., 2006)]. Discrimination sensitivity is measured 

using the d’ sensitivity index from signal detection theory
1
. 

Test Familiarization voice Line-up voices d’ value 

SC-SC TargetSC Foil 1-4 + TargetSC 1.87 

ST-ST TargetST Foil 1-4 + TargetST 1.93 

ST-SC TargetST Foil 1-4 + TargetSC 0.44 

SC-ST TargetSC Foil 1-4 + TargetST -0.07 

 

2.2.3 Spanish-English specific differences 

Though some aspects of a foreign accent may be specific to the individual, most can be 

predicted from the characteristics of the first and second language (L1 and L2). This dissertation 

focuses on Spanish accented English, which is the most prominent foreign accent found in 

Texas. This sub-section compares the phonetic and prosodic differences unique to Spanish 

speakers of English, although there are many other differences beyond the scope of this 

dissertation (e.g. orthographic, punctuation, grammar, and vocabulary).  

The English vowel system, with 12 monophthongs, is especially difficult for Spanish 

speakers since the Spanish vowel system has only 5. Figure 1 identifies differences between the 

two vowel sets; uniquely English vowels are often pronounced/heard as the nearest Spanish 

vowel. Namely, seat /sIt/ sounds like sit /sit/, caught /kɔt/ like coat /cot/, and pool /pul/ like pull 

 

 
1
 Chance level for d’ is 0. The d’ scores for ST-SC and SC-ST conditions are not significantly different 

than 0, t(39)=1.36, p>0.05), indicating random response (Sjöström et al., 2006). 
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/pƱl/. The English vowels /ӕ/, /ɑ/, and /ʌ/ are often mapped to the Spanish vowel /a/, which 

leads to confusion among cart, cat, and cut. The English central vowel /ə/ is a reduction of 

primary vowels that appear in unstressed positions, but Spanish speakers often use the primary 

form instead (e.g. about /əbaut/ is pronounced as /abaut/) (Coe, 2001).  

Spanish and English share 17 identical or near equivalent
2
 consonants, though this does 

not prevent such phones from being used incorrectly. For example, Spanish speakers often drop 

/k/ following /ŋ/ as in sink or replace /m/ for /n/ in a final position turning dream into drean. The 

most problematic English consonants are fricatives. Namely the English phones /ʒ/, /ʤ/, /tʃ/, /ʃ/, 

are frequently confused (compare pleasure, plejure, pletcher, plesher). Of the four, only /tʃ/ exists 

in Spanish
3
. The Spanish /s/ is also the closest phone to the English /z/.  

Certain English consonant clusters are also problematic. A common example is /s/ 

appearing with another consonant at the beginning of a word. Since this never occurs in Spanish, 

Spanish speakers will often add an initial /e/ (e.g. Espain). Other examples include espres for 

express, brefas for breakfast, or win for wind.  

 

 
2
 An example of a ―near equivalent‖ consonant is the English approximant /ɹ/ compared to the Spanish 

alveolar flap /ɾ/. Although these sounds are not identical, they are difficult to differentiate in continuous 
speech. See Coe (2001) for a comprehensive list. 
3
 The Spanish /s/ can sound like /ʃ/ in certain contexts, e.g. see may be pronounced as she. 
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Figure 1 A comparison of Spanish and American English vowel systems. Spanish vowels are shown in 

blue. The only vowel that is not an English vowel is open-front vowel /a/, which is closest to /ӕ/ in fast. 

Spanish and English also have pronunciation differences at the suprasegmental level. 

Nava et al. (2009) investigated the relationship between rhythm and prominence and its 

applications to automatic pronunciation scoring for Spanish learners of English. They summarize 

the differences between English and Spanish prosody as: “English is considered a “stress-

timed” language due to the presence of vowel reduction, varied syllable structure inventory 

including complex onsets and codas, and vowels in stressed syllables that are regularly longer 

than in unstressed syllables. Spanish, on the other hand, is considered “syllable-timed” and does 

not have vowel reduction, has a reduced syllable inventory in comparison with stress-timed 

languages, and the difference between stressed and unstressed vowels is not as great‖ (Nava et 

al., 2009). The authors analyze a corpus of native and nonnative English speakers to show that 

phrasal prominence is a good indicator of overall pronunciation ability. In fact, prosody is so 

important to American English that it has been used to classify three different American accents 

(i.e. typical accents from California, Mississippi, and New York) (Ikeno and Hansen, 2006). 
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2.3 Speech production 

This sub-section reviews the anatomical act of speech production and gives an account 

of speech production models that motivate the proposed methods of accent conversion.The 

human speech production system relies on ―articulators‖ (e.g. vocal folds, tongue, teeth, jaw, 

lips, and velum) to modify the configuration of the vocal tract and produce sound (Figure 2). 

Speech production begins as air leaves the lungs and passes through the trachea and vocal folds. 

If the vocal folds are contracted, they vibrate to produce a periodic excitation to the rest of the 

production system. The frequency of the vibrations is called the fundamental frequency and the 

perception of this frequency is called pitch. Depending on whether this vibration occurs, sounds 

are classified as voiced or unvoiced.  

Given both the glottal excitation and vocal tract shape, an acoustic waveform is uniquely 

defined (Fant, 1970; Flanagan, 1972; Schroeter and Sondhi, 1994; Stevens, 1998). This is known 

as the forward or articulatory-to-acoustic mapping; it is a univalued mapping (although highly 

nonlinear) that allows speech to be synthesized from articulatory parameters. This complex 

process is often approximated as a linear system using the acoustic theory of speech production, 

which we review next. 

 

Figure 2 Midsagittal diagram of human speech production mechanisms. 
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2.3.1 Acoustic theory of speech production 

Introduced by Fant (1970), the acoustic theory of speech is often referred to as the 

source-filter theory because it models speech as the interaction between two components: a 

source and a filter (Figure 3). The source is created as air from the lungs passes through the 

vocal folds. The filter is defined by the configuration of the oral and nasal tracts. Each 

configuration resonates at certain frequencies, just as a guitar string’s resonant frequencies are 

determined by its length. Those areas of concentrated energy are known as formants, and they 

appear as dark bands in spectrograms (see Figure 4). 

Source-filter theory is useful due to the fact that it can be implemented as a slowly 

varying discrete-time linear system. Speech can be considered slowly varying for short periods 

because it is quasi-periodic (i.e. the speech signal is effectively stationary for periods of about 

10-30 ms). During these brief glimpses, the articulators are relatively fixed. Shown in Figure 5, 

voiced speech begins when an impulse train (whose frequency is determined by the pitch period) 

is convolved with a glottal filter, which shapes the impulses into a smooth glottal pulse 

waveform. Unvoiced speech, on the other hand, is produced with a white noise generator. From 

there, the vocal tract filter shapes the source. A final filter relates the pressure and volume 

velocity of speech at the lips. The acoustic theory of speech production provides motivation for 

spectral foreign accent conversion, which will be presented in section 4. 
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Figure 3 According to the acoustic theory of speech production, speech is the convolution of a source (left) 

with a filter (middle). 

 

Figure 4 Wideband spectrogram of the sentence, ―How much was it?‖ 

 

Figure 5 General discrete-time model of speech production (Deller et al., 2000). 
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2.3.2 Modulation theory of speech production 

Source-filter theory provides a functional model of speech production that is simple, 

accurate, and easy to represent mathematically. Modulation theory (Traunmüller, 1994) provides 

a broader, more abstract view of speech production. Modulation theory regards speech as a 

combination of linguistic, expressive, organic, and perspectival qualities (Table 2). It 

characterizes speech as the complex modulation of a carrier signal by articulatory gestures: this 

carrier signal is ―an unarticulated, „colorless‟ and linguistically featureless oral vowel, produced 

with the vocal folds optimally adduced for phonation and relaxed (slack) to the extent to which 

expressive factors allow‖ (Traunmüller, 1998). This neutral sound is determined by the 

morphological and biomechanical properties of the speech organs. Therefore, according to 

Modulation theory, the speaker’s characteristics are not solely determined by the glottal source 

(as in source-filter theory), but also by a neutral vocal tract. Modulation theory also seeks to 

explain speech perception by viewing it as a demodulation process, which allows listeners to 

recover the message once they ―tune into‖ the carrier of the speaker and the idiosyncratic way in 

which the speaker modulates the signal (i.e. speaks). According to this view, then, a foreign 

accent may be removed from an utterance by extracting its voice-quality carrier and convolving 

it with the linguistic gestures of a native-accented counterpart.  
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Table 2  

Types of information and variation in speech [reprinted from (Traunmüller, 1998)]. 

Quality and characterization Information conveyed Phenomena involved 

Linguistic 

Social, conventional 

message, dialect, 

accent, speech style 

Words, speech sounds, 

prosodic patterns 

Expressive 

Psycho-psychological, 

within speaker variation 

Emotion, attitude, 

environment 

Vocal effort speaking rate, 

pitch dynamics, 

voice quality 

Organic 

Morphological, 

between speaker variation 

Age, sex, pathology Larynx size, 

vocal tract length 

Perspectival 

Spatial, transmittal 

Place, distance, orientation, 

transmission channel 

Acoustic and optic factors 

 

2.3.3 Front cavity hypothesis 

The specific motivation for using articulatory information to perform accent conversion 

stems from work by Kuhn (1975) and Hermansky and Broad (1989), which suggests that ―the 

size and shape of vocal tract‟s front cavity is the primary carrier of linguistic information. The 

back cavity geometry is its causal consequence and contributes mainly speaker-dependent 

information.‖ Thus, the frontal cavity hypothesis (FCH) provides an approach for addressing the 

key challenge in accent conversion: separating linguistic information from that which is speaker-

dependent. Namely, according to this hypothesis, the front cavity of the vocal tract captures the 

linguistic information. Support for this hypothesis is shown in Figure 6, which depicts the vocal 

tract (mid-saggital x-ray tracings) for an adult male and a child for two stationary vowels. As 

predicted by FCH, both oral cavities have similar shapes, but the back cavity is much larger in 

the adult. A handful of opposing studies report significant differences between speakers’ 

articulatory configurations, but none are able to determine if these differences affect production 

(Hashi et al., 1998; Johnson et al., 1993; Simpson, 2001; Westbury et al., 1998).  

Thorough testing of the front cavity hypothesis requires data collection on the entire 

vocal tract. Magnetic Resonance Imaging (MRI) is currently the best way to obtain such 
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information (Story et al., 1996), but there are no public, multiple speaker MRI databases. 

Instead, this dissertation uses partial vocal tract information (going as far back as the tongue 

dorsum) collected using an electromagnetic articulograph. We test the similarity of articulatory 

trajectories for two speakers using a custom speech synthesizer that can be driven by articulatory 

features. This is a significant improvement over previous studies that measure similarly directly 

in the articulatory domain because it allows us to estimate the acoustic consequences of 

articulatory differences.  

 

Figure 6 Tracings of mid-saggital x-rays of the vowels /i/ and /a/ produced by an adult male and a child. 

Though the adult’s vocal tract will be much longer than the child’s, the front cavity is approximately the 

same shape. This suggests that the front of the vocal tract captures the linguistic information while the 

back carries mostly speaker dependent information [reprinted from (Hermansky and Broad, 1989)]. 

2.3.4 Language specific articulatory settings 

Further motivation for articulatory-based accent conversion can be found in studies of 

language-dependent articulatory settings. Honikman (1964) defines articulatory settings as the 

“gross oral posture and mechanics required for the economic and fluent production of the 

established pronunciation of a language.” Language-dependent articulatory differences are 

primarily a matter of efficiency since languages have different distributions of sounds. For 
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example, Indian languages are spoken with the jaws held relatively loosely, facilitating the 

production of frequently occurring retroflex consonants. Relative differences between French 

and British-English articulatory settings are summarized in Table 3 (Honikman, 1964).  

The existence of language-dependent articulatory settings has important implications for 

second language learning. It suggests that non-native speakers of a language can only achieve 

fluent pronunciation of that language by learning its default articulatory settings (in addition to 

its phonemes and prosody). Furthermore, a speaker’s foreign accent may be partially explained 

by using a foreign articulatory setting. If this is this case, then accent conversion may benefit 

from articulatory information. Admittedly, the articulatory data used in this dissertation is not 

complete enough to detect most of the differences listed in Table 3, but it may contain indirect 

evidence of such occurrences. As an example, speakers of British-English generally anchor their 

tongue laterally to the roof of the mouth, but our dataset cannot detect this because it only 

measures the vocal tract at points along the midsaggital plane. However, lateral anchoring of the 

tongue restricts its entire movement including those along the midsaggital plane. We next 

discuss the articulatory dataset in more detail.  
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Table 3  

Relative differences in articulatory settings for British-English and French languages (Honikman, 1964). 

Setting British-English French 

Jaw loosely closed slightly open 

Lip neutral; moderately active rounded; vigorously active 

Oral cavity relaxed cheeks contracted 

Main consonant articulator tip – alveolar blade – dental 

Tongue anchorage to roof laterally to floor centrally 

Tongue tip tapered untapered 

Tongue body slightly concave to roof convex to roof 

Tongue underside concave to roof neutral 

 

2.3.5 Articulatory corpora 

A special database was collected for this research at the Centre for Speech Technology 

Research, University of Edinburgh in Fall 2009 using a Carstens AG500 3D-articulograph. The 

non-native subject (RGO) is from Madrid, Spain. English is his second language and he began 

studying it at age 6, but he primarily spoke Spanish until he moved to the United States at the 

age of 25. At the time of the recording he was 41 years old and had been living in the U.S. for 16 

years. The native speaker (MAB) is a monolingual speaker who grew up in New York; he was 

39 years old at the time of the recording. Both subjects recorded the same 344 sentences chosen 

from the Glasgow Herald corpus (APPENDIX B). In addition, RGO recorded 206 sentences not 

spoken by MAB. Audio recordings were captured at a sampling rate of 32 kHz with an AKG 

CK98 shotgun microphone. Articulatory features were simultaneously recorded through the use 

of ten electromagnetic pellets— four were used to cancel head motion and provide a frame of 

reference, while the other six were attached to capture articulatory movements (upper lip, lower 

lip, jaw, tongue tip, tongue mid, and tongue back); the front-most tongue sensor was positioned 

1cm behind the actual tongue tip, the rearmost sensor (TD) as far back as possible without 

creating discomfort for the participant, and the third sensor was placed equidistant from TT and 
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TD (Hoole et al., 2003). Example trajectories for the phrase ―Prepared for deployment‖ are 

shown in Figure 7. See APPENDIX D for additional post processing procedures. 

 RGO and MAB databases contain 20,000 and 13,000 phones respectively. For 

comparison, Clark et al. (2007) evaluated the Festival text-to-speech synthesis on four databases 

ranging from 14,000 phones to 175,000 phones. The smallest database tested was collected using 

a Carstens AG100 (RGO and MAB were collected with the more recent Carstens AG500). The 

authors noted that the articulatory instrumentation reduced the segmental quality of the 

synthesized speech and made the voice sound ―somewhat unnatural.‖ The authors ultimately 

concluded that a database with 36,000 phones was the minimum possible size to achieve 

reasonable performance (mean opinion score of 3 out of 5) for text-to-speech synthesis. Despite 

this unfavorable outlook, however, the RGO database is the most extensive single-session 

collection of EMA data. For comparison, the MOCHA-TIMIT (Wrench, 1999) and X-Ray 

Microbeam (Westbury, 1994) datasets contain 30% and 50% fewer sentences per speaker.  
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Figure 7 Articulatory trajectories for the phrase ―prepared for deployment.‖ Features are grouped in their 

x- and y-coordinate pairs; x-coordinates are plotted with a dashed line. The data has been artificially 

scaled and offset for appearance.  
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2.4 Synthesis and modification of speech  

We next review conventional approaches to speech synthesis and modification. The final 

topic of voice conversion is closely related to accent conversion. 

2.4.1 Speech synthesis  

The ultimate goal for speech synthesizers is to artificially create speech that sounds 

natural and intelligible, but so far this goal has been elusive. Approaches to speech synthesis can 

be divided into two broad categories: rule-based (e.g. articulatory and formant) and corpus-based 

(e.g. concatenative and HMM).  

Traditional articulatory synthesizers model the physical act of speaking rather than 

speech acoustics. Given a model of the vocal tract, the vocal tract transfer function can be 

calculated. In Figure 8, a cross-sectional view of the vocal tract is approximated using a tube-

model; the vocal tract transfer function is then directly calculated using the planar wave 

equations: 
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where      ) is the air volume velocity and      ) is the cross sectional area of the tube 

(Riegelsberger, 1997). Additional refinements can be made by considering source/filter 

interactions, radiation at the lip, glottal-source characteristics, and acoustic losses of the vocal 

tract (caused by viscosity, thermal conductivity, and wall vibration). This type of articulatory 

synthesis produces intelligible, but unnatural sounding speech because the models largely 

depend on expert guesses (rules).  

Another class of articulatory synthesizers attempts to model the articulatory-to-acoustic 

relationship rather than vocal tract itself. These methods employ a large database of 
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articulatory/acoustic spectrum pairs to create a mapping from articulatory parameters to the 

acoustic spectrum. A variety of mapping techniques have been proposed. Shiga and King (2004) 

proposed a codebook approach that finds a single spectral envelope for each cluster of the 

articulatory parameters. The estimated spectrum for an unknown articulatory configuration is the 

envelope associated with its nearest cluster. A related approach (Kaburagi and Honda, 1998) 

estimates a spectrum using a weighted sum from the nearest codebook entries (weights are 

inversely proportional to the distance of the corresponding articulatory parameters). Toda et al. 

propose a statistical articulatory-to-acoustic mapping using Gaussian mixture models (Toda et 

al., 2008), which was later modified to take advantage of phonetic information (Nakamura et al., 

2006). Hidden markov models can also be used for this purpose (Hiroya and Honda, 2004) (Ling 

et al., 2009).  

Formant synthesis is a rule-based approach that directly models speech acoustics rather 

than the process that creates them. Klatt’s formant synthesizer (shown in Figure 9) uses 19 

parameters to describe speech, including formant location, bandwidth, amplitude, gain, pitch, 

and glottal shape (Klatt, 1980). This level of control makes formant synthesizers invaluable for 

research in speech perception. However, while the resulting speech is highly intelligible, 

deriving accurate values for the parameters is difficult and time consuming. 
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Figure 8 Articulatory speech synthesis mimics the human speech production process. In this example, a 2-

dimensional view of the vocal tract is approximated using a discrete area function ATract. Given this 

discrete representation, the vocal tract transfer function Htract can be calculated from the planar wave 

equation [reprinted from (Schroeter, 2008)].  

 

Figure 9 Klatt’s hybrid serial/parallel formant synthesizer uses 19 parameters to synthesize speech 

[reprinted from (Schroeter, 2008)].  
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Today’s state-of-the-art speech systems are based on concatenative or statistical 

techniques. The concatenative approach works by ―gluing‖ together previously recorded chunks 

of speech. In theory, the minimum number of sounds a concatenative synthesizer needs is the 

number of phonemes in the language (about 40 in English). In practice, this does not produce 

natural speech because it neglects coarticulatory effects. To address the issue of coarticulation, 

many systems employ diphones (adjacent phoneme pairs) at the expense of increased memory 

requirements since there are potentially 40  40 = 1,600 diphones in English, though 1,000 is a 

better estimate since not all pairs are used (Syrdal et al., 1995)). For applications that have a 

limited vocabulary (e.g. telephone directory systems), storage at the word level may be feasible, 

but this is also not straightforward since words spoken in isolation are quite different from those 

in conversation (Klatt, 1987). Phone, diphone, and word-based synthesizers that contain only one 

sample for each unit are known as fixed-inventory synthesizers. On the other hand, unit selection 

synthesizers store several instances of each unit, thereby improving the chances of finding a 

well-matched unit. Unit selection needs a large speech corpus to ensure phonetic diversity and 

prevent the selection of poorly matched units. Details on the mathematical formulation of unit 

selection will be presented in sub-section 6.3.1. Festival (Clark et al., 2007) is an example of a 

concatenative synthesizer capable of performing both fixed-inventory and unit-selection based 

synthesis. 

Recently HMM-based synthesizers have gained popularity due to their ability to create 

fluid speech from a small corpus of speech. This form of synthesis is related to automatic speech 

recognition (ASR). HMM-based synthesizers describe speech as a sequence of phonemes with 

each phoneme modeled as a three-state HMM (HMM synthesis leverages many algorithms 

developed for ASR). Synthesis is performed by combining a sequence of these models and 

imposing dynamic constrains to estimate spectral features vectors (e.g. MFCC). The result is 
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convolved with a model of excitation to produce speech. HMM synthesis is perceptually smooth, 

but of poor voice quality due to the synthetic nature of the excitation signal (Tokuda et al., 

2002).  

2.4.2 Speech modification 

Speech modification is distinguished from speech synthesis in that it alters existing 

speech rather than creating it. Speech modification typically involves altering the duration and 

intonation properties of speech. In time scaling, one wishes to change the duration of the speech 

signal without affecting frequency content (e.g., playing back at a higher speed would reduce the 

duration of the speech signal but also increase its pitch), whereas in pitch scaling one seeks to 

change the perceived pitch of the utterance without affecting duration.  

The most widely used technique for speech modification (both pitch-scaling and time-

scaling) is Pitch-Synchronous Overlap and Add (PSOLA) (Moulines and Charpentier, 1990). 

PSOLA refers to a family of signal processing techniques that decompose speech into short 

windows (2-4 pitch periods in length) and later combine them to construct a new (possibly 

modified) speech signal. Several versions of PSOLA have been proposed in the literature, 

including Fourier-domain FD-PSOLA, linear-prediction LP-PSOLA, and time-domain TD-

PSOLA (Moulines and Charpentier, 1990; Moulines and Laroche, 1995). These algorithms 

perform comparably under modest pitch-scale and time-scale modification factors, but FD-

PSOLA is the most robust to spectral distortion during the pitch modification step. Figure 10 

illustrates the basic PSOLA framework which involves (1) decomposing the speech signal into a 

series of short-time analysis signals, (2) modifying each analysis signal, and (3) combining the 

modified analysis signals. Further details on this method are provided in the description of our 

first method of accent conversion (Section 4). 
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Recently, the parametric encodings used by the STRAIGHT (Kawahara, 1997) and 

Harmonic plus Noise Model (HNM) (Stylianou, 2001) methods have shown to produce more 

natural speech than PSOLA. The HNM represents speech as a time-varying harmonic 

component plus a modulated noise component. The decomposition of a speech signal into these 

two components provides a robust representation suitable for modification and is capable of 

producing a highly natural-sounding speech. Similarly, STRAIGHT was developed to provide a 

flexible analysis-synthesis framework for speech perception research (Kawahara, 1997). 

STRAIGHT has evolved significantly over the years; the current approach decomposes speech 

into three parts: 1) fundamental frequency, 2) smoothed spectrogram, and 3) a time-frequency 

periodicity map that controls the ratio of noise at each frequency (Figure 11). This representation 

enables easy, high-quality modifications of speech. Pitch modification is performed by updating 

the fundamental frequency parameter and time modification is performed by duplicating/deleting 

frames. We use STRAIGHT synthesis in our second method of foreign accent conversion. 

2.4.3 Voice conversion 

Voice conversion (VC) is the process of modifying speech to alter the perceived identity 

of a source speaker. The desired identity change is usually specified by providing samples of 

speech from a target speaker. VC has applications in speech synthesis and speech perception. As 

an example, VC can be used to increase the number of available voices in speech synthesis 

systems. Instead of storing a large amount of data for each voice, a single voice for each gender 

is stored and then additional voices are stored as transformations of the baseline voice. It has also 

been used to investigate the acoustic features related to speaker identity and defeat speaker 

identification systems (Qin et al., 2008). In the entertainment industry, VC may be used to 

regenerate voices for actors/actresses who are no longer alive.   
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Figure 10 PSOLA modification of speech. The original speech is (a) windowed at pitch synchronous 

locations, (b) resequenced to simulate a longer pitch period, and (c) added together to give the impression 

of a lower pitch [reprinted from (Schroeter, 2008)]. 

 

(a) (b) 

Figure 11 STRAIGHT parameterization of speech consists of (a) smooth spectrogram and (b) aperiodicity 

signal ( fundamental frequency not shown). 
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Voice conversion is performed in four basic steps: acoustic modeling, alignment, 

mapping, and synthesis (Turk and Arslan, 2006). This process is summarized in Figure 12. 

During the acoustic modeling step, the short-term spectral properties of the speech signal are 

captured into a low-dimensional feature vector, for both source and target speech signals. Linear 

Predictive Coding (LPC) is one popular representation as it captures resonances in the vocal tract 

and can also be used to estimate the glottal excitation signal through inverse filtering
4
. During 

the alignment step, utterances from the source and the target are time aligned, typically in an 

automatic fashion by means of Dynamic Time Warping (Abe et al., 1988) or Hidden Markov 

Models (Arslan, 1999). During the mapping step, a transformation from source to target features 

is found through machine learning. Common mapping techniques include vector quantization 

(Abe et al., 1988), neural networks (Narendranath et al., 1995), and Gaussian mixture models 

(Kain, 2001; Stylianou et al., 1998; Toda et al., 2007). Baudoin and Stylianou (1996) compared 

these three methods and found Gaussian mixture models to produce the most convincing 

transformations, but spectral envelopes tends to be over-smoothed. Finally, the estimated target 

features are synthesized using a method compatible with the acoustic features chosen during the 

first step (e.g. LPC vocoder, HNM (Stylianou et al., 1998), or STRAIGHT (Toda et al., 2007)). 

These methods assume that multiple sentences of speech are recorded for both the source and 

target speakers (typically around 50).  

 

 
4
 LPC coefficients are sensitive to numerical errors and do not have good interpolation properties (Gold 

and Morgan, 2000; Moulines and Laroche, 1995). For this reason, other acoustic representations have been 

found to be more suitable for voice conversion, such as Mel Frequency Cepstral Coefficients (Chung-

Hsien et al., 2006; Stylianou et al., 1998) or Line Spectrum Frequencies (Hui and Young, 2006; Kain, 

2001; Kain and Macon, 1998; Turk and Arslan, 2006). 
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Figure 12 A typical voice conversion system. A mapping is learned from the source to the target speaker 

in the training phase. Test utterances from the source are transformed in the recall phase.  
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3. LITERATURE REVIEW 

This section reviews the current state of accent conversion and previous uses of speech 

modification to enhance pronunciation training. It also discusses ways to quantify accent, 

quality, and identity. 

3.1 Accent conversion 

Accent conversion has grown out of many fields of research including voice and spoken 

language conversion as well as studies on the perceptual cues of accent. The earliest forms of 

accent conversion can be found in spoken language conversion (SLC) systems, whose goal is to 

enable utterances to be created in a language different from that of the source corpus (e.g. create 

Spanish speech from an English corpus). The primary challenge in SLC is to find phonetic 

material from the corpus that can be used to realize phones unique to the target language (e.g. 

Spanish trilled /r/). The simplest solution is to define a mapping to the nearest source phone (e.g. 

English approximant /ɹ/); such a process can be performed manually using linguistic knowledge 

or automatically (Teutenberg and Watson, 2006) (Loots and Niesler, 2011).  

Campbell (1998) used SLC to synthesize English words from Japanese speech. In this 

case, five Japanese vowels must be mapped into fifteen English vowels. Allophonic
5
 variants of 

the five Japanese vowels come close to some uniquely English vowels, but the speech database 

was broadly transcribed without allophonic labels. Campbell proposed to incorporate fine 

phonetic details representative of the way a native English speaker would produce the utterance. 

His solution relied on a separate English text-to-speech system to synthesize a native example of 

 

 
5
 An allophone is one of a set of possible sounds used to pronounce a single phoneme. For example, the 

allophone [p
h
] (as in pin) is different from the allophone [p] (as in spin), but they are both allophones for 

the phoneme /p/. 
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the target utterance. Cepstral values were then extracted from the native utterance and used to 

select units in the Japanese corpus that had similar cepstral values (Figure 13). MOS evaluation 

(best=5, worst=1) showed that including cepstral values from a native speaker improved quality 

(MOS=2.9) over the standard phone mapping approach (MOS=2.3). Though the author did not 

explicitly measure differences in accent, he noted that utterances created with the proposed 

method sounded more native than the baseline system. This SLC system provided inspiration for 

our concatenative foreign accent conversion (Section 6). 

Campbell’s approach has recently been adapted to perform ―accent morphing‖ 

(Huckvale and Yanagisawa, 2007). The authors create English-accented Japanese utterances (E) 

by synthesizing Japanese words with an English TTS. This is accomplished with a special 

pronunciation dictionary that phonetically spells Japanese words with English phonemes. Accent 

―morphing‖ is achieved by altering both prosodic and segmental features of E to more closely 

match an utterance created with a Japanese TTS (J). Namely, the authors morphed the spectral 

envelope of E by interpolating line-spectral-pairs and altered E’s pitch and rhythm using PSOLA 

(described in sub-section 4.1). The individual and combined effects of each morph were tested 

using an intelligibility test, which the authors deemed equivalent to measuring accentedness 

because English-accented Japanese is less intelligible than native Japanese. Their results show 

that the segmental and prosodic morphs individually yield a slight improvement in intelligibility. 

Interestingly, the combined effect was much stronger than that predicted by the individual 

improvements. Unlike Campbell’s SLC, which is limited to the sounds of the source speaker, 

accent morphing provides a way to create sounds outside of the source corpus. However, if the 

native TTS voice (J) is dramatically different from the source TTS voice (E), then the morphed 

voice may not maintain the original identity. 
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(a) (b) 

Figure 13 Comparison of two spoken language conversion systems to synthesize English utterances from a 

corpus of Japanese speech. (a) Basic phone mapping and (b) Campbell’s proposed enhancement 

(Campbell, 1998). 

Other approaches modify accent by manipulating the parameters of a formant 

synthesizer. As an example, Yan et al. (2007) model the formant spaces for vowels in British, 

Australian, and American accents using two-dimensional (2D) HMMs. A 2-D HMM consists of 

1-D HMM in time and a 1-D HMM in frequency. Each state of a 2-D HMM models the 

distribution of one formant of a phoneme, which can be used to estimate the formant trajectory 

of a vowel. Accent conversion (of vowels) is performed by altering formant locations, 

bandwidths, and amplitudes according to the probability distributions obtained from the target 

accent HMM. Vowel duration is modified with TD-PSOLA according to mean vowel durations 

from the target accent. Pitch is similarly modified according to broad patterns of pitch 

trajectories (e.g. initial slope, final slope, pitch range, and overall sentence slope). An ABX test 
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confirms that accent converted utterances are closer to the target accent than the source accent in 

about 75% of the cases.  

The preceding methods of accent conversion focus on the segmental modification of 

speech. Yanguas and Quatieri (1999) demonstrated that interchanging the glottal flow 

derivatives of two speakers could also affect accent. Glottal flow is a measure of volume velocity 

air flow through the vocal folds (i.e. the ―source‖ in acoustic theory of speech production, sub-

section 2.3.1). It can be estimated by inverse filtering the speech waveform with an estimate of 

the vocal tract transfer function. Glottal flow interchange is achieved by convolving one 

speaker’s glottal flow derivative with another speaker’s vocal tract transfer function over a single 

pitch period; utterances are created by combining multiple pitch periods with overlap add 

synthesis. The approach was tested on two sets of speakers in an informal study. The first pair 

had northern- and southern- American accents, while the second pair had Cuban- and Peruvian- 

Spanish accents. In both cases, interchanging the glottal flow derivative affected the perceived 

accent (although no formal results were presented). The authors also noted that modifying the 

pitch and timing of the speech without changing the glottal flow derivative had a similar but less 

intense effect. 

Most accent conversions systems measure the independent contribution of segmental 

and prosodic changes to the perception of accent (Felps et al., 2009; Huckvale and Yanagisawa, 

2007; Yan et al., 2007; Yanguas et al., 1999). However, the relative importance of segmental and 

prosodic information is dependent on the L1/L2 pairing. Magen (1998) studied the perceptual 

contribution of various factors to the perception of Spanish-accented English. She manually 

edited non-native speech samples to make them sound more native; the investigated factors 

included syllable structure, vowel quality, consonants, voicing, and stress. Participants rated the 

original and modified stimuli on a scale from 1 to 7 with 1 corresponding to a native accent. All 
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factors except voicing were significant, with syllable structure having the largest effect. While it 

is not practical to manually edit speech to alter its accent, studies like this one can point 

automatic accent conversion efforts in the right direction. 

Two accent conversion systems are studied in this dissertation. Spectral foreign accent 

conversion (Section 4) is similar in approach to Yanguas and Quatieri (1999). Concatenative 

foreign accent conversion (Section 6) is most similar to Campbell’s spoken language conversion 

(Campbell, 1998). However, we use real features from a native speaker (rather than estimates 

from TTS) to find the ―most native‖ diphones from the non-native speaker. Furthermore, we 

investigate the benefit of using articulatory features to drive the selection. 

3.2 Speech modification applications in pronunciation training 

During the last two decades a handful of studies have suggested that it would be 

beneficial for L2 students to be able to listen to their own voices producing native-accented 

utterances. Nagano and Ozawa (1990) evaluated a prosodic-conversion method for the purpose 

of teaching English pronunciation to Japanese learners. One group of students was trained to 

mimic utterances from a reference English speaker, whereas a second group was trained to 

mimic utterances of their own voices, previously modified to match the prosody of the reference 

English speaker. Pre- and post-training utterances from both groups of students were evaluated 

by native English listeners. Their results show students from the second group improved more 

than those from the first group. More recently, Bissiri et al. (2006) investigated the use of 

prosodic modification to teach German prosody to Italian speakers. Their results were consistent 

with those of Nagano and Ozawa (1990), and indicate that the learner’s own voice (with 

corrected prosody) was a more effective form of feedback than prerecorded utterances from a 

German native speaker. Anecdotal support for the use of accent-conversion is also provided by 

studies of categorical speech perception and production. In particular, Repp and Williams (1987) 
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compared the accuracy of speakers imitating isolated vowels in two continua: [u]-[i] and [i]-[æ]. 

Their results indicate that speakers were more accurate when imitating their own (earlier) 

productions of those vowels than when imitating vowels produced by a speech synthesizer. 

Probst et al. (2002) investigated the relationship between the student/teacher voice similarity and 

pronunciation improvement. Results from this study showed that learners who imitated a well-

matched speaker improved their pronunciation more than those who imitated a poor match, 

suggesting the existence of a user-dependent ―golden speaker.‖ Thus, one can argue that accent 

conversion would provide learners with the optimal golden speaker: their native-accented selves.  

A few computer assisted pronunciation tools have begun to incorporate prosodic-

conversion capabilities. These tools allow L2 learners to re-synthesize their own utterances with 

a native prosody, either through a manual editing procedure or with automated algorithms 

(Martin, 2004). Proper intonation and stress are especially critical in English because they 

provide a temporal structure that helps the listener parse continuous speech (Celce-Murcia et al., 

1996). Thus, a number of authors have suggested that prosody should be emphasized early on in 

teaching a second language (Chun, 1998; Eskenazi, 1999). However, speech intelligibility can 

also degrade as a result of segmental/spectral errors (Rogers and Dalby, 1996), which indicates 

that both segmental and supra-segmental features should be considered in pronunciation training 

(Derwing et al., 1998). This suggests that full accent-conversion (i.e., prosodic and segmental) 

would be beneficial in teaching pronunciation of a foreign language.  

3.3 Quantifying accent 

A non-native speaker is easily recognized by native speakers because their speech 

deviates from norms of the native language. These differences are dependent upon the first and 

second language pairing, e.g. Spanish speakers have difficulty with English vowels and sentence 

stress (see sub-section 0 for specific examples). Determining the contribution of acoustic 
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features (e.g. pitch, vowel duration, and formant location/bandwidth) to the perception of accent 

is an active area of study. In such studies, participants may be asked to evaluate accented speech 

using an identification task or holistic measure. Identification tasks require participants to 

classify speech into two or more possible accents. This approach is most useful when the 

possible dialects are similar (i.e. they share a common first language) (Ikeno and Hansen, 2006; 

Yan et al., 2007), though it loses sensitivity when differentiating radically different accents (e.g. 

Spanish accented English verses American English). In turn, holistic measures require 

participants to rate accented speech according to a Likert scale spanning from their native 

accent
6
 to some non-native accent. This approach has been used to evaluate both prosodic and 

segmental factors of non-native speech (Magen, 1998; Munro, 1995; Teutenberg and Watson, 

2006).  

3.3.1 Automatic classification of accents 

A variety of methods have also been developed to automatically classify accent, and can 

be grouped into three categories: methods that model the global acoustic distribution, methods 

based on accent-specific phone models, and analysis of pronunciation systems (Huckvale, 2007). 

The first approach models the distribution of acoustic vectors from speakers of a particular 

accent, e.g. formant frequencies of standard English vowels (Yan et al., 2007). Classification is 

achieved through pattern recognition, e.g. Gaussian mixture models (GMM) (Chen et al., 2001; 

Deshpande et al., 2005). Accent-specific phone models have been explored by Arslan and 

Hansen (Arslan and Hansen, 1996). Their method evaluated words sensitive to accent on 

separate HMM word recognizers trained for four accents (i.e. English, Turkish, German, or 

 

 
6
 It is also common to use the descriptor ―no accent‖ when referring to an accent that is identical to your 

own. 
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Chinese). The accent chosen was the one associated with the HMM that yielded the highest 

likelihood; their method compared favorably against classification performance by human 

participants. The final group takes a linguistic approach to accent classification, one which may 

be more sensitive than methods based on acoustic features (Huckvale, 2007). Barry et al. (1989) 

compared acoustic realizations within a particular speaker. By analyzing systematic differences 

(or similarities), the authors were able to separate four regional English accents; e.g. Northern 

English uses the same vowel for ―pudding‖ and ―butter,‖ but American English uses different 

vowels. Once such phonemic relations are established, it is then sufficient to evaluate the accent 

of a speaker based on a single sentence that exploits this information. A related approach 

analyzes a speaker’s phonetic tree to determine accent (Minematsu and Nakagawa, 2000).  

3.4 Quantifying quality 

This sub-section reviews ways to perceptually or objectively quantify quality. The 

Comparison Category Rating (CCR) is a perceptual measure of quality that presents participants 

with pairs of speech samples and asks them to rate the second sample relative to the first using a 

comparative mean opinion score (CMOS) (3-much better, 2-better, 1-slightly better, 0-about the 

same, -1-slightly worse, -2-worse, -3-much worse) (ITU-T, 1996). In a related test, Hall (2000) 

requires participants to listen to groups of 3 stimulus conditions (out of N total conditions) and 

specify which pair is the most similar and which pair is the most dissimilar. An NN 

dissimilarity matrix is calculated from these responses (2 points for the most dissimilar pair, 0 

points for the most similar pair, and 1 point for the remaining pair). The sum of all responses is 

analyzed with Multidimensional scaling (Kruskal, 1964) to find a low dimensional embedding 

where the structure of the data can be visualized. This approach has the potential to give a more 

complex interpretation of the data than CCR, but it is significantly more demanding on the 

participants. However, the current ITU recommendation to subjectively evaluate quality is to rate 
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utterances using a mean opinion score (MOS) (1-bad, 2-poor, 3-fair, 4-good, or 5-excellent) 

(ITU-T, 1996).  

3.4.1 Automatic assessment of quality 

Objective measures of quality can be broadly described as either intrusive or non-

intrusive. Intrusive measures evaluate the quality of modified speech against the original, high-

quality reference speech. The International Telecommunication Union (ITU) recommendation 

for end-to-end speech quality assessment is P.862, which achieves an average correlation of 0.94 

with subjective Mean Opinion Scores (MOS). Such intrusive models are ideal for testing coding 

or transmission systems because the original, unmodified speech is available for comparison. 

However, they are not appropriate for voice conversion systems; though a well-defined ground 

truth exists in this case (i.e. the voice of the native speaker), it is unrealistic to expect a 

transformed utterance to provide an exact match. For that matter, intrusive models are even more 

questionable for accent conversion systems because the latter lack a well-defined target.  

Non-intrusive measures of speech quality must be used when reference signals are too 

costly or impossible to obtain, in which case one must predict quality based on the test speech 

itself. Non-intrusive measures are well suited for testing satellite systems (Jin and Kubichek, 

1994), voice over IP, and cell phone networks (Malfait et al., 2006). The most common approach 

is to create a model of clean speech (e.g. with vector quantization) to serve as a pseudo-reference 

signal (Jin and Kubichek, 1994). The average distance to the nearest reference centroid provides 

an indication of speech degradation, which can then be used to estimate subjective quality. 

Models of the vocal tract (Gray et al., 2000) and the human auditory system (Doh-Suk and 

Tarraf, 2004) have also been proposed. The prevailing non-intrusive measure is ITU 

recommendation P.563 (Malfait et al., 2006), which is discussed in detail in sub-section 5.1. 
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3.5 Quantifying identity 

Speech is primarily viewed as a source of linguistic information, but secondary types of 

information (e.g. speaker identity, effort level, emotional state, health, and age) are also encoded 

as nonlinguistic variations of the basic linguistic message. In an effort to uncover the higher level 

perceptual processes related to identity, Voiers (1964) asked participants to describe speakers by 

49 candidate differential factors (e.g. happy, soft, excited, annoying, or foreign). A factor 

analysis determined the most significant speaker-discriminating features to be clarity, roughness, 

magnitude, and animation. As noted by Doddington (1985), there are three problems with this 

approach: 1) it is difficult for participants to pinpoint the descriptors of a voice that make it 

unique, 2) these descriptors are not necessarily measurable in terms of acoustic features, and 3) 

direct use of these factors did not provide effective speaker recognition.  

Matsumoto et al. (1973) proposed to infer the psychological acoustic space (PAS) of a 

subject. Participants were presented with pairs of 24 voice samples and asked to state whether or 

not they believed the two voice samples to be from the same speaker and indicate their level of 

confidence on a 3-point scale. A PAS was constructed using multidimensional scaling and the 

dimensions of the PAS were compared to acoustic features. Matsumoto et al. determined pitch to 

be the largest contributor to the perception of personal voice quality. Another common approach 

is to alter various components of speech and evaluate their effect on identity. Analysis-synthesis 

methods are well suited to this purpose and have been used on multiple occasions (Kuwabara 

and Takagi, 1991; Lavner et al., 2000). Unfortunately the results of these studies frequently 

contradict each other. Lavner et al. (2000) note that the search for a single set identifying 

features may be futile if those features fluctuate among speakers.  

The psychoacoustic paradigms mentioned above are designed to discover the perceptual 

bases for human speaker recognition. Although such information is certainly useful for accent 
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conversion, they do not provide a quantitative measure of identity (i.e. how does the identity of 

speaker A relate to the identity of speaker B). For example, voice conversion relies on the ABX 

test. In this test, participants are asked to listen to three utterances: the first two being the source 

and target voices (presented in a random order) followed by the transformed utterance. 

Participants respond with the perceived identity of the final utterance (X), deciding whether it 

was closer to the first voice (A) or the second (B). Kain (2001) points out that this test is 

fundamentally flawed since closer does not necessarily mean identical. Furthermore, it cannot 

measure cases where the converted utterance sounds like a third speaker. To address this issue, 

we propose an improved identity test in sub-section 4.3. 

3.5.1 Automatic classification of speaker identity 

Automatic methods to recognize a speaker from their voice are used in biometric 

applications (e.g. ―voice fingerprint‖). Such systems may measure segmental features (e.g. 

MFCC), pitch, timbre, and jitter (Kuwabara and Takagi, 1991; Matsumoto et al., 1973). 

Malayath et al. (1997) proposed a multivariate method to separate the two main sources of 

variability in speech: speaker identity and linguistic content. Namely, the authors used oriented 

PCA to project an acoustic feature vector (LPC-cepstrum) into a subspace that minimized 

speaker-dependent information while maximizing linguistic information; this method may also 

be used for the opposite problem: capturing speaker variability while reducing linguistic content. 

Lavner et al. (2000) investigated the relative contributions of various acoustic features (glottal 

waveform shape, formant locations, F0) to the identification of familiar speakers. Their results 

indicate that shifting the higher formants (F3, F4) has a more significant effect than shifting the 

lower formants, and that the shape of the glottal waveform is of minor importance provided that 

F0 is preserved. More interestingly, the study found that the very same acoustic manipulations 
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had different effects on different speakers, which suggests that the acoustic cues of identity are 

speaker-dependent.   
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4. SPECTRAL FOREIGN ACCENT CONVERSION  

Spectral foreign accent conversion (SpFAC) operates on the principles behind the 

source-filter model of speech (sub-section 2.3.1): it assumes that the voice quality/identity of 

speech resides in the source while the linguistic content is contained in the filter. According to 

this view, the accent of a speaker may be altered by convolving his/her source with the filter of a 

speaker with a different accent. This is a simplistic view of accent conversion, admittedly with 

several flaws, but this initial approach to AC served multiple purposes. Namely, it familiarized 

us with the basics of speech analysis and synthesis (e.g. LPC, pitch tracking, speech 

modification) and exposed us to the challenges of accent conversion. The remainder of this 

section provides an overview of the speech modification framework adopted for this work 

(PSOLA) and describes the segmental and prosodic modifications that make up spectral foreign 

accent conversion. 

4.1 Speech modification framework 

SpFAC’s general framework is based on the analysis/synthesis method of Fourier-

domain Pitch-Synchronous Overlap and Add (FD-PSOLA) (Moulines and Charpentier, 1990). 

The three stages of FD-PSOLA (i.e. analysis, modification, and synthesis) are illustrated in 

Figure 10.   
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During the analysis stage, the speech signal    ) is decomposed into a series of pitch-

synchronous short-time analysis windows       ). Our implementation (Figure 14) uses a pitch-

marking algorithm to estimate instants of glottal closure    (Kounoudes et al., 2002); each 

analysis window is framed with a Hanning window and transformed into the frequency domain
7
. 

As a result, all pitch-synchronous short-time spectra       ) are represented with the same 

length (e.g., 2,048 frequencies in our implementation).  

In the modification stage, the short-time spectra and their locations are modified to meet 

the desired pitch and timing (i.e., those of the American speaker, in our case). First, the short-

time spectra are transformed to match the new pitch period, which is equivalent to resampling 

since we operate in the frequency domain (i.e., spectral compression lowers the pitch and 

expansion raises it). However, naïve compression of the spectrum also shifts speech formants. 

For this reason, we first flatten the spectrum with a spectral envelope vocoder (SEEVOC) (Paul, 

1981). We also use a spectral folding technique (Makhoul and Berouti, 1979) to regenerate high 

frequency components that are lost when performing spectral compression (Figure 15 (b)). The 

resonances of the original spectrum are restored by multiplying the flattened spectrum by the 

SEEVOC spectral envelope (Figure 15 (c)).   

 

 
7
 Our implementation follows the recommended window length of four times the local pitch period for 

voiced segments or a constant 10 ms for unvoiced segments (Moulines and Charpentier, 1990). 
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Figure 14 A summary of the FD-PSOLA framework. Speech is divided into pitch-synchronous chunks and 

transformed into the frequency domain. The spectrum is separated into a spectral envelope and a flattened 

spectrum. The flattened spectrum is resampled to raise (shown here) or lower the pitch and the spectral 

envelope is restored. The modified spectrums are then duplicated or deleted as determined by the synthesis 

pitchmarks to affect duration. Synthesis is performed with the LSEE criterion. 
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The modified short-time spectra       ) are copied (i.e., duplicated or deleted) onto the 

synthesis pitch marks,   , which define the final pitch and timing. For example, duplication of 

the analysis pitch marks    at the original rate doubles the length of an utterance. On the other 

hand, duplication of    at twice the original rate doubles the pitch but does not change the length 

(Figure 16).  

The synthesis stage transforms the modified short-time spectra back to the time domain 

by means of a least-squared-error estimation (LSEE) criterion. Namely, we seek to find the 

synthetic signal    ) whose short-time Fourier transform (STFT) coincides with the target 

spectra       ). However, since       ) may not be a valid STFT, we seek the valid STFT 

 ̂     ) that is closest to       ) in the least-squares error sense: 

∑∫ |      )   ̂     )|
 

 

  

  

  

 

This equation can be solved by applying Parseval’s theorem; the solution is given in closed form 

as: 

   )  
∑      )  

    ) 
    

∑       ) 
    

 (1) 

where   
    ) is the inverse Fourier transform of       ) at time m and      ) is the 

windowing function (e.g. Hanning) (Griffin and Lim, 1984). 
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Figure 15 Pitch lowering in the frequency domain. (a) Spectrum of a female vowel /a/ with f0=188 Hz. (b) 

The spectrum is flattened and compressed to f0=141 Hz; notice the spectral hole that occurs at 6-8 kHz. 

(c) The flattened spectrum in (b) is folded at 6 kHz to fill the hole, and then multiplied by the spectral 

envelope in (a). 

  

(a) (b) 
Figure 16 Creating the PSOLA synthesis pitch marks. In (a) the analysis pitch marks are duplicated at the 

local period rate to double the total duration. In (b) the analysis pitch marks are duplicated at half the local 

period rate to double the pitch. Similar operations can be used to shorten the duration, lower the pitch, or 

simultaneously perform any combination of duration and pitch scaling. 
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4.2 Accent conversion  

In what follows, we discuss accent conversion in the context of transforming non-native 

speech to that of a native speaker. We also assume that parallel utterances are available from 

both speakers. Our accent transformation method proceeds in two distinct steps. First, prosodic 

conversion is performed by modifying the phoneme durations and pitch contour of the foreign 

utterance to follow those of the native utterance. Second, the foreign speaker’s spectral envelope 

(i.e. filter) is replaced by the native speaker’s spectral envelope. These two steps are performed 

simultaneously in our implementation. 

4.2.1 Prosodic conversion 

To perform time-scale conversion, we assume that the native and non-native utterances 

have been phonetically segmented by hand or with a forced-alignment tool (Young, 1993). From 

these phonetic segments, the ratio of native-to-foreign durations is used to specify a time-scale 

modification factor  for the foreign speaker on a phoneme-by-phoneme basis; as prescribed by 

Moulines and Laroche (1995), we limit time-scale factors to the range of =[0.25, 4]. 

Our pitch-scale modification combines the pitch dynamics of the native speaker with the 

pitch baseline of the foreign speaker. This is achieved by replacing the foreign pitch contour with 

a transformed version of the native pitch contour. For this purpose, we first estimate average 

pitch values (     ) for the foreign and native speakers from several hundred utterances. Next, 

we define a piecewise-linear time-warping,    (   )), to align foreign and native utterances at 

phoneme boundaries. Finally, given pitch contours   
   ) and   

   ) , we define a pitch-scale 

factor β as:  

   )  
   (  

   ))       

  
   )

 (2) 
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where we also limit pitch-scale factors to the range of =[0.5, 2]. This process allows us to 

preserve speaker identity by maintaining a reasonable pitch baseline and range (Compton, 1963; 

Sambur, 1975), while acquiring the pitch dynamics of the native speaker (Arslan and Hansen, 

1997; Munro, 1995; Vieru-Dimulescu and Mareüil, 2005). Once the time-scale and pitch-scale 

modification parameters (, β) are calculated, standard FD-PSOLA is used to perform the 

prosodic conversion. 

4.2.2 Segmental conversion 

The segmental conversion stage assumes that the glottal excitation signal is largely 

responsible for voice quality, whereas the filter contributes to most of the linguistic information. 

Thus, our strategy consists of combining the spectral envelope (filter) of the native speaker with 

the foreigner’s glottal excitation. FD-PSOLA allows us to perform this step in a straightforward 

fashion. As illustrated in Figure 17, we achieved this by multiplying the foreigner’s flat spectra 

by the native’s envelope rather than by the foreigner’s envelope. In order to reduce speaker-

dependent information in the native’s spectral envelope, we also perform Vocal Tract Length 

Normalization (VTLN) using a piecewise linear function defined by the average formant pairs of 

the two speakers
8
 (see Figure 18) (Sundermann et al., 2003). The result is a signal that consists 

of the foreigner’s excitation and the native’s spectral envelope normalized to the foreigner’s 

vocal tract length. The result of these transformations is shown in Figure 19. 

 

 
8
 Formant locations were estimated with PRAAT (Boersma and Weenink, 2007) over the entire corpus. 
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Figure 17 Modifying the FD-PSOLA framework (Figure 14) for the segmental conversion. The segmental 

conversion replaces the foreign speaker’s spectral envelope with the native speaker’s spectral envelope 

after vocal tract length normalization (VTLN). This figure only shows the portion of FD-PSOLA that is 

modified. 
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Figure 18 VTLN frequency mapping is created by linearly interpolating between average formant 

locations for the foreign and native speakers. This physically-motivated transformation preserves acoustic 

cues associated with the vocal tract length of the foreigner. 

 

Figure 19 Wideband spectrograms of the utterance ―…and her eyes grew soft and moist.‖ From top to 

bottom—foreigner, foreigner with prosodic and segmental transformation, and native.  
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4.3 Experimental 

To test the proposed method we selected a foreign and a native speaker from the 

CMU_ARCTIC database (Kominek and Black, 2003). Given that our participants were native 

speakers of American English, utterances from ksp_indianmale were treated as the non-native 

speaker and utterances from rms_usmale2 were treated as the native speaker. To establish the 

relative contribution of segmental and prosodic information, these two factors were manipulated 

independently, resulting in three accent conversions: prosodic only, segmental only, and both. 

Original utterances from both foreign and native speakers were tested as well, resulting in the 

five stimulus conditions shown in Table 4.  

Table 4  

Stimulus conditions for perceptual studies. 

# Condition 

1 Foreign utterance 

2 Foreign w/ prosodic conversion 

3 Foreign w/ segmental conversion 

4 Foreign w/ prosodic & segmental conversion 

5 Native utterance 

 

We were interested in determining (1) the degree of reduction in foreign accent, (2) the 

extent to which the identity of the original speaker had been preserved, and (3) degradations in 

acoustic quality. Perceptual evaluation consisted of three independent experiments:  

 Acoustic quality. Following (Kain and Macon, 1998), participants were asked to rate the 

acoustic quality of utterances on a standard MOS scale from 1 (bad) to 5 (excellent). 

Before the test began, participants listened to examples of sounds with various accepted 

MOS values.  
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 Foreign accent. Following (Munro and Derwing, 1994), participants were asked to rate 

the degree of foreign accent of utterances using a 7-point Empirically Grounded, Well-

Anchored (EGWA) scale (0=not at all accented; 2=slightly accented; 4=quite a bit 

accented; 6=extremely accented) (Pelham and Blanton, 2007).  

 Speaker identity. Following (Kreiman and Papcun, 1991), participants listened to a pair 

of linguistically different utterances, and were asked to (i) determine if the two sentences 

were produced by the same speaker, and (ii) rate their confidence on a 7-point EGWA 

scale. These two responses were converted into a 15-point perceptual score (Table 5). To 

prevent participants from using accent as a cue to identity, utterances were played 

backwards. This removes most of the linguistic cues (e.g., language, vocabulary, and 

accent
9
) that may be used to identify a speaker, while retaining the pitch, pitch range, 

speaking rate, and vocal quality of the speaker, which can be used to identify familiar 

and unfamiliar voices (Sheffert et al., 2002). 

Table 5  

Combined score for identity ratings. 

Value Equivalent meaning 

0 Same speaker, very confident 

6 Same speaker, not at all confident 

7 N/A 

8 Different speaker, not at all confident 

14 Different speaker, very confident 

 

 

 
9
 In (Munro et al., 2003), subjects correctly identified non-native speakers above chance level from reverse 

speech. However, the authors concluded that this was not due to phonological or prosodic cues, but instead 

to a long term property of speech (i.e. voice quality). This is consistent with our use of reverse speech to 

measure identity. 
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Participants for the subjective tests were recruited from the undergraduate pool 

maintained by the Department of Psychology at Texas A&M University. All participants were 

native speakers of American English and had no hearing or language impairments. The audio 

stimuli were presented via headphones. Thirty-nine students participated in the accent-rating test 

and forty-three students participated in the quality-rating test. Participants rated 100 utterances 

(consisting of the same twenty sentences for each of the five conditions) in both of these tests. 

The identity test was performed with both normal (forty-three participants) and reverse speech 

(sixty-six participants) to measure the extent to which participants used accent as a cue to 

identity. Both forms of the identity test required participants to listen to 60 pairs of utterances
10

.  

4.3.1 Results 

The results are analyzed using a two-way analysis of variance
11

 (ANOVA) with the two 

factors being the prosodic and segmental transformations. Results from the accent ratings are 

summarized in Figure 20 (a). The original recordings from the foreign speaker received the 

highest average subjective accent rating (4.85), while native recordings scored the lowest (0.15). 

The main effect of the segmental transformation was significant, F(1,76)=343.03, p<0.001, 

indicating that listeners detected a noticeable difference between the original foreign speaker 

(4.85) and those undergoing the segmental conversion (1.97). Neither the main effect of prosody 

nor interaction effects were significant.  

 

 
10

 All possible condition pairings can be expressed as a 55 matrix. To ensure that all pairs were sampled 

with the same frequency, diagonal elements in this matrix (i.e. same-same pairings) were sampled twice as 

often as off-diagonal elements, thus leading to 60 pairs (= (25+5)  2 repetitions). 
11

 A two-factor ANOVA allows us to test the significance of two independent variables (i.e., prosodic and 

segmental transformations) in the four conditions containing foreign excitation: foreign [0,0], prosodic 

[1,0], segmental [0,1], and both [1,1]. Results are reported as              )         , where the F-

score for the independent variable A is dependent upon its degrees of freedom (dfA) and the degrees of 

freedom of the error (dferror). A complete analysis includes an F-score for each independent variable as 

well for all possible interactions. 



55 

 

Results from the acoustic quality experiment are summarized in Figure 20 (b). Original 

recordings from the native speaker received the highest average rating (4.84), followed by those 

from the foreign speaker (4.0); this difference was statistically significant, t(19)=-21.42, 

p<0.001 (two-tailed). Though recording conditions may have been different for both speakers, it 

is also possible that listeners penalized the ―quality‖ of non-native speech because it was less 

intelligible. All transformations lowered quality ratings with respect to the original recordings. 

Two-way ANOVA found all effects significant: main prosodic, F(1,76)=48.48, p<0.001; main 

segmental, F(1,76)=119.14, p<0.001; and interaction, F(1,76)=57.31 p<0.001. 

  

(a) (b) 
Figure 20 Accent and quality ratings for SpFAC. (a) Accent ratings showing mean  standard error for 

each stimulus category. The segmental transformation significantly reduced accent. (b) Quality ratings 

showing mean  standard error for each stimulus category. The transformations significantly reduce 

quality; note that utterances from the (unmodified) foreign speaker were rated as having lower quality than 

those from the (unmodified) native speaker. (1=foreign speaker, 2=prosodic transformation, 3=segmental 

transformation, 4=prosodic and segmental transformations, 5=native speaker). 

Results from the identity test yield relative distances (0-14) between the stimuli. 

Multidimensional scaling (MDS) can be used to find a low-dimensional visualization (e.g., 2D) 

of the data that preserves pair-wise distances; see (Matsumoto et al., 1973) for a classical use of 
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MDS in speech perception. Namely, we use ISOMAP (Tenenbaum et al., 2000), an MDS 

technique that attempts to preserve the geodesic distance
12

 between stimuli. Technical details of 

ISOMAP are included in APPENDIX C. ISOMAP visualizations of the identity tests are shown 

in Figure 21. In the case of forward speech, samples from conditions 1 and 2 are mapped closely 

together in the manifold. Thus, this result indicates that the prosodic transformation had only a 

small effect on the perceived identity of the speakers. On the other hand, non-native utterances 

(condition 1) and their segmental transformations (conditions 3 and 4) are clearly separated in 

the ISOMAP manifold. This result suggests that participants heard these utterances as a ―third‖ 

speaker (note that this type of inference is not possible with the ABX tests commonly used in 

voice conversion). All samples containing the non-native glottal excitation (conditions 1 through 

4) appear to map on a linear subspace that is separate from native utterances (condition 5), which 

indicates that the former are perceived as being closer to each other than to the native speaker. In 

fact, by calculating the average Euclidean distance across conditions, we find that this ―third‖ 

speaker (conditions 3-4) is perceived to be three times closer to condition 1 than to condition 5. 

Results from the reversed-speech experiment, shown in Figure 21(b), show the distance is 

reduced between conditions 1/2 and conditions 3/4. This gives weight to the premise that 

participants in the forward speech experiment identified conditions 3-4 as a ―third‖ speaker 

primarily due to the association between accent and speaker identity
13

.  

 

 
12

 Thus, ISOMAP assumes that samples exist on an intrinsically low-dimensional surface –a manifold. The 

geodesic distance is defined as the Euclidean distance between samples measured over this manifold. In 

ISOMAP, the geodesic distance is estimated as the shortest-path in a graph where nodes represent samples 

and edges indicate neighboring samples. 
13

 The spread of the points in the reverse speech condition is likely due to the increased difficulty of the 

task.  
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(a) (b) 
Figure 21 Experimental results from the identity tests. Tight clusters may appear as a single point (e.g., as 

in the case of native utterances). (a) Forward speech; ISOMAP reveals three distinct clusters: native 

speaker, non-native speaker (plus prosodic transformation), and a third cluster with the segmental 

transformations. (b) Reverse speech; ISOMAP reveals only two clusters: native utterances and all other 

utterances. 

4.3.2 Discussion 

The perceptual results indicate that SpFAC reduces the perceived accent of an utterance. 

At the same time, this is accomplished at the expense of quality and a change in perceived 

identity. Although foreign-accented utterances (condition 1) are already perceived as being of 

lower quality, the technique itself introduces perceivable distortions, as indicated by the lower 

quality ratings for conditions 2-4. This could be attributed to several factors, including 

segmentation/alignment errors, voicing differences between speakers, and phase distortions that 

result from combining glottal excitation with spectral envelope from different speakers. The 

accent ratings seem to underplay the importance of prosody when compared with other studies 

(Jilka and Möhler, 1998; Nagano and Ozawa, 1990). One possible explanation for this finding is 

that the foreigner’s prosody sounded relatively native compared to his segmental productions. 

An alternative explanation is offered by the elicitation procedure in ARCTIC (Kominek and 



58 

 

Black, 2003), since read speech is prosodically flat when compared to spontaneous or 

conversational speech (Kenny et al., 1998).  

Identity tests with forward speech indicate that the segmental transformations (with or 

without prosodic transformation) are perceived as a third speaker. The distinctiveness of this 

third speaker is reduced, however, when participants are asked to discriminate reversed speech. 

One could argue that the emergence of a third speaker on forward speech is merely the result of 

distortions introduced by the segmental transformation; these distortions are imperceptible when 

utterances are played backward, which may explain why the third speaker ―disappears‖ with 

reversed speech. In other words, accentedness and acoustic quality would be confounded in our 

experiments. This view, however, is inconsistent with the acoustic quality ratings obtained in the 

second experiment. As shown in Figure 20 (b), quality ratings for condition 2 are similar to those 

of conditions 3-4, rather than to those of condition 1; if participants had used acoustic quality as 

a cue in the identification study, condition 2 would have been perceived also as belonging to the 

third speaker. Thus, our identification experiments with forward and reverse speech suggest that 

participants used not only organic cues (voice quality) but also linguistic cues (accentedness) to 

discriminate speakers. This further suggests that something is inevitably lost in the identity of a 

speaker when accent conversion is performed. After all, would foreign-born public figures (e.g., 

Arnold Schwarzenegger, Javier Bardem) be recognized as themselves without their distinct 

accents? 

Interestingly, the ISOMAP embedding in both cases (though more clearly with forward 

speech) can be interpreted in terms of the source-filter theory. As shown in Figure 21, the first 

dimension separates samples in condition 5, which uses the native glottal excitation, from 

samples in the remaining conditions, which use the non-native glottal excitation. In contrast, the 
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second dimension separates samples in conditions 1-2, which employ the non-native filter, from 

samples in conditions 3-5, which employ the native filter. 

4.4 Conclusion 

The preceding method of accent conversion is based on the assumption that accent is 

contained in the prosody and segmental components of an utterance, whereas speaker identity is 

captured by vocal tract length and glottal shape characteristics. Our method employs FD-PSOLA 

to adapt the speaking rate and pitch of the foreigner towards those of the native, and a segmental 

transformation to replace the spectral envelope of the foreigner with a normalized spectral 

envelope of the native. This is a somewhat naïve approach to accent conversion because VTLN 

cannot remove all identity cues associated with the native speaker’s spectral envelope. 

Nevertheless, SpFAC reduced accent by 60% and the results of the reverse speech identity test 

confirm that the foreign speaker’s voice quality was maintained. The next section proposes 

means to automatically evaluate accent conversion.   
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5. OBJECTIVE MEASURES OF ACCENT CONVERSION 

This section presents objective measures of acoustic quality, foreign accent, and speaker 

identity that are consistent with perceptual evaluations. Such measures would be invaluable in a 

number of scenarios. As an example, the ability to objectively rate synthesized utterances may be 

used to search and fine-tune parameters in accent conversion systems – our immediate 

motivation. Objective measures may also be used in computer assisted pronunciation training 

(CAPT) to match the voice of the L2 learner with a suitable voice from a pool of native speakers, 

or to provide feedback to the learner, which is a critical issue in CAPT (Hansen, 2006; Neri et 

al., 2002).  

A major motivation for this work was reducing development time. The ability to 

evaluate converted utterances in a rapid, unbiased manner is extremely useful for research and 

development in foreign accent conversion. Time invested in developing these objective measures 

is quickly returned through time saved by more rapid prototyping and parameter tuning. 

Admittedly, intermediate development steps are rarely evaluated by formal listening tests, but 

sidestepping subjective evaluations (even informal ones) is necessary to be able to perform an 

online optimization of parameters. 

5.1 Acoustic quality 

We adopt ITU recommendation P.563 for our objective measure of quality. It has 

previously been used for testing satellite systems (Jin and Kubichek, 1994), voice over IP, and 

cell phone networks (Malfait et al., 2006). The algorithm operates in three stages: preprocessing, 

distortion estimation, and perceptual mapping. During preprocessing, an additional version of the 

speech is created by filtering it with a response similar to the properties of a standard telephone. 
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A third version is filtered with a fourth-order Butterworth high-pass filter with a 100Hz cutoff. 

Finally, voiced areas are detected using ITU recommendation P.56.  

P.563 makes use of several distortion measures to identify the various types of 

distortions that may be present in the signal. The first measure, based on speech production, 

approximates the vocal tract area function by transforming the coefficients of an eighth order 

pitch-synchronous LP analysis into an area function with eight tubes (Gray et al., 2000). These 

eight tubes are then divided into three groups: front, middle, and rear cavity (corresponding to 

tubes 1-3, 4-6, and 7-8). Sudden changes in the areas of any of the three cavities indicate the 

presence of distortion. A second measure of distortion simulates an intrusive quality measure 

with a reference signal being provided by a speech reconstruction module. The module is 

designed to remove or modify noise in the distorted speech signal. The reconstructed speech is 

then compared with the distorted speech using a psychoacoustic model similar to the one found 

in ITU P.862 (sub-section 3.4.1); this step measures the amount of distortion removed by the 

speech reconstruction module. The final measures of distortion include estimation of SNR and 

detection of robotization, temporal clipping, and signal correlated noise. 

The final stage, perceptual mapping, takes the above measures of distortion and 

calculates the final MOS score with a classifier followed by a regression model. The classifier 

identifies which of seven types of degradations are most likely to be present (i.e. robotization, 

interruption and clipping, signal correlated noise, low SNR, unnaturally low pitch, unnaturally 

high pitch, or [default] general distortion). Quality is then estimated on a standard MOS scale 

using a regression model trained on examples from that class.  

P.563 shows an average correlation of 0.85 with subjective MOS (Malfait et al., 2006). 

The ITU further recommends that, when evaluating a system, multiple speech files be tested and 

their scores averaged. Despite the fact that P.563 is not intended to measure the quality of accent 
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transformed speech, we find that it yields reasonable results when at least twenty sentences are 

averaged per condition. 

5.2 Foreign accent 

The objective measure of accent is related to a method for accent classification based on 

automatic speech recognition. In Arslan and Hansen (1996), separate HMM word recognizers 

were trained for four accents (i.e. English, Turkish, German, and Chinese). An utterance was 

classified to be the accent of the HMM that yielded the highest likelihood. In our method, 

however, we evaluate a test utterance on a continuous speech HMM (trained on acoustic models 

from native speakers of American English), and the match score is used as an estimate of its 

degree of nativeness. The primary advantage to this approach is that, as long as the desired 

accent remains American English, then one need not train a separate HMM for an arbitrary 

foreign accent.  

Our implementation of the continuous speech recognizer is based on the freely-available 

Hidden Markov Model Toolkit (HTK) (Young, 1993). We call the HTK’s general purpose word 

recognizer ―HVite‖ with flags to specify forced alignment (-a) and to output the calculated log 

likelihoods (-o); details of the procedure may be found in the HTK book (Young et al., 1995). 

This step aligns a standard American English pronunciation of the transcript to the provided 

speech sample. The objective score for an utterance is given as the median value of the 

phoneme-level match scores (i.e. negative log likelihood) contained in the label file, excluding 

those associated with silences. As a result, utterances that are more native will have smaller 

values.  

To test the effectiveness of this measure against multiple dialects and accents of English, 

we selected 108 speakers from the IDEA database (Meier and Muller, 2009). Each of these 

speakers read the ―Comma gets a cure‖ passage and belonged to a country with at least four such 
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speakers, for a total of thirteen countries
14

. We employed spectral subtraction (Boll, 1979) to 

reduce background noise levels, which can vary significantly from speaker to speaker in the 

IDEA corpus. The resulting accent scores, summarized in Figure 22 (a), show a separation 

between countries that speak English as a first language and those that do not. A two-tailed t-

test
15

 found the means of the two groups to be significantly different; t(107)=7.16, p<0.001. 

Given that the HMM’s acoustic models were trained on native speakers of American English, it 

is surprising that Australia outscored General American (genam), though the difference was not 

significant t(22)=0.16, p=0.87. In fact, the first country with a significantly different score from 

Australia was India; t(20)=2.22, p<0.05, the best scoring country where English is not the 

official language (English is considered a subsidiary official language).  

To determine the effect of residual noise on the likelihood scores, we selected seven 

speakers (with clean recordings) from the CMU ARCTIC dataset (Kominek and Black, 2003). 

Ten sentences from each speaker were measured with ten levels of additive white noise spanning 

the range of objective quality measures. Results from one of the speakers (ksp_indianmale) are 

shown in Figure 22 (b); a strong correlation
16

 r(98)=-0.87, p<0.001 between our objective 

measures of accent and quality indicates that this effect is significant. We adjust all accent scores 

by the average trend of the seven speakers (120 accent points per quality point) to obtain a 

measure of accent that was (linearly) independent from acoustic quality.  

 

 
14

 We recognize that there may be multiple dialects within a single country and selected speakers with the 

same dialect when possible. Namely, we chose Received Pronunciation (RP) from England and General 

American (genam) from the United States. 
15

 The t-test determines if the means between two groups are significantly different. Results are reported as 

    )         , where the t-score is dependent upon the degrees of freedom (  ); the significance 

value ( ) is deemed significant if        (i.e. there is less than a 5% chance that the groups were drawn 

from the same distribution). 
16

 The Pearson product-moment correlation tests the relationship between two variables. Results are 

reported as     )         , where the magnitude and sign of   indicate the strength and direction of 

the relationship;   ranges from [-1,1].  
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(a) (b) 
Figure 22 Calibrating the HTK score. (a) Average accent scores for 13 dialects and accents in the IDEA 

database. Dark colored bars represent countries that speak English as a first language. The number of 

speakers per country is given in parenthesis to the right of the name. (b) Effect of additive Gaussian noise 

on the HTK score. Ten sentences with ten levels of noise spanning the full range of MOS values were used 

for this purpose.  

5.3 Speaker identity 

Our objective measure of speaker identity is based on a signal discrimination criterion 

(Bishop, 2006). Namely, given a collection of acoustic features for two speakers, we find a 

projection that maximizes the separability between them by means of Fisher’s Linear 

Discriminant Analysis (LDA). This approach compares favorably against conventional methods 

for speaker recognition based on GMMs. The primary advantage stems from the fact that LDA is 

a supervised method, whereas GMMs are unsupervised. GMMs are trained to model the 

distribution of data in feature space without regard to a feature’s discriminatory ability or noise 

level. LDA, on the other hand, finds the subspace with the highest discriminatory information. 

This is particularly advantageous when acoustic features are poorly selected or when speakers 

have broadly overlapping distributions in feature space. In addition, as suggested by Lavner et al. 

(2000), discriminatory features may change based on the set of speakers; LDA will automatically 

adapt in such a situation. Moreover, the computational requirements for LDA are also 
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significantly lower than GMMs; as shown below, a solution is found through a single matrix 

inversion, whereas GMMs are trained using the fixed-point method of Expectation Maximization 

(Dempster et al., 1977). Finally, for binary discrimination problems, the LDA solution is a single 

dimension, which facilitates interpretation. In summary, we find LDA to be a powerful yet 

efficient solution for determining an objective measure of speaker identity. 

We describe LDA for the two-class problem since it will be used to discriminate the 

foreign and native speakers. The feature vector   is a vector of acoustic parameters for each 

speech frame (F0 and 13 MFCCs in this work). LDA seeks a linear projection vector   such that 

the projected data       maximizes the distance between classes relative to the variance 

within each class. It can be shown that, for Gaussian distributed classes with equal covariance, 

the optimal linear projection is  

    
        ) (3) 

where    is the between-class scatter, and   ,    are the sample mean of the two classes:  

   ∑      )      )
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(4) 

In our implementation, one hundred sentences from each speaker are analyzed (in 20 ms 

frames) to generate a training set. To avoid overfitting, these sentences are different from those 

later used for testing and do not include any accent conversions. Once the Fisher’s LDA solution 

  has been computed from training data according to (3), each new test sentence is framed and 

analyzed to obtain acoustic vector   and this vector is projected to obtain the objective measure 

of identity,  :  

      (5) 
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Each test sentence is then assigned an identity score that corresponds to the average score across 

its frames. In this way, if a given test sentence sounds more like the native speaker then its 

identity score will be closer to the scores obtained for the native sentences in the training set. 

5.4 Experiment 

Values for the objective measures described above were calculated on the same 100 

utterances used in the subjective evaluation. The success of an objective measure is determined 

by how well it matches the corresponding subjective measure, so results will be compared to the 

subjective scores presented in sub-section 4.3.1
17

. The following results were previously reported 

in Felps and Gutierrez (2010). 

5.4.1 Results 

Figure 23 (a) depicts correlation of the subjective (x-axis) vs. the objective (y-axis) 

accent measures at the utterance level (i.e. each point represents an utterance from the test set). 

The low correlation shown in this plot, r(98)=0.21, is largely caused by differences in linguistic 

content among the various utterances. This effect can be seen by looking at the subjective scores 

for the native speaker in Figure 23 (a); these utterances are scored very similarly by human 

raters, but cover a wide range of objective ratings. We minimize this effect by calculating a 

single score per condition; calculating the results in this manner improves correlation drastically, 

r(3)=0.997 (Figure 23 (b)). Both measures also rank speakers in the same order of accentedness, 

assigning the highest accent to the foreign speaker and the lowest average accent to the native 

speaker. The objective measure captured the only main effect detected in the subjective scores: 

the segmental transformation. This indicates that listeners detected a noticeable difference 

 

 
17

 The objective measure of identity yields identical results on normal and reverse speech. Here we 

compare the objective score to the subjective scores in the reverse condition because this approach was 

shown to better isolate the relationship between accent and identity (recall the result in Section 4.3.1). 
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between the accent of the foreign speaker and the segmental conversion, though the effect was 

more prevalent in the subjective test (F(1,76)=343.03, p<0.001) than in the objective test 

(F(1,76)=4.48, p<0.05).  

The utterance level correlations between P.563 and subjective MOS are also low 

r(98)=0.47 (Figure 24 (a)). The average score per condition yields a higher correlation r(3)=0.80, 

which is close to the 0.84 correlation reported in the ITU document (Malfait et al., 2006). Figure 

24 (b) clearly shows that the modifications induced by the prosodic and segmental conversions 

create detectable distortions. A two-way ANOVA found all effects to be significant: main 

prosodic, F(1,76)=11.30, p<0.005; main segmental, F(1,76)=23.76, p<0.001; interaction, 

F(1,76)=5.26, p<0.05. Some of these distortions can be traced back to instances when the state 

of voicing differs (e.g. in the word ―think,‖ the native speaker produces the correct /k/ sound, but 

the non-native speaker produces ―thing‖ with an incorrect /g/ sound). 

The objective measure of identity was the only objective measure that yielded a high 

correlation at the utterance level, r(98)=0.94, which was further improved using average values 

per condition, r(3)=0.99 (Figure 25). Such strong results give us confidence that LDA captured 

the unique, speaker-dependent acoustic features. Both measures discriminated native utterances 

from the rest, and all accent conversions (segmental, prosodic, both) were rated closer to the 

foreign speaker than the native speaker. Subjective scores show a main effect for the segmental 

conversion, F(1,76)=103.79, p<0.001, but no other effects were significant. The objective 

measure shows a main effect not only for the segmental conversion, F(1,76)=114.16, p<0.001, 

but also for the prosodic conversion, F(1,76)=4.35, p<0.05. 
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(a) (b) 
Figure 23 (a) Correlation between objective and subjective measures of accent. (b) Average scores for the 

two measures across experimental conditions. The objective measure follows the same trend as the 

subjective scores. Left and right y-axes were aligned to facilitate the comparison.  

  

(a) (b) 
Figure 24 (a) Correlation between objective and subjective measures of acoustic quality. Each sample in 

the scatterplot represents an utterance. (b) Average scores for the two measures across experimental 

conditions. The objective measure follows a similar trend as the subjective scores.  
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(a) (b) 
Figure 25 (a) Correlation between objective and subjective measures of identity. (b) Average scores for the 

two measures across experimental conditions. (b) Experimental results from the identity tests. The 

objective measure follows the same trend as the subjective scores. 

5.4.2 Discussion 

We have proposed objective measures that can be used to assess the acoustic quality, 

degree of foreign accent, and speaker identity of utterances. The three measures show a high 

degree of correlation across conditions with their corresponding subjective ratings. No attempts 

were made in our study to match the scales between objective and subjective measures. As an 

example, the foreign accent ratings Figure 23 (b) have different scales; this issue may be easily 

addressed by mapping the HTK scores into the 7-point perceptual scale with a regression model 

or by converting them into an absolute scale by normalizing relative to a corpus of native and 

foreign-accented speech. However, these extra steps become unnecessary if all one needs are 

relative measurements, as is the case when optimizing model parameters in an accent conversion 

system. In this case, it is not the absolute value of the accent measure that is important, but 

whether it is higher (or lower) than the accent measure for a different set of model parameters; 

such information is sufficient to guide the optimization engine. Our results also show scaling 
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differences between objective and subjective measures of acoustic quality, despite the fact that 

P.563 provides a measure in a MOS scale. These results may indicate a downward bias in our 

perceptual experiments though participants were provided speech samples with various accepted 

MOS scores. It seems more likely, however, that P.563 under-penalizes utterances resynthesized 

with our accent conversion model since P.563 focuses on degradations in narrow-band telephony 

rather than in speech transformations. Sidestepping these scaling differences, however, our 

results indicate that the three objective measures are remarkably consistent with perceptual 

ratings when averaged across sentences.  

Unlike the acoustic quality and foreign accent ratings (both objective and subjective), 

which have a monotonic scale, speaker identity ratings must be interpreted relative to the foreign 

and native speakers. As an example, consider the identity score for segmental conversions 

reported by LDA, a value of       (arbitrary units) averaged across 20 utterances. This value 

can only be interpreted when compared against the scores for the foreign (      ) and native 

(     ) speakers, e.g. segmental conversions are significantly closer to the foreign speaker. 

When projected on the LDA solution, utterances from our three accent conversions (segmental, 

prosodic, and segmental + prosodic) lie somewhere between foreign and native utterances, a 

reasonable result considering that these conversion combine elements from both speakers (glottal 

excitation, prosody, formants, and vocal tract length). However, it is possible that an utterance 

may project outside of the bounds defined by the two baseline cases. This suggests that the LDA 

scores should eventually be mapped into a measure of distance relative to one of the baseline 

cases. As an example, a radially symmetric kernel of the form          )
        )  may be 

used to transform the LDA projection into a measure that denotes how close an utterance is to 

the foreign speaker.  
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Our objective measures have been tailored for accent conversion, but they can be 

adapted for voice conversion with slight modification of the methods and interpretations. 

Though the goals of accent conversion and voice conversion with respect to identity are 

diametrically opposed, LDA is equally useful in both problems. In voice conversion, for 

instance, a positive result would find the converted utterances projected closer to the target than 

to the source. Voice conversion does not make a distinction between accent and identity because 

most methods implicitly model ―segmental‖ accent, and cross-accent conversion is rarely 

performed (though cross-language conversion is an active research topic (Sundermann et al., 

2003)). However, in cases involving source/target pairs with different accents, it is reasonable to 

assume that a converted voice with the target accent would be preferred over one with the source 

accent. In such a case it may be worthwhile to measure accent as an additional component of 

identity. The objective measure of accent may be more relevant in voice conversion if 

interpreted as a measure of intelligibility. In the case of acoustic quality, P.563 should be as 

appropriate for voice conversion as it is for accent conversion. 

We primarily see accent conversion as a tool to enhance computer assisted pronunciation 

training (CAPT). In this regards, the objective measures presented in this section may be used to 

augment such a tool by pairing L2 learners with an appropriate accent donor from a pool of 

native speakers (see e.g. (Turk and Arslan, 2005) for the ―donor selection‖ problem in voice 

conversion). Objective measures may also be used to provide feedback to the learner, which is a 

critical issue in CAPT (Hansen, 2006; Neri et al., 2002). As an example, measures of foreign 

accent may be used to track the learner’s progress over time and adapt the CAPT tool 

accordingly, for instance by increasing the complexity of the exercises as the learner improves 

their pronunciation; these strategies are known as ―behavioral shaping‖ (Watson and Kewley-

Port, 1989). 
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5.5 Conclusion 

This section proposed objective ways to measure the three most important aspects of 

accent conversion systems: accent, identity, and quality. Each test was shown to correlate well 

with perceptual results from the previous section. Subjective tests are more accurate since they 

rely on human perception, but they are laborious to collect. Certain situations may warrant the 

use of the proposed objective measures, which automatically estimate scores that correlate well 

with human perception. The next section describes the second method of foreign accent 

conversion is based on a concatenative speech synthesizer, which we developed to overcome the 

limitations of SpFAC (i.e. it alters identity of the foreign speaker and produces low quality 

speech).  
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6. CONCATENATIVE FOREIGN ACCENT CONVERSION 

SpFAC was partially successful for accent conversion; it significantly reduced accent, 

but it also compromised the quality and identity of the resulting utterances. In this section we 

propose a concatenative synthesis approach to foreign accent conversion (ConFAC) to overcome 

these limitations. In concatenative synthesis, short units of speech (e.g. phones, diphones, or 

words) are combined to create novel utterances. We hypothesize that this approach will offer a 

higher level of quality than SpFAC and preserve the identity of the non-native speaker because 

each unit is taken from a corpus of his/her own speech. In a pronunciation training scenario, 

ConFAC utterances provide realistically attainable targets for second language speakers. Accent 

conversion is performed by selecting diphones from a database of non-native speech that match 

the articulatory/acoustic patterns of a native speaker. Our hypothesis is that articulatory features 

provide a representation of speech that is more speaker independent than acoustic features.   
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This view is supported by the front cavity hypothesis, which assigns the portion of the 

vocal tract captured by EMA (front cavity) to be responsible for linguistic information. 

Anecdotal evidence can be seen when comparing low dimensional vowel spaces for the two 

speakers used in our study (Figure 26). The acoustic space computed using the first two principal 

components of Mel-cepstral coefficients for all vowels found in the RGO and MAB corpora. 

Likewise, the low dimensional articulatory space computed in a similar manner from Maeda 

parameters. The average phone distance is twice as large in the low dimensional acoustic space 

as it is in the low dimensional articulatory space for our two speakers. ConFAC is described in 

three distinct stages: analysis, accent conversion, and synthesis (Figure 27). The analysis stage 

encodes a non-native utterance into a standard format that is appropriate for concatenative 

synthesis (i.e. synthesis features). The synthesis features are then modified during the accent 

conversion stage to match the corresponding features of a native speaker. Finally, diphones are 

selected from the non-native corpus based on the modified synthesis features. The selected 

diphones are processed with optimal coupling and spectral smoothing to create an acoustic 

waveform.  

  
(a) (b) 

Figure 26 Average location of 11 vowels in a low dimensional (a) acoustic and (b) articulatory vowel 

spaces. The average distance between corresponding phones for RGO and MAB is twice as close in 

articulatory space.  
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Figure 27 ConFAC system overview for articulatory-driven accent conversion. ConFAC selects diphones 

from a foreign speaker that match the articulatory patterns of a native speaker. The process to perform 

acoustic-driven accent conversion is similar except the Maeda parameters are replaced with MFCCs. 
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6.1 ConFAC analysis 

The analysis stage is responsible for labeling and extracting features for each diphone in 

a non-native utterance (Figure 28). The first step is to determine the location and labels of 

phones in the utterance. This is performed by manually correcting estimates obtained using HTK 

forced alignment (see sub-section 5.1 for more information). Diphones are then defined from the 

center of one phone to the center of the following phone. Diphone synthesis is more natural than 

phone synthesis because diphone boundaries are more acoustically stable than phone boundaries. 

Next, information about each diphone is encoded into a common format: Arpabet label (e.g. /a-

t/), duration (e.g. 100 ms), and temporal features (e.g. pitch, loudness, MFCCs, articulatory 

trajectories). In order to have a common representation with diphones of different lengths, each 

temporal feature is sampled at three relative locations: the beginning, middle, and end of a 

diphone. These features, called synthesis features, are compatible with the unit selection 

synthesizer. 

 

Figure 28 ConFAC’s analysis stage encodes an utterance into a format that permits unit selection based 

synthesis. 
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6.2 Accent conversion 

The accent conversion stage modifies the non-native synthesis features to encourage 

―more native‖ sounding units to be selected during the synthesis stage. The first step is to 

identify differences in the native and non-native phonetic sequences. As shown in Figure 29, we 

calculate synthesis features for native and non-native examples of the same sentence. 

Differences in the native and non-native phone sequences are specified manually by creating a 

mispronunciation file to fit the native phone sequence to the non-native utterance. This process is 

illustrated in Figure 30 for the word ―anything.‖ In this example, the non-native speaker says 

―any-ting‖ with a hard /g/. The mispronunciation file registers the native speaker’s phonetic 

pronunciation to the best fit of the non-native speaker’s actual production. Substitutions, 

deletions, and insertions are easily detected by comparing the mispronunciation file to the 

original non-native transcription. Phoneme-level mispronunciations are subsequently registered 

at the diphone level (a single phone-level mispronunciation affects two diphones). Because 

sounds in continuous speech are not produced in isolation, ConFAC includes a parameter to 

define how far a ―mispronunciation‖ can spread to neighboring diphones. The default value is 2 

diphones to either side of a mispronounced phone.  

 

Figure 29 ConFAC’s accent conversion module compares the native and non-native synthesis features. It 

merges their synthesis features based on the detected mispronunciations. 
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Figure 30 Creating the mispronunciation label file for the word ―anything‖ to identify differences between 

the non-native and native phonetic sequences. The mispronunciation file specifies the native speaker’s 

phonetic sequence at the timing of the non-native speaker. In this example, the non-native speaker made 

two substitutions and one insertion.  

Synthesis features from the native and non-native speaker are merged as follows. If a 

diphone was mispronounced, then non-native synthesis features are replaced with the 

corresponding native synthesis features. On the other hand, if a diphone was correctly 

pronounced, the non-native synthesis features associated with suprasegmental properties of 

speech (e.g. pitch, loudness) are replaced with the corresponding native synthesis features and 

the remaining features (e.g. MFCC, Maeda) are unaffected. We predict that this process will 

encourage more ―native sounding‖ diphones to be selected during synthesis. The approach is 

valid insofar as the native features are within the natural range of non-native features; the next 

sub-section provides further details on the measures taken to reduce speaker dependent 

influences.  

ɛ n i θ ɪ ŋ

ɛ n i t i ŋ ɡ

ɛ n i θ ɪ ŋ

substitution insertion

native transcription
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6.2.1 Feature normalization  

Speaker normalization is a critical step when performing speech recognition because it 

increases the similarity of the current speaker to the speakers used during training. A similar step 

is needed in ConFAC because synthesis is performed on the non-native speaker’s corpus using 

(some) features extracted from a native speaker. Thus, the success of accent conversion for the 

two feature sets (i.e. acoustic or articulatory) is partially dependent upon each set’s ability to 

provide a speaker-independent representation of speech.  

The acoustic features used in this work are Mel Frequency Cepstral Coefficients 

(MFCC), which are the gold standard in automatic speech recognition and have also been used 

for speech synthesis (Tokuda et al., 2002). ConFAC calculates 13 MFCCs directly from the 

STRAIGHT spectrum by first warping the spectrum according to the Mel-frequency scale and 

then computing the discrete cosine transform. Cepstral mean subtraction is also performed by 

subtracting the mean and dividing by the standard deviation of each cepstral coefficient. This 

process reduces the effects of different recording environments and also accounts for differences 

in long-term voice properties (e.g. spectral slope).  

We perform speaker normalization in the articulatory domain by mapping EMA 

positions to Maeda parameters. Maeda parameters are relative measurements of the vocal tract 

that explain the majority of articulatory variance (Maeda, 1990). We adopt the EMA to Maeda 

mapping proposed by Al Bawab et al. (2008) in an investigation of supplemental features for 

speech recognition (Figure 31). Furthermore, we subtract the mean and divide by the standard 

deviation of each parameter. The parameters are calculated as follows:  
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1. Jaw opening distance: the absolute distance from the lower incisor to the upper incisor 

(origin). 

2. Tongue dorsum position: the horizontal displacement between the tongue dorsum and 

the upper incisor. 

3. Tongue shape: the angle created between the three points on the tongue. 

4. Tongue tip height: the vertical displacement between the tongue tip and the upper 

incisor. 

5. Lip opening distance: the absolute distance between the upper and lower lips. 

6. Lip protrusion: the absolute distance between the midpoint of #1 and the midpoint of #5.  

 

Figure 31 Calculating the Maeda parameters from EMA (x,y) positions. The origin is located on the upper 

incisor designated by the blue dot. The sixth Maeda parameter is actually measured from the midpoint of 

#1 to the midpoint of #5. It is vertically offset for clarity. 

6.3 ConFAC synthesis 

ConFAC synthesis creates an acoustic waveform from the synthesis features. It searches 

the non-native corpus to find diphones that match the synthesis features and combine smoothly 

with each other. The selected diphones are refined to minimize spectral jumps at the diphone 

boundaries before the synthesizing the final speech waveform. An overview of ConFAC 

synthesis is presented in Figure 32; details for each step are provided in the next four sub-

sections. 

1
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Figure 32 ConFAC’s synthesis stage creates an acoustic waveform from the synthesis features.  

6.3.1 Concatenative unit selection 

The primary challenge in concatenative speech synthesis lies in selecting a sequence of 

units (i.e. diphones) from a large database to yield a natural and intelligible utterance. ConFAC 

has an additional goal: the utterance should also sound like that of a native speaker. We assume 

that the synthesis features contain information regarding these three criteria, but the synthesis 

database will not contain units to perfectly match all the synthesis features. Our task is to find a 

sequence of units that match the synthesis features as closely as possible and join smoothly 

together to create natural sounding speech. Hunt and Black (1996) propose a mathematical 

framework for this problem called unit selection.  

In unit selection, a synthesis database is viewed as a state transition network; states 

represent units and transitions estimate the quality of concatenation between two units (Figure 

33). Finding a sequence of units that match the synthesis features is equivalent to finding a path 

through the network with minimum total cost. Total cost is a sum of the target cost, which 

penalizes the distance between a potential unit from the database and the synthesis features, and 

concatenation cost, which acts as a smoothness constraint. The target cost function         ) is 

defined as 
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        )  ∑  
   

       )

 

   

 

where   
       ) is the difference between the synthesis features of the target unit    and a unit 

from the database   . The importance of the     feature is determined by the weight   
 . Weights 

are assigned using a standard regression training algorithm (Hunt and Black, 1996). We have 

previously demonstrated this approach assigns articulatory feature weights similar to those that 

would be linguistically predicted for certain phones (e.g. a large weight for lip movement in the 

phoneme /p/) (Felps et al., 2010). The concatenation cost measures the quality of a join between 

consecutive units      and   :  

          )  ∑  
   

 

 

   

        ) 

The quality of a join can be estimated by the distance between MFCCs, pitch, and power 

at the boundaries of two units. In the context of a state transition network, the target cost serves 

as the state occupancy cost and the concatenation cost serves as the state transition cost. The 

total cost for a given sequence (i.e. a path through the network) is the sum of the target and 

concatenation cost functions for each unit in the sequence: 

    
    

 )    ∑        )

 

   

     )  ∑          )

 

   

        )         ) (6) 

The last two terms in the equation above represent the costs associated with transitioning to and 

from silence (S) at the beginning and end of the utterance;     [   ] is a user-defined parameter 

that represents a preference for smooth joins versus accurate target matches. The Viterbi 

algorithm (Forney, 1973) is guaranteed to find the path through the network that minimizes the 

total cost. This path represents the sequence of units to be concatenated. 
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Figure 33 Representing a speech corpus as a state transition network. States (blue boxes) represent 

individual phones in the database. The state occupancy cost is the target cost and the state transition cost is 

the concatenation cost. 

6.3.1.1 Unit selection with a small speech corpus 

The recommended corpus size for unit selection is 3-4 hours of phonetically balanced 

speech (Clark et al., 2007). Performing synthesis without adequate prosodic and phonetic 

coverage yields speech with spectral distortions and low intelligibility. In comparison, RGO’s 

speech corpus contains approximately 45 minutes of speech (we are not aware of any longer 

articulatory datasets). Our initial results yielded speech with such low intelligibility that it was 

rated with a higher accent than the original RGO utterances. We compensate for the reduced size 

of our speech corpus by modifying unit selection in two ways.  

The first modification allows the original RGO diphones to be considered as candidates 

for synthesis. If these diphones are selected, then the synthesized utterance will be identical to 

the original foreign utterance. In fact, we can force this to occur by setting the unit selection 

parameter    , which gives full weight to the concatenation cost and no weight to the target 
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cost. Since neighboring units (by definition) have a zero concatenation cost, the Viterbi 

algorithm will select the original sequence of diphones for a total cost of 0. The resulting 

synthesis will be distortion-free, but also identical to the original utterance (and therefore have 

the same accent). As   increases, unit selection gives greater weight to target costs and the 

relative benefit of being natural neighbors shrinks (i.e. concatenation cost = 0). The optimal path 

will now deviate from the original units to include different units from the database. Selecting 

different units increases the chance of altering accent, but it also increases the chance of 

introducing distortions. By adjusting   accordingly, we can effectively control the number of 

diphones replaced in a given utterance. This number should be as large as possible without 

introducing distortions. The second proposed modification gives us better control over this 

factor. 

Previously the total cost equation (6) controlled the relative importance given to 

concatenation costs and target costs using the parameter  . The second modification replaces   

with a function    ) that dynamically controls the percentage of new units to be selected. Let the 

function           ) calculate the percentage of new units selected for a given  , and the 

user-defined variable             represent the percentage of new units to be replaced in an 

utterance. Equation (6) is updated as follows  

    
    

 )               )  ∑        )

 

   

 (               ))  ∑          )

 

   

        )         ) 
where 

             )         |          )             |   [   ]  
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This formulation provides an intuitive way to balance
18

 desired the amount of change and the 

overall level of naturalness without adding significant computation cost; namely, it allows the 

experimenter to select the percentage of diphones that should be changed. 

6.3.2 Optimal coupling 

Unit selection yields a sequence of diphones to be concatenated, but direct concatenation 

can lead to harsh distortions caused by discontinuities in the acoustic spectrum. We reduce 

spectral mismatch between consecutive diphones with two spectral smoothing methods. This 

sub-section describes optimal coupling, which looks for an acoustically stable place to join two 

units and the next sub-section describes a spectral interpolation algorithm offering further 

refinement. 

Optimal coupling (Conkie and Isard, 1997) improves the join between two diphones by 

adjusting the locations of the common boundaries to minimize a measure of spectral distortion 

(i.e. the right boundary of the left diphone and the left boundary of the right diphone, Figure 34). 

The cost of a particular join is calculated as follows: let   
  represent a row vector containing the 

  ( =10 in our implementation) values of the     cepstral coefficient prior to the     cut-point 

for the left diphone and similarly   
  for the   values following the     cut-point of the right 

diphone. A line of best fit for the combined vector [  
   

 ] is specified by the coefficients    
  

and is found using a least squares method (Figure 35). The cost for a particular join is computed 

by summing the squared residuals for each cepstral coefficient: 

        )  ∑([  
   

 ]     
  [    ])

 

  

 

 

 
18

 Due to the relatively small size of our database we have empirically determined that the value of 

perNewUnits should be no more than 75% (i.e.             [      ]). 
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The optimal cut point is specified by the [  ] pair with the minimum cost value.  

One of the disadvantages to optimal coupling is the possibility of significantly altering 

the final duration of a phone. A possible solution is to constrain the potential join points to those 

that do not alter the final duration, but Conkie and Isard conclude that this is too restrictive and 

produces sub-optimal joins (Conkie and Isard, 1997). Our solution incorporates a weighting 

parameter   that penalizes a join for deviating from the desired target duration. The duration 

penalty is given by 

      )         (
            )

              
   

              

            )
  ) 

where             ) is a function that calculates the final duration of the shared phone that 

results from joining two diphones (Figure 34). The final cost is given by 

        )  ∑([  
   

 ]     
  [    ])

 

  

       ) 

In preliminary tests, we found        to provide a good balance between join smoothness and 

accurate durations.  

 

Figure 34 The left diphone (a) and right diphone (b) are joined to form a triphone (c). The join location is 

specified by the points j and k. The duration of the concatenated triphone is j+k.  
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Figure 35 Calculating the cost of joining two diphones. The concatenation cost is given as the sum of 

squared residuals for each cepstral component Cj.  

6.3.3 Spectral smoothing with pulse-density modulation 

Optimal coupling offers sufficient smoothing when an acoustically stable join point 

exists, but its smoothing power is limited because it does not actually modify the spectrum. 

Spectral interpolation is needed to handle large spectral discontinuities, but linear interpolation 

does not model the natural movement of formants. Recently, a method based on pulse density 

modulation (PDM) has been proposed to interpolate STRAIGHT spectral envelopes in a way 

that shifts formants and amplitudes naturally (Shiga, 2009). 

PDM employs a delta-sigma modulator to convert a STRAIGHT spectral envelope    ), 

where   denotes frequency, into a pulse sequence    )     [   )] as follows: 

   )     )          ) 

   )     )       ) 

   )      (   )) 

with initial conditions    )     )     ) and    )   ; the term    represents the feedback 

gain of the delta-sigma modulator:         ).   
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In turn, the pulse sequence    ) can be decoded back into a log spectral envelope  ̂  )  

     [   )] through the discrete cosine transform (DCT) as: 

   )     [   )] 

   )          

 ̂  )       [   )]     

which essentially acts as a low-pass filter by truncating the DCT expansion with an appropriate 

cutoff k (      in our implementation). Thus, given a pair of spectral envelopes     ) and 

    ), a morphed spectral envelope can be computed by averaging the position of corresponding 

pulses in the two spectra: 

    )       [    [    )]      )   [    )]] 

where the morphing coefficient         ) can be used to generate a continuum of morphs 

between the two spectral envelopes     ) and     ). 

 

Figure 36 Morphing two spectrums with the PDM method. The original spectrums (     ) are plotted 

with the darkest and lightest colored lines.  
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6.3.4 STRAIGHT synthesis 

STRAIGHT is a high-resolution channel-vocoder. It encodes speech into two source 

parameters (i.e. fundamental frequency and aperiodicity) and one spectral parameter (i.e. 

smoothed spectrogram) (Kawahara, 1997). Figure 37 shows the parameters for a portion of 

MAB speech. ConFAC relies upon this versatile encoding for a variety of applications. Our 

immediate goal, diphone concatenation, is performed by simply concatenating the parameters 

associated with each diphone. Spectral smoothing (sub-section 6.3.3) is performed by morphing 

the smoothed spectrogram around the point of concatenation. MFCCs are calculated by warping 

the smoothed spectrogram according to the Mel-frequency scale and then computing the discrete 

cosine transform. Simple voice conversion (sub-section 7.3) is performed by warping the 

spectral envelope and shifting the fundamental frequency. Furthermore, synthesis from 

STRAIGHT parameters
19

 yields a higher quality of speech than can be obtained through 

traditional PSOLA methods.  

 

 
19

 Due to the time consuming nature of these calculations, these values are calculated once for the entire 

database and stored offline. The encoding is highly redundant, requiring more than 128 times the amount 

of storage than a raw speech waveform (16 kHz). Storage for the MAB and RGO databases requires over 

80 GB of storage space. 
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Figure 37 STRAIGHT parameterization of the MAB utterance ―Zimbabwe is the first example.‖  
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6.4 Conclusion 

Concatenative foreign accent conversion provides a framework to synthesize speech 

using either articulatory or acoustic features. Accent conversion is performed by selecting 

diphones from a database of non-native speech that match the articulatory/acoustic patterns of a 

native speaker. In the next section we evaluate ConFAC’s in terms of its ability to transform 

accent using acoustic and articulatory features.  
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7. CONFAC EXPERIMENTS 

Three experiments are performed to evaluate ConFAC. The first two measure ConFAC’s 

ability to alter the accent of a non-native speaker of English. The final experiment examines 

whether articulatory encodings of speech are more linguistically stable than acoustic 

representations. 

7.1 Subject recruitment 

Experiments in this section were evaluated by participants through Amazon’s online 

crowdsourcing tool: Mechanical Turk. Mechanical Turk has traditionally been used by 

companies to perform ―Human Intelligence Tasks‖ that are difficult for computers to perform, 

such as image tagging or speech transcription. It can also be used to solicit questionnaires or 

perform user studies (Callison-Burch, 2009; Kittur et al., 2008). It allows experiments to be run 

in a matter of hours rather than weeks, although there is an initial overhead required to create 

tests in a web-based format and some experimental designs do not lend themselves to this 

format. The testing environment of Mechanical Turk is less controlled than the subjective tests 

from Section 4. In particular, we have no control over listening conditions (e.g. 

headphones/speakers or television/music in the background), nor is it possible to ensure that 

participants gave their complete attention to the task at hand. To maximize the number of native 

speaking participants, a pre-test qualification required potential participants to correctly identify 

various American accents. Participants who did not pass this qualification were not allowed to 

participate in the study. In addition, a post-test prompt asked users to list their native 

language/dialect and any other fluent languages that they spoke. If a subject was not a 

monolingual speaker of American English then their responses were excluded from the results. 

Examples of the web-based forms are provided in APPENDIX E. 
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7.2 Experiment #1 – Accent rating 

The first experiment repeats the subjective accent rating from sub-section 4.3, but in this 

case for stimuli created using ConFAC. Two experimental conditions were tested: accent 

conversion in MFCC space
20

 (ACMFCC) and accent conversion in Maeda space
20

 (ACMaeda). We 

tested values for the parameter             from 0.1 to 1.0 in increments of 0.1. The final 

value of 0.5 was informally determined to be the highest tested value that did not significantly 

alter the overall level of naturalness of synthesized utterances. This corresponds to replacing 

50% of the diphones in the non-native utterance with different diphones from the non-native 

corpus. The same 10 sentences (listed in Table 6) were evaluated for original recordings of the 

foreign and native speakers and the experimental conditions. Twenty participants rated 40 

utterances on a 7 point EGWA scale (0=not at all accented, 2= somewhat accented, 4=quite a bit 

accented, 6=extremely accented). 

Table 6  

Transcripts of the 10 sentences used in Experiments 1 and 2 of this section. 

Test sentences 

The obvious answer is cash. 

He said: Education, education, education. 

They are so easy for youngsters to open. 

There was huge irony here. 

It is due for release in the U K early next year. 

Everybody meddles with nature. 

This is the big fear. 

We must take a measured look at this. 

We are regarded as being dour people. 

This was a meeting which changed his life. 

 

 

 
20

 The features pitch, loudness, and phoneme duration were included in all conditions. These are 

technically acoustic measurements, but they are representative of similar articulatory features: glottal 

activity (frequency and power) and rate of speech. 
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7.2.1 Results 

Results from the first experiment indicate a large difference in perceived accent between 

RGO and MAB, but ACMFCC, and ACMaeda were rated similar to RGO (Figure 38). A repeated 

measures ANOVA test was performed to test the null hypothesis that the average rating of 

accent for RGO, ACMFCC, and ACMaeda are the same. The results do not give sufficient evidence 

to reject the null hypothesis, i.e. there is no significant difference in perceived accent 

F(2,38)=0.52, p=0.60. We suspect that the high similarity between RGO, ACMFCC, and ACMaeda 

may have influenced listener ratings. Namely, we believe listeners assigned similar ratings to 

avoid cognitive dissonance. Cognitive dissonance is the unpleasant feeling caused by holding 

conflicting beliefs (Festinger, 1957). The theory of cognitive dissonance states that people strive 

to reduce dissonance by changing one or more beliefs. In this study, we believe subjects avoided 

cognitive dissonance by assigning consistent accent ratings to recordings from the ―same 

speaker‖ (RGO, ACMFCC, and ACMaeda sounded very similar). We tested this conjecture in the 

following two-part experiment. 

 

Figure 38 Accent ratings for ConFAC. The error bars indicate intervals of confidence (α=0.05) in a 

multiple comparison test.  
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7.3 Experiment #2- Decoupling accent and identity (Part 1) 

This experiment measures the extent to which accent ratings were affected by the 

perceived identity of a speaker. Namely, we hypothesize that listeners in Experiment #1 resisted 

assigning ratings that they perceived to be inconsistent (i.e. providing significantly different 

responses to recordings from the ―same‖ speaker). To permit listeners to assign internally 

consistent ratings, we wish to disguise the experimental conditions (ACMFCC and ACMaeda) by 

changing their identity. The first part of the experiment tests whether changing the identity 

(without accent conversion) affects the perception of accent. For this purpose, we disguise the 

original RGO and MAB recordings. Three baseline guises were created:  

1) Gave: modeled after RGO, this guise resembles an average male voice,  

2) Gdeep: modeled after MAB, this guise resembles a deep male voice, and  

3) Gchild: modeled as the identity opposite to Gdeep, this guise resembles a child voice.  

Applying a particular guise to a voice consists of altering its fundamental frequency and 

long-term spectral properties. The fundamental frequency is shifted and scaled within the range 

of the target guise (e.g. average fundamental frequency for Gave is 140 Hz). The STRAIGHT 

smoothed spectrogram is next modified to match the global statistics of the target guise. This is 

accomplished via dynamic frequency warping VTLN (Lee and Rose, 1998). Namely, we find a 

frequency warping function to minimize differences between time-aligned spectrograms of the 

current speaker and target guise. As illustrated in Figure 39, the frequency warping function 

   ) is used to disguise a MAB utterance to the average guise. Conversely, applying the Gdeep 

guise to RGO uses the inverse function F
-1

(w). Six types of stimuli were created for this test by 

combining two source voices (RGO and MAB) with three guises (Table 7). Twenty participants 

rated 10 utterances from each condition on a 7 point EGWA scale (0=not at all accented, 2= 

somewhat accented, 4=quite a bit accented, 6=extremely accented).  
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Figure 39 Transforming a speaker to a particular guise. Guises Gave and Gdeep are modeled after RGO and 

MAB, respectively. The baseline warping function F(w) is the result performing dynamic frequency 

warping from MAB to RGO. 

Table 7  

Six conditions used in part 1 of Experiment #2. 

Source voice Guise Transformation Notes 

RGO deep F
-1

(w) - 

RGO ave - original RGO 

RGO child F(w) - 

MAB deep - original MAB 

MAB ave F(w) - 

MAB child F(F(w)) - 

  

GdeepGaveGchild
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7.3.1 Results 

A two-factor repeated measures ANOVA test was performed for the factors ―source 

voice‖ and ―guise.‖ The results show a significant difference in source voice (i.e. RGO or MAB) 

F(1,97)=1812.08, p<0.001, but no significant difference for guise F(2,97)=0.79, p=0.46. In 

other words, modifying the fundamental frequency and long term spectral properties of a voice 

does not affect its accent rating (Figure 40). This is a positive result because it allows us to apply 

guises to stimuli in Experiment #1 without affecting their true accent ratings.  

 

Figure 40 Accent ratings for the change of identity experiment. The error bars indicate intervals of 

confidence (α=0.05) in a multiple comparison test. 

7.4 Experiment #2- Decoupling accent and identity (Part 2) 

The second half of the experiment tests whether listeners in Experiment #1 rated 

ACMFCC, ACMaeda and RGO as having a similar accent because they perceived them as the same 

speaker. In this case, we disguised ACMFCC and ACMaeda with the previously developed guises. 

Two separate tests were performed to balance the choice of disguise across experimental 
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conditions. In the first test (denoted by Test Set A in Table 8), ACMFCC and ACMaeda underwent 

Gchild and Gdeep transforms respectively. Listeners rated these utterances in addition to unmodified 

RGO and MAB utterances. Test set B switched the guises of the experimental conditions.  

Table 8  

Separation of stimuli into two test sets (A and B). 

Set A Set B Condition Guise   ConFAC synthesis features
20 

  Foreign (RGO)    - 
  ACMFCC Gchild   MFCC 
  ACMaeda Gdeep   Maeda 

  ACMFCC Gdeep   MFCC 

  ACMaeda Gchild   Maeda 

  Native (MAB)    - 

 

7.4.1 Results 

Results from tests A and B are combined in a repeated measures ANOVA analysis to 

test the null hypothesis that the means of RGO, ACMFCC, and ACMaeda are the same. The evidence 

suggests that we can reject the null hypothesis; there is a significant difference between the 

means F(2,78)=16.08, p<0.001. The results of a multiple comparison test show that all pairs are 

significantly different except for ACMFCC and ACMaeda (Figure 41). In this case, the perceived 

accent of ACMFCC and ACMaeda are 16% and 20% lower than RGO. This result indicates that 

listeners in Experiment #1 were biased by the similarity of the stimuli. We believe that the guises 

in this experiment allowed listeners to assign internally consistent ratings by creating 

perceptually distinct speakers. This technique effectively decouples accent from identity. More 

importantly, the test showed that both accent conversions can reduce the accent of the original 

recordings from RGO. 
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Figure 41 Accent ratings for the experimental conditions after undergoing a change of identity. The error 

bars indicate intervals of confidence (α=0.05) in a multiple comparison test. 

7.5 Experiment #3 - Comparing features for cross-speaker synthesis 

ConFAC’s ability to choose more ―native sounding‖ diphones depends primarily on the 

quality of the synthesis features. The ideal set of synthesis features would contain full linguistic 

information and be speaker independent. The objective of the third experiment is to compare the 

articulatory and acoustic feature sets along these two metrics. We compare the linguistic content 

in each set by performing synthesis within speaker. For this purpose, RGO utterances are 

resynthesized in a leave-one-out fashion. Utterances created in this manner are called same-

speaker (SS). We compare speaker dependence of each set by performing synthesis across 

speakers. In such a case, the encoding (MFCC or Maeda) that is more similar across speakers 

will have an advantage. For this purpose, units from RGO are selected and combined based on 

their similarity to MAB’s synthesis features. Utterances created in this manner are called cross-

speaker (CS). 
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Stimuli in this experiment were created differently from those of the previous 

experiments. We revert to the original unit selection formulation proposed by Hunt & Black 

(1996) rather than the adaptations presented in sub-section 6.3.1.1 (allowing original units and 

modifying the total cost equation). This ensured the selection of new diphones from RGO’s 

speech corpus for all diphones in an utterance and maximized the differences between 

utterances. However, due to the small size of our speech corpus, the quality of the synthesized 

utterances is significantly lower than stimuli used in the first two experiments. One-hundred 

utterances were created by synthesizing 25 unique sentences in each of the four conditions 

shown in Table 9.  

Table 9  

Experimental conditions in the cross-speaker synthesis test. 

Condition Set A Set B 
Synthesis database 

(speaker) 

Synthesis features 

(speaker) 
Target features

20
 

SSMFCC   RGO RGO MFCC 

SSMaeda   RGO RGO Maeda 

CSMFCC   RGO MAB MFCC 

CSMaeda   RGO MAB Maeda 

 

Participants heard the utterances in pairs and were asked to select the more ―natural and 

intelligible‖ utterance. Utterance pairing was performed as follows: stimulus set A was created 

by pairing identical sentences (e.g. ―They are so easy for youngsters to open.‖) from the same-

speaker conditions (SSMFCC and SSMaeda) in a random order with a 1 second pause between them. 

This set allowed us to compare the linguistic information in each feature set since the synthesis 

features did not contain speaker dependent information from another speaker. Stimulus set B 

paired the cross-speaker conditions CSMFCC and CSMaeda in a similar manner. Cross-speaker 

utterances are influenced by both linguistic and speaker dependent information. In order to 
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isolate the amount of speaker dependent information in each set, we measure subject responses 

relative to the responses in set A. Twenty participants selected the more ―natural and intelligible‖ 

utterance for each of the 50 stimuli (set A and B). 

7.5.1 Results 

Results from the cross-speaker synthesis test were analyzed with the binomial 

significance test and McNemar’s (Chi-squared corrected) matched pair test. A two-tailed 

binomial significance test was performed independently on stimulus set A and B with the null 

hypothesis that there was an equal preference (P=0.5) for the choice of target features (i.e. 

MFCC and Maeda). Out of the 500 responses in set A (20 participants  25 stimuli), 321 favored 

MFCC compared to 179 for Maeda. This corresponds to a preferred Maeda proportion of only 

0.358, which is statistically significant p(two-tailed) < 0.001. We attribute the preference for 

SSMFCC to the known shortcomings of the Maeda parameters: 1) they provide an incomplete 

representation of the vocal tract, 2) sensor values drift over time, and 3) small changes in the 

articulatory space can produce large changes in speech (e.g. /p/, /t/, /b/, /d/, /k/). Responses for 

set B, on the other hand, did not provide significant evidence to reject the null hypothesis with 

260 responses favoring Maeda compared to 240 for MFCC. In summary, there is a strong 

preference for acoustic-driven synthesis when the synthesis features are selected from the same 

speaker as the synthesis database, but there is no clear preference for cross speaker synthesis. 

We next employ McNemar’s test to see if this difference is statistically significant. 

McNemar’s matched pair test combines listener responses in set A and B using a 22 

contingency table as follows. For each of the 25 unique sentences chosen for this test, a subject’s 

A and B responses are paired to index one of the four central bins in Table 10. For example, if a 

listener preferred SSMFCC (over SSMaeda) for ―sentence 1‖ and CSMaeda (over CSMFCC) for the same 

sentence then that response is recorded in the upper-right bin. The null hypothesis for 
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McNemar’s matched pair test states that the row and column marginal frequencies are equal for 

each outcome. In other words, due to the high preference for MFCCs in the same-speaker 

condition we should expect a similar preference in the cross-speaker condition. Our results show 

strong evidence to reject the null hypothesis; the Maeda preference proportion increased from 

0.358 in the same-speaker condition to 0.52 in the cross-speaker condition (χ
2
= 26.7782, p(two-

tailed)<0.001).  

Table 10  

Contingency table showing the results of the pre-test. 

 
cross-speaker 

row total 
MFCC Maeda 

same-speaker 
MFCC 161 160 321 

Maeda 79 100 179 

column total 240 260 500 

 

This result supports our hypothesis that speech is more universally represented in the 

articulatory domain than the acoustic domain for this pair of speakers. The conclusion is drawn 

from the relative improvement (i.e. 0.358 to 0.52) and not the final value of the cross-speaker 

test (0.52). This is analogous to a race in which one runner was given a head start and the final 

result was a tie. The experimental design used here is quite powerful, but it cannot pinpoint the 

root cause of the preference shift. Subjects displayed an increased preference for Maeda in the 

cross-speaker condition, but this shift has three possible explanations: increased preference for 

Maeda, decreased preference for MFCC, or some combination of the two. Fortunately, all 

explanations boil down to a single conclusion: Maeda parameters were more similar than 

MFCCs for the tested speakers. Additional studies are required to confirm that this result holds 

true for more speaker combinations. 
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This finding is important because it addresses a common issue among investigations of 

articulatory similarity across speakers. Westbury et al. (1998) declare that ―differences between 

talkers have been found in every speech kinematic study with a sample greater than one.‖ 

Investigations comparing articulatory gestures across speakers commonly observe articulatory 

differences that cannot be explained by physical factors (e.g. vocal tract length, palate shape) or 

normalization processes (Hashi et al., 1998; Johnson et al., 1993; McGowan and Cushing, 1999; 

Simpson, 2002; Toth and Black, 2005; Westbury et al., 1998). These results are often used to 

weigh in on the divisive topic of whether or not speakers aim for auditory or articulatory targets. 

However, such studies consistently overlook a critical factor–the acoustic consequences of 

articulatory differences. It is well known that the articulatory-to-acoustic mapping is many-to-

one (i.e. multiple vocal tract configurations can produce similar acoustic spectrums). In other 

words, articulatory differences do not necessarily imply acoustic differences. Furthermore, 

certain acoustic differences may not change the perception of a phoneme (e.g. coarticulation 

causes phones to sound different depending on their context, but they are still perceived as the 

same phoneme). ConFAC’s ability to estimate
21

 the acoustic consequences of articulatory 

differences makes the results obtained in Experiment #3 unique.  

7.6 Discussion 

ConFAC reduced the accent of a non-native speaker up to 20%. This is considerably less 

than the results obtained for SpFAC, which reduced accent by 60%. I believe the reason lies in 

SpFAC’s direct use of the native speaker’s speech whereas ConFAC was limited to the inventory 

of speech segments from the non-native speaker’s speech corpus. ConFAC assumes that the non-

 

 
21

 Unlike a traditional articulatory synthesizer, ConFAC cannot produce sounds that are not contained in 

the database; it can only produce the sound of the nearest articulatory configuration. 
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native corpus contains diphones with different degrees of accent and it uses features from a 

native speaker to locate the least accented examples. However, if the non-native speaker is 

consistent in their production throughout the corpus, then it is futile to make any replacements. 

ConFAC is also more likely to be influenced by the choice of non-native speaker than SpFAC. 

The L1/L2 language pairing, particular mispronunciations, and the size and quality of the non-

native speech corpus affect ConFAC’s ability to transform accent. Unfortunately, due to the 

rarity of speech corpora with simultaneous acoustic and articulatory recordings, we were only 

able to experiment with a single non-native speaker.  

The RGO corpus contained about half of the number of phones recommended to 

perform diphone synthesis (20,000 < 36,000) (Clark et al., 2007). Dr. Tracy Hammond 

suggested a way to effectively increase the number of available units in the database without 

performing any additional data collection. She suggested to create variations of each unit by 

applying simple prosodic modifications (i.e. pitch, loudness, duration). This approach is only 

valid insofar as the modifications do not affect the underlying articulatory parameters. For 

example, the faster a phone is pronounced the more heavily the articulators are influenced by 

coarticulation. Although we can alter the duration of a phone with a high-quality prosodic 

modification, we cannot predict how the underlying articulatory gestures should change 

accordingly. Another way to address this problem is to determine the potential benefit of a larger 

database. How do the size and coverage of the non-native database affect ConFAC’s ability to 

transform accent? In experiments #1 and #2 we replaced half the diphones with new ones from 

the non-native corpus. A larger database might allow the replacement of all diphones, but I do 

not expect twice the reduction in accent due to the tendency of unit selection to first replace 

those units with the highest target costs. Therefore diphones that are replaced should be among 
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the most ―mispronounced‖ and the replacement of additional units should result in diminishing 

improvements.  

We did not formally evaluate ConFAC using subjective identity or quality measures. 

However, strong evidence that the identity of the non-native speaker was maintained is provided 

by the fact that we needed to disguise stimuli to observe a measurable difference in listener 

ratings of accent. With regard to quality, we noticed that synthesis quality varied from sentence 

to sentence. This is most likely caused by the small size of our database. The stimuli used in 

Experiments 1 and 2 of this section were partially selected based on their quality and naturalness 

compared to the unmodified RGO recordings.  

In light of this section’s results, is it possible to glean any new insight from previous 

results? SpFAC’s segmental transform reduced accent by 60%, but this result was obtained 

without resorting to guises. According to the identity test with forward speech, listeners already 

perceived it as a third speaker. There are two reasons for SpFAC’s segmental transform to sound 

like a third person: 1) VTLN did not remove all information pertaining to the native speaker and 

2) the change of accent was significant enough to act as its own guise. Another insight can be 

found by revisiting results for the prosodic transform. SpFAC’s prosodic transform did not 

significantly affect accent ratings, but it was not differentiated in the perceptual identity space. It 

may have a measurable effect if we were to repeat the experiment with a guise for prosodically 

modified stimuli.  
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8. CONCLUSION 

Speech modification algorithms have been used to alter pitch, duration, and even the 

identity of speech. Recently, researchers have turned to the problem of modifying accent 

(Huckvale and Yanagisawa, 2007) (Yan et al., 2007) (Yanguas et al., 1999). Previous 

approaches rely upon acoustic cues to transform speech. We predicted that the task might be 

better suited in the articulatory domain. To test this hypothesis we collected a custom speech 

corpus using an electromagnetic articulograph and developed a speech synthesis system that 

could be controlled by either acoustic or articulatory features.  

Concatenative foreign accent conversion (ConFAC) combined segments of speech from 

a non-native corpus to maximize the acoustic/articulatory similarity with a native utterance. The 

approach is particularly appealing because it modifies speech in a way that produces realistically 

achievable changes in accent (important for applications in pronunciation training). Using this 

approach, we showed that the degree of foreign accent in a Spanish speaker of English can be 

reduced by 20%. The experiment performed in sub-section 7.5 confirmed that articulatory-based 

features were more speaker-independent than an acoustic encoding, but it also indicated that the 

articulatory encoding was incomplete (i.e. there was insufficient information to reconstruct the 

speech signal). This is most likely due to the fact that the electromagnetic articulograph 

measures only 6 points within the vocal tract (upper and lower lips, jaw, and 3 points along the 

tongue), whereas acoustic features characterize the full vocal tract. We conclude that both 

representations are equally suitable for accent conversion.  
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A second contribution of this research was the development of subjective and objective 

measures to assess the performance of accent conversion systems. The measures were 

thoroughly tested using spectral foreign accent conversion (SpFAC). SpFAC achieved 60% 

reduction in accent, but the transformation also altered the perceived identity of the stimulus. In 

order to overcome difficulties inherent to the evaluation of accent conversion
22

, we proposed two 

noteworthy experimental designs: 1) a measure of identity that used reverse speech to remove a 

speaker’s accent, and 2) a measure of accent that used voice disguises to eliminate bias caused 

by similar identities.  

The relationship between accent and identity made it difficult to evaluate accent 

conversion, but it resulted in findings that may be generally useful to speech perception. Our 

work yielded two insights into the relationship between accent and identity: 

 Large changes in accent affect identity. Results from the forward speech identity test 

show that listeners perceive stimuli undergoing SpFAC’s segmental transform as neither 

the foreign nor native speaker. We believe this to be partially
23

 caused by a simultaneous 

change in perceived accent (60%). Evidence to support this claim is found in the reverse 

speech identity test where results confirm the voice quality of the foreign speaker is 

maintained (Figure 21).  

 Small changes in accent are masked by identity. Results from the (undisguised) 

accent test show that listeners rate ConFAC stimuli and unmodified foreign stimuli 

equally, regardless of any changes introduced by ConFAC (Figure 38). Since VTLN 

 

 
22

 In most cases, success must be measured without the benefit of having a well-defined goal. However, a 

ground truth would exist in cases involving bidilectal speakers or identical twins that each speak a 

different dialect.  
23

 We also suspect that VTLN did not remove all speaker dependent information from the native speaker’s 

spectral envelope.  
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guises alone do not affect accent, the reduced accent observed in the disguised accent 

test must be attributed to ConFAC (Figure 41). Therefore, the same reduction of accent 

may have been present in the first test but not detected. 

Figure 42 presents a hypothetical accent conversion continuum consistent with the observed 

perceptual interactions between accent and identity. The continuum progresses from RGO to 

ConFAC to SpFAC. The end of the continuum is labeled by a question mark to denote the fact 

that the identity is not midway between foreign and native identities, but rather an unknown third 

speaker. We also predict that this effect happens non-linearly near the point where the accent is 

different enough from RGO that naïve listeners perceive him as a third speaker.  

These observations call for a re-evaluation of the goals of accent conversion. Up to this 

point, we have loosely used the term ―identity‖ to refer both to a speaker’s ―voice quality‖ and 

their overall persona. But it is possible to change a speaker’s identity yet maintain their voice 

quality. Voice quality is just one of the many factors affecting our perception of identity. The 

goal of accent conversion should be to alter a speaker’s accent and maintain voice quality. Under 

this new definition, SpFAC can be considered one step closer towards that goal. 
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Figure 42 Graphical representation of the relationship between accent and identity. The dashed line 

represents a hypothetical accent conversion continuum. The location of SpFAC is also hypothetical 

because SpFAC was evaluated for the speakers KSP and RMS from the ARCTIC database (Kominek and 

Black, 2003). 

8.1 Future work 

Computer assisted pronunciation training is an exciting application for accent 

conversion. We believe that accent conversion may provide second language learners with a type 

of feedback that is both engaging and useful–a more native sounding version of their own 

speech. SpFAC or ConFAC could potentially be used in a pronunciation training environment to 

test this claim. Based on our results, SpFAC is the more likely candidate since it achieves a 

lower accent, with less processing, and only a small amount of acoustic training data. On the 

other hand, ConFAC may be more encouraging for L2 speakers because it offers a more 

attainable goal (ConFAC merely resequences previously pronounced sounds). It may also be 

desirable to post process utterances with a head-transfer function to approximate how users hear 

their own voice (Huopaniemi et al., 1999).  

A possible criticism of this work is the small number of speakers tested. The primary 

reason for this is the scarcity of articulatory speech corpora. We required datasets that included a 

native                                   foreign
(Accent)

foreign

?

native

(Identity)

RGO

MAB

ConFAC

SpFAC
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large number of utterances for speakers with distinct foreign accents. ConFAC had the additional 

constraint that the database must also include articulatory information. No suitable databases 

existed, so we collected our own. A secondary reason for the limited number of results is the 

effort associated with evaluation. The objective measures from section 5 might be suitable for 

tuning parameters, but the final evaluation should always rely on human perception. Formal 

results for SpFAC were presented for the speaker pairing consisting of the native speaker 

rms_usmale2 and non-native speaker ksp_indianmale from the ARCTIC speech corpus 

(Kominek and Black, 2003). Two other speakers were considered including native speaker 

bdl_usmale1 and awb_scottishmale. We selected the final paring from four possible pairings 

based on informal evaluations. In this regard, SpFAC had an advantage over ConFAC because 

the latter had no alternatives but to use RGO and MAB. Future studies with different speakers 

and accents may demonstrate improved ConFAC performance.  

We believe ConFAC was also partially limited by the approach adopted for weight 

training. Unit selection synthesis requires weights for each feature to determine their relative 

contribution to the target cost (sub-section 6.3.1). ConFAC uses the standard regression training 

approach proposed by Hunt and Black (1996), which finds weights to minimize the difference 

between a natural utterance and the output of the synthesizer given the synthesis features of the 

natural utterance. Since this approach relies only upon the database of the synthesis speaker 

(RGO), it may not be optimal when units are selected using features from MAB
24

. One solution 

would be to train weights on a population of speakers so that the resulting weights are generally 

reliable. However, this was not feasible here since it requires a large amount of articulatory data 

 

 
24

 Accent conversion uses MAB features for the fraction of diphones determined by the synthesis 

parameter perNewUnits (default 50%).  
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for numerous speakers. Our current solution is to use the weights trained on RGO’s database and 

carefully normalize MAB features to be within the expected range.  

A natural extension of ConFAC is to try to combine the benefits of acoustic data 

(complete information) with those of articulatory data (linguistically relevant). In the current 

work, two weight training sessions are used: one for ACMFCC and one for ACMaeda. To test 

whether the unified set of features (i.e., articulatory and acoustic) could be used for accent 

conversion, we trained weights for: 13 MFCCs, 5 Maeda parameters, pitch, duration, and 

loudness. An inspection of the resulting weights reveals that nearly all high weight values belong 

to MFCCs and utterances synthesized with the hybrid weights were not perceptually different 

than those obtained for ACMFCC. We believe this result can be traced back to the limitations of 

the current weight training procedure (discussed above). Since weights are trained using units 

and features from a single speaker (RGO), they are optimized for same-speaker synthesis. 

Results from the same-speaker condition in Experiment #3 show a clear preference for the 

MFCC condition (SSMFCC), which explains the high weight values for MFCC in the hybrid set. 

Therefore, we do not expect hybrid weights to provide significantly better results until the cross-

speaker weight training problem is solved. These are a few of the potential directions for this 

work.  
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 APPENDIX A

ARPABET 

The Arpabet was developed in 1971 by the Advanced Research Projects Agency 

(ARPA). It represents each phoneme of General American English with ASCI characters. It was 

selected over the more widely used International Phonetic Alphabet (IPA) because we used HTK 

and the CMU pronunciation dictionary to perform an initial automatic transcription, which was 

manually corrected later. The CMU pronunciation dictionary has transcriptions for over 125,000 

words. The chart below gives examples for each Arpabet symbol and the corresponding IPA 

symbol. Arpabet symbols may be listed more than once when a single Arpabet symbol 

represents more than one IPA symbol. 

 

MONOPHTHONGS 

IPA Arpabet Example Translation 

ɔ AO off AO F 

ɑ AA father F AA DH ER 

i IY bee B IY 

u UW you Y UW 

ɛ EH red R EH D 

ɪ IH big B IH G 

ʊ UH should SH UH D 

ʌ AH but B AH T 

ə AH sofa S OW F AH 

ӕ AE at AE T 
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DIPHTHONGS 

IPA Arpabet Example Translation 

eɪ EY say S EY 

aɪ AY my M AY 

oʊ OW show SH OW 

aʊ AW how HH AW 

ɔɪ OY boy B OY 

 

R-COLORED VOWELS 

IPA Arpabet Example Translation 

ɝ ER her HH ER T 

ɚ ER father F AA DH ER 

ɛr EH R air EH R 

ʊr UH R cure K Y UH R 

ɔr AO R more M AO R 

ɑr AA R large L AA R JH 

ɪr IH R ear IY R 

aʊr AW R flower F L AW R 

 

STOPS 

IPA Arpabet Example Translation 

p P pay P EY 

b B buy B AY 

t T take T EY K 

d D day D EY 

k K key K IY 

ɡ G go G OW 
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AFFRICATES 

IPA Arpabet Example Translation 

ʧ CH chair CH EH R 

ʤ JH just JH AH S T 

 

FRICATIVES 

IPA Arpabet Example Translation 

f F for F AO R 

v V very V EH R IY 

θ TH thanks TH AE NG K S 

ð DH that DH AE T 

s S say S EY 

z Z zoo Z UW 

ʃ SH show SH OW 

ʒ ZH measure M EH ZH ER 

h HH house HH AW S 

 

NASALS 

IPA Arpabet Example Translation 

m M man M AE N 

n N no N OW 

ŋ NG sing S IH NG 

 

LIQUIDS 

IPA Arpabet Example Translation 

l L late L EY T 

r R run R AH N 
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SEMIVOWELS 

IPA Arpabet Example Translation 

j Y yes Y EH S 

w W way W EY 
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 APPENDIX B

ARTICULATORY CORPUS TRANSCRIPT 

The articulatory corpus transcript consists of 550 unique sentences selected from the 

Glasgow Herald to provide adequate phonetic coverage. The following 344 utterances were 

recorded by both our foreign (RGO) and native (MAB) speakers. Immediately following this list 

are an additional 206 utterances recorded solely by RGO. 

1. A breakthrough, I surmised. 

2. A few may even have reached Level F. 

3. A further eight people are awaiting extradition on terrorism charges. 

4. A new school will be built. 

5. A new site was also earmarked near the main gate but the plans were never 

implemented. 

6. A popular novel that transcends its genre. 

7. Aberdeen is enjoying a buoyant economy, with optimism in the oil and gas industry. 

8. Ah, it looks so beautiful, said Noriega. 

9. Air fares could rise under proposals to alter the way airports charge airlines for landing 

and parking. 

10. Air to air refueling tankers are also stationed there. 

11. Allies reject offer as half measure. 

12. America also suffered in the uncertain economic climate. 

13. And it is a lie which has done much damage to Catholics. 

14. Anxious about commercial oil interests in Iraq. 

15. Any political ambitions are also curbed. 

16. Anybody with eyes in their head would see that. 

17. Are we not worth bothering looking at? 

18. As I was driving towards the garage I saw it start to twist and turn. 

19. At Edinburgh, my tutors were Robin and Faith Jacques, and Roy Wood. 

20. Autism link still cause for concern. 

21. Bagpipes rounded off the evening. 

22. Baroness Thatcher is the undisputed conference darling. 

23. Barrymore flew in to Heathrow airport from Dubai on Tuesday night. 

24. Because these deer are gregarious, they go about in groups. 

25. Being competitive means coming up with new styles in each genre and constantly trying 

to be fresh. 

26. Big thinking and big money was required. 

27. Bill Welsh, chairman, called for a large scale study. 

28. Bin Laden returned to Afghanistan. 

29. Bodies fall on a nearby golf course. 

30. Both failures, two engine failures. 

31. Britons warned, foul deed. 
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32. But everything changes. 

33. But he did give himself a severe jolt. 

34. But the gurus had got it wrong, and they were wrong now. 

35. Change will not occur overnight. 

36. Christy Moore covered it on his last album. 

37. Club chairman Hugh Scott said yesterday he would defend the action. 

38. Cut here, cut there, cut everywhere. 

39. Daredevil youth versus experience. 

40. Each case is unique. 

41. Elsewhere, change is mixed. 

42. Eriksen saw out the rest of the war as a detainee and was then released. 

43. Even on Air India, our fleet is very old. 

44. Everybody meddles with nature. 

45. Extra officers arrived late last night. 

46. Fears of sabotage were rife last night. 

47. For good measure he offered an un reserved apology. 

48. For now our trip as we knew it is over. 

49. Four year beef would cost too much. 

50. Good to know, Joe. 

51. Gordon Brown was superb. 

52. He added: She sure knows her rugby. 

53. He adored Whoopi and the two were great friends. 

54. He claimed that racism drove him out of Scotland. 

55. He did not make it to L A. 

56. He has been sighted inside the French zone, but no attempt has been made to apprehend 

him. 

57. He is action oriented. 

58. He is just a stopgap governor, said a spokeswoman for the Stop The Closure campaign. 

59. He is well placed to make such judgements. 

60. He later met Jacques Chirac, the French president. 

61. He now moves up to fifth place. 

62. He said that the only figures that were down were for international leisure visitors. 

63. He said: Education education, education. 

64. He said: Nigel went to L A in January and acted in a film with Whoopi Goldberg called 

Call Me Claus. 

65. He saw it all as a big game. 

66. He was attached to the Texas militia air force. 

67. He was flirting, touching my arms. 

68. He was sacked last year amid nepotism allegations. 

69. He wore dark jeans and a sweatshirt. 

70. His Del Boy pitch was well rehearsed. 

71. His job was not advertised. 

72. His number two has been confirmed as Dick Cheney, another Texan oil millionaire. 

73. His strange, smooth jowls wobble like those of a barnyard turkey. 

74. Hispanic costumes are quite colorful. 

75. Hopefully we are catching up. 

76. Hospital routine would go out the window. 

77. How long does it go on? They have not made their target so far. 
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78. How wrong we all were. 

79. However, friends said he had come north only two weeks ago. 

80. However, the report did give some idea, albeit warning against comparison. 

81. However, the youngster died of exposure shortly before the party was rescued. 

82. However, there is now artistic concern. 

83. I also go up north to hunt deer, he said. 

84. I always believed it myself. 

85. I am gullible, he replied. 

86. I am not a witch, she said. 

87. I am now unemployed. 

88. I am sure they all work very hard. 

89. I chose coronation chicken. 

90. I enjoy going to work. 

91. I feel genuinely lucky. 

92. I grew up in L A, and I know the level of the beating down that happens to film makers. 

93. I have enough vices without smoking dope. 

94. I have warm Portuguese blood. 

95. I just had to be here, she said. 

96. I know what sectarianism can do. 

97. I look forward to others following suit. 

98. I never saw anything. 

99. I never thought in a million years about terrorism, she says. 

100. I often produce tears. 

101. I opened the shutters and saw a man. 

102. I reject this accusation. 

103. I think any such policy should also specify how it would use any actuarial information. 

104. I urge you to opt for restraint. 

105. I was directed to destroy all copies and wipe the computer file. 

106. I worked in retail for years and enjoy shopping. 

107. I would also urge people to avoid stocking up. 

108. If children behaved like this they would get a smack round the ear. 

109. If the E U does not heed W T O rulings, there will be mayhem. 

110. If they insist on breaking the law, I would hope that the courts would hit them as hard as 

they can. 

111. If you want to regulate noise, regulate noise. 

112. In Paris, Jacques Chirac, the president, told his armed forces to be prepared for 

deployment. 

113. In the dry season, each village seems a pretty idyll. 

114. Iraq had, for example, a programme to modify aerial fuel tanks for Mirage jets. 

115. It can be used against both bribe givers and takers. 

116. It can change from hour to hour. 

117. It does look very eerie and that is one of the reasons I love it. 

118. It features the job title Generator. 

119. It has been a fascinating job, he said. 

120. It has provided employment in a lot of rural areas where there was no employment, he 

said. 

121. It involved nine thousand pounds for Stirling Royal. 

122. It is about the prism through which we view the world. 
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123. It is due for release in the U K early next year. 

124. It is not hers. 

125. It is time to change our approach. 

126. It is, of course, the English theme pub. 

127. It manufactures hair products. 

128. It seems wrong that a tiny little office in Edinburgh exerts this control over the output of 

Scotland. 

129. It was a great job but times have changed. 

130. It was a magazine of leisure, not war. 

131. It was carnage, carnage. 

132. It was like waving a red flag, she said. 

133. It will be a superb gateway attraction to the Highlands. 

134. It will set tourism back a year. 

135. Jacques Chirac has our support. 

136. Last month oil prices were at their highest since the Iraqi invasion of Kuwait in nineteen 

ninety. 

137. Last night they unearthed a seven year old boy and his mother. 

138. Lauren has a twin sister, Lisa Ann. 

139. Leisure centres were also affected. 

140. Leisure: thirty three percent expect Mexico and Australia to become regular holiday 

destinations. 

141. Living organisms and parts of living organisms are not inventions. 

142. Louise Hopkins, visual arts. 

143. Make sure you know where the exam is being held. 

144. Many are now orphans. 

145. Meanwhile, the only birdies on the luxuriant new course are gulls from the Firth of 

Forth. 

146. Michael Ashcroft is a British citizen. 

147. Michelle saw Arlene the next day. 

148. Military courts always apply English criminal law, even for trials in Scotland. 

149. Morgue vans are more common and their numbers are increasing. 

150. Most of his works are painted using oils or watercolors. 

151. Mr Hague resubmitted the nomination earlier this year. 

152. Mr Hague, trailing so badly in the polls, certainly put on a bravura performance under 

the circumstances. 

153. Mr Howie said: Burns is alive and kicking. 

154. Mr Mustafa had to help bury them. 

155. Mr Shevardnadze was enraged. 

156. Mr Straw urged all politicians to moderate their language and declined to condemn Mr 

Hague. 

157. Ms Doherty, who was on her first protest, is the only British female being held. 

158. Ms Jackson can vouch for that. 

159. My brother in law only has me, but what about the people who do not have anybody? 

160. Nato authorizes air strikes. 

161. No one has yet come up with answers. 

162. None more important to that soil. 

163. Nor did he take time off for leisure pursuits. 

164. Not the overcoat surely, I thought. 
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165. Nothing more, nothing less. 

166. Now I have something else to aim for. 

167. Now we always have fun here. 

168. Now, get out of here. 

169. Oasis left on a real high. 

170. One convoy had four buses. 

171. One person jumped into the water. 

172. Oops There goes another one! 

173. Or are the metaphor mongers getting carried away with themselves? 

174. Oswald Road is situated in the Grange, a conservation area. 

175. Others are obtained from nursing agencies, which charge a commission for placing 

nurses. 

176. Our book shows you how. 

177. Our budget could not bear that. 

178. Our percentage vote is higher than the Conservative percentage vote. 

179. Our proposals tackle areas of real need. 

180. Our reasons are not entirely driven by the low oil price, although the volatility is a 

factor, he said. 

181. Our research points the way. 

182. Part of England, is not? 

183. People ask me how I can do it. 

184. People buy everything with cash. 

185. Politically, the system is a hot potato, particularly following devolution. 

186. Porcupines resemble sea urchins. 

187. Recovery was soon aided by a bottle of diet lemonade. 

188. Robb, thirty one, was granted a prison transfer home to Northern Ireland in nineteen 

ninety seven. 

189. Sadly, they are usually all of these things. 

190. Seventeen eighty five: John Jeffries and Jean Pierre Blanchard cross the Channel in a 

balloon. 

191. Shaving cream is a popular item on Halloween. 

192. She always jokes about too much garlic in his food. 

193. She became pregnant with their son Ross, now aged five. 

194. She died in middle age. 

195. She has always been a healthy, strong person. 

196. She said of the vandalism: I am shocked, and a bit scared. 

197. She said: Seizure rates are the tip of the iceberg. 

198. She survived because she had been able to shelter in a bivouac bag. 

199. She took days off work. 

200. She was vague, just generally vague. 

201. She went into hospital early last month after cancer reappeared. 

202. Sir John Kerr is a man who oozes diplomacy from every pore. 

203. Six Scottish plants employ thirteen thousand. 

204. So I urge the world to finish the job. 

205. So now you know. 

206. So too is the other Carry On Doctor alter ego, the Hattie Jacques battle axe. 

207. Some had their eyes gouged out or heads smashed in. 

208. Sometimes in order to save the organism you have to sacrifice a limb, she said. 
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209. Soon after, it clouded over with dark clouds. 

210. Special measures were needed. 

211. Still more stark is the threat of more terrorism on American soil. 

212. Such a move might torpedo any peace moves. 

213. Take the issue of poverty. 

214. Thank you, King Neptune. 

215. That idea is rubbish, he said. 

216. That may yet prove to be one closure too far. 

217. That noise problem grows more annoying each day. 

218. That party, United Torah Judaism, also broke ranks in the budget vote. 

219. That was their final wish, she said. 

220. The British government should ensure by what they say and what they do. 

221. The Cass report outlines five options for the company if closure goes ahead. 

222. The Chinook was plagued with problems. 

223. The Ethiopian population is rising by around three percent per year. 

224. The Gucci studio recently moved there. 

225. The Gujarat state government had a more conservative estimate. 

226. The animal also died. 

227. The arthritic knees gave way. 

228. The boy vanished as his mother was putting his sister in her car seat at the visitor centre. 

229. The butcher is very good. 

230. The chancellor has certainly had to backtrack on the main forecasts he made in his April 

budget. 

231. The city is thriving economically. 

232. The double whammy for Da Ali G Show was also significant. 

233. The end of the case creates a kind of closure for the family. 

234. The executive version was finally carried. 

235. The film was a sensation, and may have helped change the law on homosexuality. 

236. The fourth area is public buildings. 

237. The main body of troops is not due to deploy until next Friday at the earliest. 

238. The man called the garage earlier this week after seeing the car advertised on the web. 

239. The oasis was a mirage. 

240. The obvious answer is cash. 

241. The officer said he went to see the boy after that time, and could see no marks on his 

face. 

242. The patch up jobs have come and gone. 

243. The person who wrote that should be horse whipped. 

244. The pressures are intense. 

245. The prime minister dismissed any suggestion that the war was in any way to do with oil. 

246. The proper guests were offered a finger buffet. 

247. The second sort of love is the Mentor and the Protege, or Pygmalion complex. 

248. The smoke, she says, swept through the narrow canyons like a tsunami. 

249. The teams will use radar equipment employed by oil companies to track underground 

cables. 

250. The trademark cowboy boots are the giveaway. 

251. The unions are powerless except in nooks of the public sector. 

252. The vibe, the buzz in Glasgow, is amazing. 

253. The war on terrorism was going global. 
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254. The woman sits down, fuming. 

255. The words Algeria and terrorism sit too easily together. 

256. Then he made it into Big Oil. 

257. There are garages below me. 

258. There are mechanisms to shine a light. 

259. There are seven other contenders. 

260. There is confusion when more of the Opposition arrive. 

261. There is no clear idea on where all this fresh water is going to come from. 

262. There is no logical reason for that. 

263. There is no switch off. 

264. There was huge irony here. 

265. There was no answer. 

266. There were no casualties. 

267. These are fairly rare. 

268. They are all dodging the issue. 

269. They are so easy for youngsters to open. 

270. They are standing idle. 

271. They are thoroughly evil people. 

272. They entered everywhere. 

273. They feel let down by them. 

274. They know the truth, they really know the truth. 

275. They lie at the strategic heart of the new oil bonanza. 

276. They now have a clear choice, he said. 

277. They now have jobs with U K Coal. 

278. They play a key role in shaping young lives. 

279. They remained lifelong friends and companions. 

280. They wanted to know why the names Utah, Omaha, and Overlord had appeared in his 

answers. 

281. They would have been booked very early. 

282. This is a virtuoso Chancellor with unprecedented intellectual command at the height of 

his powers. 

283. This is the big fear. 

284. This may have been a deliberate ploy on the part of Colonel Cody. 

285. This should allow aircraft to move more smoothly across European air space, he said. 

286. This was a meeting which changed his life. 

287. This was always a false choice for New Labour, he argued. 

288. Those chefs know who they are. 

289. Three others were wounded. 

290. Time is now very short. 

291. To fearsome and feisty now add fast. 

292. Tourism has changed all that. 

293. Two Asian youths were seen running from the scene. 

294. Two bows were also stolen. 

295. Vandalism also leapt thirteen point three percent. 

296. Virtually all genres of musical taste are recognized in the poll. 

297. We are considering the options. 

298. We are curious to see if a Scottish genre emerges. 

299. We are not dealing here with refugees, he said. 
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300. We are not working with theories. 

301. We are now dealing with Bin Laden. 

302. We are nowhere near there yet. 

303. We are open every Monday evening. 

304. We are regarded as being dour people. 

305. We can enjoy alcohol in other areas of life but not in church premises. 

306. We depend on tourism for our livelihood. 

307. We desperately need the concierge back. 

308. We enjoy every minute we have with her. 

309. We have to ensure victims are protected. 

310. We just feel fear, fear for her safety. 

311. We must all play our part. 

312. We must take a measured look at this. 

313. We need to reach out to all areas of our society. 

314. We only learned at lunchtime when she phoned home that she actually was. 

315. We shall take very serious measures. 

316. We will also be using the final to highlight our tourism potential, he said. 

317. We will do our best to ensure that the tourism areas are not too badly affected. 

318. We will drop five thousand tons a month into drop zones. 

319. We will now pursue this objective with renewed vigor. 

320. We will raise the minimum income guarantee in line with earnings next year. 

321. We would be happy if there was zero compensation. 

322. We would rather have guidance now. 

323. We would really like to see more money being earmarked to prevent any possibility. 

324. West coast and Cross Country drivers now earn thirty two thousand five hundred 

pounds. 

325. What he put people through. 

326. When all else fails, use force. 

327. When he saw us, he ran back inside and we followed. 

328. When is a resolution not a resolution? 

329. When these two K G B returned to Moscow, they were tried on espionage charges and 

executed. 

330. Where things can be saved, that will be done. 

331. Which is to secure shipbuilding on the Clyde. 

332. Who are the bunglers now? 

333. Whose side is the law on: those with a position in life or the victims? 

334. Why on earth should we do that? 

335. Will you renew this worthless vow in this election? 

336. Winners receive a redcoat statuette. 

337. With Lee, I had high blood pressure. 

338. Yields will be highly variable. 

339. You are from Scotland? 

340. You enjoy your flight? 

341. You have not done your job properly. 

342. Yours sincerely, Elizabeth R. 

343. Zimbabwe is the first example. 

344. Zoo authorities are considering whether to put her down. 
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RGO additionally recorded the following 206 utterances. All 550 sentences took 6 hours 

to record and is the most extensive single session articulatory corpus to our knowledge.  

1. A Labour nightmare. 

2. A crusade against a real social evil Leader. 

3. About your boy? 

4. Absolutely perfect. 

5. Age thirty eight. 

6. All of sudden, it started opposing terrorism under pressure. 

7. All the world has now seen the footage of an Iraqi Mirage aircraft with a fuel tank 

modified to spray biological agents over wide areas. 

8. All wore beards. 

9. Among those joining Crook, Hughes, and Bailey in the Scottish version of Gutted! will 

be Dylan Moran, the youngest Perrier award winner at the Fringe, Daniel Kitson, a 

Perrier winner last year, and Michael Redmond, of Father Ted fame. 

10. An additional four million pounds was withdrawn from D A Afghanistan Bank in Kabul 

a month after the U S airstrikes began, and none of it has been seen since. 

11. An estimated fifty thousand Scottish and Irish sea birds died in the Prestige oil disaster 

off the Spanish coast last November, it was revealed yesterday. 

12. An interpreter was provided and evidence was taken in Hindustani. 

13. And the Bradbury Building in L A, an office building, has a fantastic gothic interior that 

has been seen in Blade Runner, Wolf, Caprice, Murder in the First Degree and loads 

more. 

14. Appeals continuing, but confusion over the secretive judicial process. 

15. Are harmful. 

16. Are you all right? 

17. Are you pregnant? 

18. Arriving early, I looked around Bournemouth. 

19. Auctioneers: United Auctions. 

20. Audio tape played. 

21. B A asked all crews on flights in U K airspace to invite passengers to observe the silence 

in the air. 

22. Bachelor of Arts with Honors: Clare Ritchie. 

23. Backie was dead. 

24. Barcelona eight. 

25. Battle for power. 

26. Because in Scotland we are offering education in art and design to little more than half 

the proportion of students than in England, and even the English are not particularly 

generous in providing for art education. 

27. Best German Act: Guano Apes. 

28. Biography Churchill, by Roy Jenkins. 

29. Both China and India. 

30. Both claim it is too early to tally up. 

31. But surfers beware. 

32. Carlisle. 

33. Change. 

34. Charles Macintosh: Raincoat. 
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35. Clear my name. 

36. Club fears. 

37. Collision alarm off July forth. 

38. Countdown to conflict, February forth. 

39. Cutting edge Leader. 

40. Cynicism is corrosive. 

41. David D. 

42. Death Breath, Thunder Thighs, Jug Ears, Baldy. 

43. Diana. 

44. Die, pig, die. 

45. Dirt will fly. 

46. Distinction: Cameron R Yates. 

47. Dressed in turquoise with a matching hat, she delighted onlookers at the kirk as she 

arrived in a black limousine. 

48. Education lesson. 

49. Eh? 

50. Eight: Belinda Earl, forty, chief executive of Debenhams. 

51. Ethel Elizabeth Nunn, Founder, Society of Friends of the Lotus Children. 

52. Even Yom Kippur was a blow because of initial enemy advances in the Sinai desert and 

on the Golan Heights. 

53. Failure to deliver Death knell. 

54. Fire tenders moved into position as the Concorde landed at Gander, where B A 

engineers are still inspecting the plane. 

55. Fish like the salmon in the River Loire will disappear, while desertification of already 

arid areas, like central Spain, will increase. 

56. Five years later, he re entered the world of business with the creation of his own 

engineering company aided by the gift of a start up fund from Ms Bourgeois. 

57. For services to Lothian and Edinburgh Enterprise. 

58. Forget the gormless goldfish jokes. 

59. Forget the row over G M food. 

60. Forgotten victims. 

61. French President Jacques Chirac said the air attacks were launched to defend peace on 

our soil, peace in Europe. 

62. George W. 

63. Germany reported five more deaths yesterday, putting the toll there at seven, and raging 

waters cut off some towns in the state of Saxony. 

64. Given that many newspapers bring oodles of staff, that means lots and lots of fifteen 

pound donations into Labour coffers. 

65. Glasgow. 

66. Hague the nationalist. 

67. Happy Birthday merger. 

68. Has let Mr Mugabe too often off the hook. 

69. Having a background in both Urdu and English has probably helped because I 

understand language structure better. 

70. He read zoology at Dundee University and then in Edinburgh, but dropped out of both 

courses. 

71. Health Which? offers a range of actions individuals can take to reduce risks. 

72. Heseltine turns on Hague; Heseltine in focus. 
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73. Him very often at my check out. 

74. Hip, hip, hooray! 

75. Hope and skepticism editorial comment. 

76. Horrifying fetish, bizarre behavior. 

77. Hotel California Eagles. 

78. How can we ignore it? 

79. How far do you go? He said he would not be calling for other customers to follow their 

lead, but would leave them to form their own opinion. 

80. How serious it is. 

81. However, she was passed over for the Chinese team, had given up the sport, and was at 

Wuhan university when she came to Britain to study English. 

82. However, the demand for heavy, hi tech armored leviathans is dwindling. 

83. However, there was one faux pas on greeting a well known businessman, accompanied 

as usual by a female on his arm. 

84. However, this is set to decline as pensions become less generous, with the report noting: 

The current batch of retirees may have some of the highest proportions of those who can 

enjoy early retirement with a relatively high level of income. 

85. I A, U S astronaut with Scots ancestors, yesterday predicted the future of space 

exploration could include unearthing the mysteries of Mars, a return to the moon and the 

development of the Hubble space telescope. 

86. I am getting air, but ... 

87. I appreciate that. 

88. I believe ruthenium compounds could one day be suitable for clinical use, and have a 

significant impact on drug development against cancer. 

89. I enjoy reading. 

90. I like girls. 

91. I. 

92. In addition, there were all those passengers wanting to come ashore and enjoy Ayrshire. 

93. In his post, Mr Jung will oversee the teaching of environmental art, painting, 

photography, printing and sculpture. 

94. Iraq must disarm. 

95. Is she alive? 

96. Is she dead? 

97. Is she in trouble? 

98. It is half baked. 

99. It jars. 

100. It never occurred to me that a rule would be necessary to keep racism out of blood 

transfusions and donations. 

101. Jane Eyre eleven. 

102. Japanese oysters have also started to breed in British waters, threatening to push out the 

U K oyster in the future, the report said. 

103. July eighteenth. 

104. July forth. 

105. June forth. 

106. Jurassic Park nineteen ninety three: eighteen. 

107. Lanyard wars, part three. 

108. Last month Yves Saint Laurent said in a veiled attack on McQueen that there are 

murderers in the couture houses. 
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109. Leader May eighteenth. 

110. Leaders from the majority of European countries also made a point of expressing their 

support, including Jacques Chirac, the French president. 

111. Legal action April sixteenth. 

112. Mafia gangs. 

113. March first. 

114. March ninth. 

115. March seventh. 

116. March sixth. 

117. March third. 

118. March. 

119. Missiles are jeopardising aid operations. 

120. Moby Grape Moby Grape. 

121. Model chamber. 

122. Moon Safari Air. 

123. Ms Chen has developed special organic coats for ruthenium one of the rarest metals on 

earth which enable compounds to target D N A bases of cancer cells with greater 

accuracy. 

124. Must change channel. 

125. My idea of the winner? 

126. Naomi Mitchison loved people. 

127. Neighbors falling out. 

128. New era delays. 

129. Nick Nairn China Surprise! 

130. No known cures. 

131. No sunshine break. 

132. Normal. 

133. Nothing, she replied. 

134. O: Have you located the wound yet? 

135. October seventeenth, two thousand Hatfield. 

136. Oh dear. 

137. Oh, yes, I vote. 

138. Oil embargo endorsed. 

139. Or depths. 

140. P R? 

141. Parliamentary sketch: Murray Tosh profile. 

142. Partial female triumph. 

143. Poor chap. 

144. Prison Aberdeen. 

145. Prison Garth. 

146. Push off. 

147. Reserve League. 

148. Rod Eddington, B A chief executive, recorded a message for staff explaining that action 

was needed to lead B A out of crisis and return the airline to profitability. 

149. Samuel Gamble, School Caretaker. 

150. Sarah Lancashire seven. 

151. Sharp. 
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152. Smashed tumblers, dropped forks and, the bane of Scottish goal keepers, a goalmouth 

fumble. 

153. So I chose Belgium. 

154. Sort of. 

155. Stay off her. 

156. Tackling Al Qaeda is the equivalent of fighting shadows. 

157. Take Northern Ireland. 

158. The Ayrshire line was reopened during the early evening rush hour. 

159. The Big Yin is celebrating the arrival of the Wee Yin. 

160. The Pentagon has drawn up a blueprint for a shock and awe air assault on Iraq which 

will concentrate on killing as many of its leaders as possible and cutting the survivors off 

from contact with their troops in the field. 

161. The Tweets are worthy winners. 

162. The choice is clear. 

163. The empty vessel was due to collect plutonium fuel from the La Hague nuclear 

reprocessing plant near Cherbourg for shipment to Japan. 

164. The farther north you go, the more bookish folk become, with Orkney tops in Britain 

with fourteen withdrawals per person per year. 

165. The global villain, George Bush, has been foiled again. 

166. The gorgeous butterfly ate a lot of nectar. 

167. The harsh assessment from the European Commission came hard on the heels of 

criticism earlier this week of Scottish beaches in a separate British report. 

168. The idea I got was that the U K had very good people, very hospitable people, but now 

my idea regarding the people has completely changed. 

169. The idea I got was that the United Kingdom had very good people, very hospitable 

people, but now my idea regarding the people has completely changed. 

170. The official said Indian troops had returned the firing and the exchange had continued in 

the Uri sector of the control line. 

171. The political battleground over police numbers and crime figures escalated fiercely in 

Westminster amid bitter exchanges among politicians. 

172. The star made a series of disclosures in the one hour, fifty minute programme about his 

life, his appearance and his three children his five year old son, Prince Michael the first, 

daughter Paris, four, and his baby boy. 

173. The two leaders are due to meet close to where Mr Blair and his family are staying near 

Toulouse, in southern France. 

174. The vital Alaska oil pipeline, which carries crude oil from northern Alaska to terminals 

at Prudhoe Bay, is being monitored by helicopter patrols, while the National Guard is 

protecting the plant in Michigan that makes anthrax vaccine for the military. 

175. The water was slowly oozing out a soft and transparent light it must have accumulated 

the day before or, more likely, during the last summer. 

176. There have been shows in Japan, the U S, and a major art nouveau exhibition at the 

Victoria and Albert Museum in London. 

177. There is a wider public concern about the gradual shift from N H S care, which is free, to 

social care, which is means tested. 

178. There was no charge. 

179. They are going after bin Laden. 

180. They love modern art. 

181. This gave some hope. 
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182. This will make job creation even more difficult, Mr Duncan Smith said. 

183. Thus far. 

184. To ensure genuine football fans can enjoy their day without fear for their safety. 

185. Treasure Island Robert Louis Stevenson: two. 

186. Tumultuous cheers. 

187. Typical old style Scottish Labour M P. 

188. U K French summit, where Tony Blair will try to win round a previously skeptical 

Jacques Chirac, the French president. 

189. Ugh! 

190. Until last summer, the force had turned a blind eye to prostitutes using the Leith zone for 

almost two decades. 

191. Voila! 

192. Watch this space. 

193. Watch your back! 

194. We are Chechens. 

195. We are frustrated because we are now in the third year of a major recruitment initiative 

to encourage more applicants from the state sector and this kind of story can do nothing 

but sabotage our efforts, she concludes. 

196. Weird kind of beauty. 

197. Well, more fool me. 

198. What Tony Blair thinks. 

199. What emerges is a world in which every idea, every device is harnessed to meet 

company needs: more smoking by more people. 

200. What is she doing? 

201. Why do I say this? 

202. Why should she be? 

203. Wrap up warmly. 

204. Wrong. 

205. You know what I feel? 

206. You over in States on business, sir? 
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 APPENDIX C

ISOMAP 

To perform multidimensional scaling, we first create a (100100) matrix containing the 

average perceptual distance between any two of the 100 utterances. Shown in Figure 43 (a) as an 

image (darker colors indicate larger perceptual distances between the corresponding pair of 

utterances), this matrix is sparse due to the large number of utterance pairs (10,000) relative to 

the number of participants. To guard against outliers, we eliminate any utterance pairs that have 

been rated by only one participant. We use an -neighborhood with a radius of 7 perceptual 

units
25

 to define a local connectivity graph; the resulting local distance matrix is shown in Figure 

43 (b). Geodesic distances between every pair of utterances are then estimated using Dijkstra’s 

shortest paths algorithm (Dijkstra, 1959), which results in the fully connected distance matrix   

shown in Figure 43 (c).  

Following Tenenbaum et al. (2000), we apply an operator    ) to matrix  , which 

converts distances into inner products: 

   )   
   

 
  

where S is a matrix containing the squared distances found in   (i.e.        
 ),   is the 

centering matrix  

     
 

 
  

 

 
25

 Scores from zero to seven indicate pairs of utterances that participants believed to have been produced 

by the same speaker. 
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   is an identity matrix, and   is =100. The i-th component    of the d-dimensional embedding 

(i.e., the coordinates of the N utterances on the i-th dimension of the embedding) is found by 

   √    
   

where    is the p-th eigenvalue of the matrix    ) and   
  is the i-th component of the p-th 

eigenvector. Each of the 100 samples is then represented in two dimensions as       ). A 2-

dimensional embedding of the distance matrix in Figure 43(c) is shown in Figure 21 (b). 

 

(a) (b) (c) 
Figure 43 Calculating a complete set of geodesic distances from a subset of utterance pairings. Utterances 

are displayed in groups of 20, corresponding to their stimulus condition (i.e., utterances 1-20 are from 

condition 1, 21-40 from condition 2, etc.) Dark pixels indicate that (on average) the corresponding pair of 

utterances was perceived as having been produced by different speakers; the grayscale is shown on the far 

right. (a) Raw average distances for the identity experiment with reversed speech. A checkerboard pattern 

appears due to the testing procedure
26

. (b) Data is thresholded to remove distances greater than seven; this 

separates pairs of utterances that were perceived as ―from the same speaker‖ from those perceived as 

―from different speakers‖. Utterance pairs for which data was scarce (less than two examples) were also 

removed to avoid potential problems with outliers. (c) Fully connected graph reconstructed by Dijkstra’s 

shortest path algorithm. Notice the block structure showing low geodesic distance within utterances from 

condition 5 (native) and within utterances from conditions 1 through 4 (non-native glottal excitation). It is 

this distribution of geodesic distances that leads to the clusters observed in Figure 21 (b).  

 

 
26

 The 20 distinct sentences were divided into two sets (1-10 and 11-20) to ensure that pairs were 

linguistically unique. Presentation was counterbalanced across sets (i.e. a sentence from the first set was 

not always played first). 
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 APPENDIX D

PROCESSING ARTICULATORY DATA 

Electromagnetic articulography (EMA) provides a rare view of the human vocal tract in 

motion, but it is not perfect technology. Two of the most critical limitations are long term drift of 

the sensor values and missing data. This appendix describes techniques to address these issues. 

The articulatory corpus used in this study was collected in a similar manner to the one used in 

Korin Richmond’s dissertation on articulatory inversion (2001). He performed a long term 

analysis of the pellet positions by calculating their mean value for each utterance in the database. 

We expect these values to be randomly distributed around the true mean due to the distinct 

phonetic content of each utterance, however, Richmond’s analysis revealed that pellet locations 

gradually drifted; this effect is also present in the RGO and MAB datasets. As prescribed by 

Richmond, we estimate a drift offset for each sensor by low-pass filtering (with normalized
27

 

cutoff at 0.04) the average utterance values (Figure 44). 

 

 
27

 The cutoff for a normalized filter is expressed as a value between [0,1], with 1 corresponding to the 

Nyquist frequency of the signal. We cannot express the cutoff in absolute terms (e.g. Hz) due to the fact 

that each sample corresponds to an average value across an utterance and these are not equally spaced. 

However, if we assume the average duration of utterances to be 2 seconds, then a normalized cutoff of 

0.04 corresponds to an absolute cutoff frequency of 0.01 Hz. 
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Figure 44 Long term drift correction. Each gray point represents the average value per utterance of MAB’s 

horizontal jaw position. Local variation can be attributed to varying phonetic content, but long-term 

variation suggests sensor drift. 

Occasionally EMA will lose track of a transmission coil for a few hundred milliseconds. 

Our corpus contains at least one missing pellet in 2% of the samples, but it is rare to find a 

sample that loses track of all sensor locations. Rather than discard the entire sample, we 

reconstruct the missing values by exploiting the highly correlated nature of the data. In general, 

this process is known as data imputation (Little and Rubin, 1987). We employ a method 

developed specifically for articulatory datasets, which has the ability to represent multi-modal 

data (Qin and Carreira-Perpinán, 2010). The approach first estimates the joint distribution for all 

complete samples in the corpus (i.e. no missing values) using a Gaussian mixture model. 

Missing values are then filled with the maximum likelihood estimate of the conditional 

distribution specified by the known values. The method has been shown to reconstruct 

artificially missing data within 1.5 mm (Qin and Carreira-Perpinán, 2010).  
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 APPENDIX E

MECHANICAL TURK TESTS 

This appendix provides samples of the web-based evaluation forms used in the ConFAC 

experiments (Section 7). These forms were hosted by Amazon’s online crowdsourcing tool: 

Mechanical Turk. Participants were paid $1 for their involvement. All participants were required 

to pass the American Accent classification task (Figure 45) before being permitted to take part in 

a real experiment. This was performed to increase the probability that our subjects were native 

speakers of American English. The standard accent rating task used in Experiments #1 and #2 is 

shown in Figure 46. The third ConFAC experiment was a forced choice experiment which 

required participants to select the more natural and intelligible utterance (Figure 47). 
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Figure 45 The pre-qualification test. Potential participants were required to correctly identify eight out of 

ten regional American accents before they were allowed to serve as a subject on a real experiment. This 

initial screening was performed to increase the probability that our subjects were native speakers of 

American English. 
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Figure 46 The accent rating form used in ConFAC experiments #1 and #2 (sub-sections 7.2-7.4). Clicking 

the listen object played a single utterance. Subjects were asked to rate each utterance on the degree of 

accentedness. 
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Figure 47 The evaluation form for the third ConFAC experiment. Clicking a single listen object plays two 

consecutive utterances, allowing us to control the order of presentation. Subjects were asked to select the 

more natural and intelligible utterance. 
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 APPENDIX F

CONFAC TOOLBOX 

The Concatenative Foreign Accent Conversion (ConFAC) toolbox is a speech synthesis 

tool developed at the Texas A&M University PRISM laboratory. The main functionality 

supported by this tool is to perform unit selection speech synthesis. The software also comes 

with two ―voices‖: an American English speaker and a Spanish accented speaker. ConFAC can 

perform crude text-to-speech synthesis, but it was designed to alter characteristics of speech 

related to accent. This appendix contains an abridged version of the ConFAC user’s manual.  

GETTING STARTED 

ConFAC was developed on a quad-core machine (i5, 4 @ 2.67 GHz) with 4 GB of RAM 

running (64-bit) Windows 7. It was coded entirely in the Matlab programming language (2010b) 

with the following Matlab toolboxes: Control, Image Processing, Neural Network, Optimization, 

Signal Processing, and Statistics. Several third-party toolboxes are also provided on the 

installation DVD.  

SOFTWARE INSTALLATION 

The included DVD contains additional third-party toolboxes and custom code developed 

specifically for ConFAC. Installation consists of copying the entire contents of the DVD to a 

computer and adding all directories and subdirectories to the Matlab path. For example, copy the 

contents of the DVD to C:/ConFAC. Startup Matlab and run the commands: 

addpath(genpath('C:/ConFAC')); 

savepath; 

The ―savepath‖ command saves the new path for future Matlab sessions.  
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Corpus installation 

Before ConFAC can be used, the speech corpora need to be installed. Copy the RGO 

and MAB datasets from the installation DVD to your computer. ConFAC is a unit selection 

synthesizer that requires accurate phoneme labeling to produce a good result. Initial phonetic 

alignment was performed automatically using HTK and then refined manually using Wavesurfer 

(Sjölander and Beskow, 2000). Phone labels are specified in a standard HTK *.lab format in 

each corpus. Mispronunciations in RGO are specified using a third *.lab file as follows. For 

every parallel utterance that was recorded for RGO and MAB, there exists an additional *.lab 

file that aligns MAB’s pronunciation to RGO’s acoustic waveform. Mispronunciations can be 

easily detected since this lab and the true RGO lab have a common frame of reference; the 

mispronunciation files are stored in a ―mab‖ subfolder inside the main RGO corpus location.  

Raw EMA recordings must be processed to estimate location and orientation from the 

magnetic field data; our database was previously processed by two independent algorithms: 

TAPAD (Kroos et al., 2008) and UKF (Chassot, 2009). We use the set processed by UKF after 

an informal inspection showed UKF trajectories to be smoother. Additional pre-processing 

methods are discussed APPENDIX D. 

Generation of STRAIGHT parameters 

The final installation generates the STRAIGHT parameters from the acoustic data. These 

files are too large to be included on the DVD (you will need approximately 80 GB of free hard 

drive space). Storing the STRAIGHT parameters offline entails calling the method 

saveStraight with the directory location of the corpus as well as the location to store the 

STRAIGHT parameters: 
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saveStraight('C:\databases\rgo_ema\', 

'C:\databases\rgo_ema\straight\',[125 165]); 

The final values in this function are the lower and upper bounds for the pitch calculation (use 

[125 165] for RGO and [80 120] for MAB). This process took approximately 12 hours to 

complete on a quad-core machine (i5, 4 @ 2.67 GHz) with 4 GB of RAM. Modify the method 

@utt/getStraight.m to reflect the location of the STRAIGHT parameters.  

Verifing installation 

Check your installation by opening Matlab and running checkInstallation.m in 

the ―C:\ConFAC\examples\‖ directory. This script executes portions of the required toolboxes in 

isolation to allow the user to determine where (if any) errors occur. If an error occurs, check your 

Matlab path to ensure that all necessary directories are included or if there are any conflicts with 

existing functions of the same name. Proceed to check basic ConFAC functionality by running 

demo1.m, demo2.m, and demo3.m in the same directory. Successful execution of these 

scripts almost certainly guarantees ConFAC is installed correctly. 

CONFAC CLASSES 

Understanding ConFAC begins by understanding the four ConFAC classes and their 

relationship to each other. ConFAC was developed as a set of object-oriented classes related by 

the class diagram in Figure 48. Important properties, methods, and roles of each class are 

discussed in each sub-section below; a complete description of all class methods can be found 

using Matlab’s doc command.  
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Figure 48 Diagram showing the relationship between the Matlab classes. The speaker class contains an 

array of utterances, which in turn, contain arrays of phones and diphones. 

Speaker class 

The speaker class (@spk) is the highest level class. It represents a collection of 

utterances and contains methods for loading and searching utterances as well as performing unit 

selection and synthesis. This class also contains methods for calculating global statistics as well 

as the main methods for unit selection and synthesis. Its primary property is an array of 

utterances.  

Utterance class 

The Utterance class (@utt) is the primary storage class. It holds raw data (e.g. audio 

and articulatory), calculated features (e.g. MFCC, Maeda, pitch, loudness), and methods to load 

the offline STRAIGHT features seamlessly as if they were held in memory. While its main 

purpose is handling the data, it also contains methods for calculating features and spectrally 

smoothing the STRAIGHT spectrum. The Utterance class contains arrays of phones and 

diphones used during unit selection.  

Phone Diphone

Speaker

Utterance
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Table 11  

The properties of the ―utterance‖ class are listed below. This class stores all the raw data, while phone and 

diphone objects link to a particular utterance. 

Property Sampling rate Description  

wav 16 kHz acoustic waveform 

f0raw 1 kHz STRAIGHT pitch 

ap 1 kHz STRAIGHT aperiodicity 

n3sgram 1 kHz STRAIGHT spectral envelope 

MFCC 1 kHz 13
th
 order Mel-cepstral analysis 

artData 200 Hz 6 channel electromagnetic articulography  

daf 50 Hz discrete articulatory features 

Maeda 200 Hz Maeda parameters 

txt – orthographic transcription 

htkWords – contents of corresponding *.lab file 

phones – array of phones 

diphones – array of diphones 

 

Unit class 

This class (@unit) is an abstract class representing several types of linguistic units (e.g. 

phone, diphone, triphone, syllable, word, phrase). The unit class acts a prototype for any derived 

classes (e.g. @phone and @diphone). A unit is defined by a start and end time within an 

utterance. Its main purpose is to provide common methods within to access the utterance-level 

data. For example, when performing unit selection, every diphone is described by an equal 

number of features. This is performed using the method @unit\equalFeatures. The 

current approach is to sample continuous features at the beginning, middle, and end of a unit and 

represent discrete features (e.g. word initial unit, duration) with a single value. Since this 

representation is independent of time, it is highly recommended to include duration as a feature.  

Phone class 

The phone class (@phone) is derived from the unit class. It is the simplest class and has 

almost no unique methods. Its properties are basic: start time, end time, and label (e.g. /ah/). 
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Diphone class 

The diphone class (@diphone) is also derived from the unit class. Since unit selection 

is performed at the diphone level, this class is the functional unit of the database. A diphone 

spans two neighboring phones; its start time must fall within the duration of the left phone and 

its end time must fall within the duration of the right phone. Times are initialized mid-phone, but 

are adjustable to improve joins with other diphones. Its label is a dependent property calculated 

by concatenating the labels of its composite phones. The diphone class contains special methods 

for estimating diphone similarity and the goodness of two diphones being joined (i.e. How 

natural is the transition?).  

EXAMPLES  

The examples below illustrate both basic (e.g. loading, analyzing, listening) and 

advanced (e.g. accent conversion, text-to-speech synthesis) functionality of ConFAC.  

Loading data 

The speaker class contains methods that load utterances from the database. There are 

currently two different functions for this purpose: @spk/populateDB loads utterances in the 

order they were recorded, while @spk/populateMatches loads only common utterances 

between RGO and MAB in a specified order. Both functions allow the user to specify the 

number of utterances to load as well as which features to load (e.g. MFCC, artData, discrete 

articulatory features). During their operation these loaders call, in turn, lower-level loaders for 

the utterance, phone, and diphone classes. They return an instance of the Speaker class that 

contains an array of utterances. Utterances can be listened to by issuing the command 

@utt/listen or opened externally in Wavesurfer (Sjölander and Beskow, 2000) using the 
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command @utt/wavesurfer. Raw EMA data can be viewed with the standard Matlab plot 

command on the utterance property artData.  

 

mab=spk('C:\databases\mab_ema\mat\'); 
mab.populateMatches(5,10,{'artData'}); 

  
u=mab.utterances(1); 

 

u.txt 

ans = 

  
'If you want to regulate noise, regulate noise.' 
 

left=u.phones(11).getLeft('artData'); 
right=u.phones(18).getRight('artData'); 

  
u.plotEMA(left,right) 

 

Figure 49 Basic interaction with an utterance object. First a MAB speaker object is created. It loads 5 

utterances, starting with the 10
th

 utterance in the match list. A handle on the first utterance in the speaker 

object is created. This utterance contains the sentence ―If you want to regulate noise, regulate noise.‖ The 

fifth word ―regulate‖ starts with phone 11 and ends with phone 18. A plot of the tongue pellet trajectories 

is displayed (after zooming) using the command @utt/plotEMA. The far left of the plot is the tongue tip 

and the far right is the tongue dorsum. Time is displayed as a color shift from blue to pink.  
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Preparing the data 

There are additional functions for preparing the raw data. For the most part, these 

processes may be called in any order. The only exception is that the function @spk/fixNaNs, 

which estimates missing EMA data, should be called before @spk/calculateMaeda. The 

latter function converts the EMA positional data into the Maeda parameters (see Figure 31) as 

well as autoscales the Maeda parameters to N(0,1) using the generic method 

@spk/normalizeFeature. It is also recommended that you autoscale MFCCs to minimize 

speaker dependencies. The function @spk/removeOutliers was implemented to improve 

the quality of candidate unit selection. It was observed in initial synthesis results that unit 

selection would sometimes select a candidate that was not a good representation of the target 

phonetic class (e.g. /ah/). In some instances the unit was mislabeled in the database and in others 

it was correctly labeled but not typical of that phone. RemoveOutliers calculates the mean 

and variance for each phone in the database using the utterance properties MFCC and 

duration. In order to balance phonetic diversity with unit integrity, we keep units within two 

standard deviations of the mean. Figure 50 lists an acceptable way to prepare a speaker object for 

synthesis; the created speaker object db will be used in the remaining examples. 

 

load('dbStats.mat','rdb') 

  
db=spk('C:\databases\rgo_ema\mat\'); 
db.populateDB(100,1,{'artData','daf'}); 
db.fixNaNs(rdb.NaN); 
db.calculateMaeda(rdb.Maeda,1); 
db.normalizeFeature('MFCC',rdb.MFCC); 
db.removeOutliers(5); 
db.initializeIndex; 

 

Figure 50 A script demonstrating the standard way to load data and prepare it for accent conversion. It 

begins by loading a saved structure of speaker dependent statistics (rdb). This file was created once using 

testNormalize.m and is used each time data is loaded from the database (there is a similar file for MAB). 

Refer to each method’s help file to understand its input arguments.  
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Saving and loading precomputed databases with .mat files 

The previous two examples are prerequisites for most ConFAC functionality. Since 

these steps are standard for almost any application, ConFAC includes the ability to save and load 

a dataset in .mat format. Saving a processed dataset to a *.mat file and loading it later (rather 

than re-processing) can save significant time when the datasets involved are large. Save or load 

any of the custom class variables (i.e. @spk, @utt, @phone, @diphone) using the 

standard Matlab commands save and load (see Matlab documentation for more details).  

Weight training 

Prior to performing synthesis, unit selection target weights must be calculated. This is 

accomplished through the function weightTraining4, which accepts a speaker database and 

a list of features as input. Weight training assigns a weight to each feature representing its ability 

to predict acoustic differences between different instances of a particular phone. They are 

calculated using the weight training method suggested by Hunt and Black (1996). However, 

multiple linear regression was replaced with partial least squares due to the relatively high 

dimensionality of our feature space compared to the number of examples in the database (Geladi 

and Kowalski, 1986). Using the database prepared in Figure 50, we can train target weights by 

issuing the command: 

weights=weightTraining4(db,{'MFCC','pitch','duration'},10000,3); 

The input arguments specify the database, features, number of diphones to use in training, and 

the number of times to (evenly) sample each diphone. Here we train weights on standard 

acoustic features spaced at the beginning, middle, and end (3) of each diphone. 10,000 training 

examples takes 15 minutes to process on a quad-core machine (i5, 4 @ 2.67 GHz) with 4 GB of 

RAM. The returned weights structure will be used as an input to unit selection. 
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Unit selection 

In addition to the target weights, weightTraining4 also assigns default values for 

synthesis parameters. These parameters control various aspects of synthesis, usually representing 

a tradeoff between two attributes. Table 12 lists the default values and the effect of changing 

them. In traditional unit selection, units are selected and concatenated from a database to create 

speech. However, as mentioned previously, ConFAC is a speech modification system (e.g. 

makes a non-native speaker sound more native), which means that some form of the desired 

utterance is already available. The relatively small size of our database means that some 

diphones are not well represented. In such cases, the best option is to use the original unit rather 

than selecting a replacement. This option is enabled by setting allowSelfUnits to true.  

The operational mode of α is dependent upon the value of allowSelfUnits. When 

allowSelfUnits is false, α determines the relative importance of concatenation and target costs. 

On the other hand, when allowSelfUnits is true, α determines the percentage of new units 

selected from the database costs (see my dissertation for a mathematical formulation of unit 

selection and the subsequent modifications when allowSelfUnits is true). This reformulation of α 

has several desirable effects: 1) it replaces units that are furthest away from the target synthesis 

features first, and 2) it yields a consistent amount of change across utterances and conditions.  

The actual unit selection function @spk/unitSelection6 is not typically called 

directly by the user, but it is called within common synthesis functions: TTS, leaveOneOut, 

and AC. Users can control its operation by modifying the parameters stored in the weights 

struct.  
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Table 12  

Various parameters and their effect on ConFAC synthesis. 

parameter range (default) low values high values 

  [   ] (0.33) selects units that 

concatenate well 

selects units that match the 

target features 

  [   ] (0.33) selects cut points that 

concatenate well 

selects cut points that meet 

the desired timing 

N [   ] (50) faster, but lower quality 

synthesis 

slower, but higher quality 

synthesis 

allowSelfUnits [True, false] 

(false) 

(false) Do not consider 

original units as 

candidates  

(true) Do consider original 

units as candidates 

 

Text-to-speech  

Assuming that a speaker object has been loaded and processed, and target weights have 

been trained, text-to-speech synthesis can be performed. A crude text-to-speech synthesizer has 

been implemented for demonstration purposes. Call the speaker function @spk/TTS with a 

speaker object and the desired text. The function will select diphones from utterances in the 

speaker object to complete the text. In this example we will synthesize the phase ―Hello World.‖ 

The function TTS first generates a phonetic spelling of the text using the CMU pronunciation 

dictionary. Diphone target parameters are calculated using average MFCC values from all the 

examples of that diphone in the database. Lastly, a sequence of diphones is chosen from the 

database, concatenated, and synthesized.  
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world=db.TTS(weights, 'Hello world.'); 

 

world.phoneList 

 

ans =  

 

  'sil' 

  'hh' 

  'ah' 

  'l' 

  'ow' 

  'w' 

  'er' 

  'l' 

  'd' 

  'sil' 

 

world.listen; 

Figure 51 A simple text-to-speech example using ConFAC. The dependent property @utt/get.phoneList 

gives the label of each phone in the utterance. The @utt/listen command plays the synthesized utterance 

through the computer’s speakers. 

Accent conversion 

Accent conversion is performed with the method @spk/AC. It is the motivation for the 

entire toolbox and the culmination of 5,000 lines of code. AC is written for maximum flexibility 

and able to perform accent conversion in many ways. Like SpFAC, the prosodic and segmental 

conversions can be controlled independently. Furthermore, AC can modify an entire utterance or 

only specific phones. The minimum input arguments for AC are source utterance, target 

utterance, and a weight structure. The rest of the parameters will default to perform both the 

prosodic and segmental conversion for all mispronounced phones and their neighbors. See the 

built-in documentation to control the other parameters. 
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load('dbStats.mat','rdb','mdb') 

  

rgo=spk('C:\databases\rgo_ema\mat\'); 

rgo.populateMatches(5,10,{'artData','daf'}); 

rgo.fixNaNs(rdb.NaN); 

rgo.calculateMaeda(rdb.Maeda,1); 

rgo.normalizeFeature('MFCC',rdb.MFCC); 

  

mab=spk('C:\databases\mab_ema\mat\'); 

mab.populateMatches(5,10,{'artData','daf'}); 

mab.fixNaNs(mdb.NaN); 

mab.calculateMaeda(mdb.Maeda,1); 

mab.normalizeFeature('MFCC',mdb.MFCC); 

  

mgo=spk('C:\databases\rgo_ema\mat\'); 

mgo.populateMatches(5,10,{'artData','daf'},... 

  'C:\databases\rgo_ema\mat\mab\'); 

mgo.fixNaNs(rdb.NaN); 

mgo.calculateMaeda(rdb.Maeda,1); 

mgo.normalizeFeature('MFCC',rdb.MFCC); 

  

load('rgoMFCCpls.mat') 

weights.alpha=0.33; 

weights.durationWeight=0.33; 

  

newUtt=db.ACspk(rgo.utterances(2),mab.utterances(2)... 

  ,[1 1 1],weights,mgo.utterances(2)); 

Figure 52 Example code for performing accent conversion with ConFAC. In addition to the speaker object 

prepared using code from Figure 50, three more speaker objects must be loaded and prepared (notice that 

they do not require the function @spk/removeOutliers or @spk/initializeIndex). The speaker objects rgo 

and mab use standard calls to @spk/populateMatches. However, the speaker object mgo uses an additional 

argument to the location of the alternate lab directory (refer to Sub-section 6.2). Also, notice that the rgo 

and mgo objects are processed with the rdb struct while the mab object is processed with the mdb struct. 

Weights are loaded and the default values for two of the unit selection parameters are overwritten. Accent 

conversion is performed using the call on the final line. The binary sequence [1 0 1] tells the function to 

perform the prosodic transform, mispronunciation detection, and the segmental transform.  

Adding a new speaker 

In the future it may be necessary to add a new database/speaker to the system. If the new 

speaker is in the same format as RGO or MAB, then the one must: 1) calculate the STRAIGHT 

files from the acoustic waveform using saveStraight, 2) store them to disk, and 3) add the 

location to @utt/getStraight. If the new database is in a different format (e.g. ARCTIC), 

then it is necessary to define a new class that inherits the utt class (e.g. classdef 
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arcticUtt < utt). The constructor function for the class should load the new data types 

into the appropriate properties. For example, the ARCTIC corpus is a simple corpus with *.wav 

files holding the acoustic waveforms and *.lab files for labels. The constructor function should 

load the acoustic waveform, downsample it to 16kHz, and assign it to the property 

@utt/wavData. Once the primary features are loaded, dependent features (e.g. derivative 

features) will automatically be computed. ARCTIC label files are not compatible with the 

@utt/readLab function, so a new function must be written. The ARCTIC corpus does not 

contain any articulatory features, therefore the @utt/artData property should be left blank. 

Finally, STRAIGHT parameters must be calculated using a custom function; refer to 

saveStraight for guidance.  

 

classdef arcticUtt < utt 

   
  methods 

     
    function au=arcticUtt(x,fs,labFile) 
      %constructor method 
      au.wav=resample(x,utt.getFS('wav'),fs); 
      au.htkWords=au.readArcticLab(labFile); 
      au.MFCC=utt.calculateMFCC(au.wav,utt.getFS('wav')); 
    end 

     
    function lab=readArcticLab(labFile) 
      %custom function to write 
    end 

     
  end   

end 

Figure 53 Adding a different speaker type to ConFAC. The articUtt class inherits all of the functions and 

properties of the regular utterance class. The constructor method uses functions from the utterance class as 

well as custom functions developed for any new datatypes. 
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Adding a new feature 

In the previous sub-section, we looked at adding an ARCTIC speaker that had no 

articulatory features. If articulatory features were estimated from the acoustic waveform (a 

process known as articulatory inversion) then they could be saved in the @utt/artData 

property. However, if a database also has true features, it might be desiarable to load both types 

simultaneously. This can be accomplished by adding an additional property to the utterance class 

(e.g. @utt/artInvData), modifying the constructor @utt/utt to assign a value to the new 

property, and adding the new feature’s sampling rate to @utt/getFS. It can then be accessed 

like any other property. 

Some properties are not continuous. For example, the phone class has binary property to 

signal when a phone comes at the beginning or end of a word (wordInitial and 

wordFinal). These are also dependent properties, which means that they are not stored like 

normal data, but calculated each time they are needed. To see how they work, look at 

@phone/get.wordInitial). 
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classdef utt < handle 

   

  properties 

    artData; 

    artInvData; 

  end 

   

  methods     

    function u=utt(varargin)       

      %%% 

      %previous utt constructing code 

      %%% 

       

      %new code 

      u.artInvData=utt.estimateArtFromWav(u.wav);       

    end     

  end 

   

   

methods (Static=true) 

     

    function ai=estimateArtFromWav(wav)       

      %%% 

      %performs articulatory Inversion 

      %%%       

    end 

     

    function fs=getFS(type)       

      switch type 

        case {'wav'} 

          fs=16000; 

        case {'artData'} 

          fs=200; 

        case {'artInvData'} 

          fs=100; 

      end 

    end 

  end 

end 

Figure 54 Modifying the utterance class to add a new feature. In this simple example, we demonstrate: 1) 

adding the new feature to the properties list, 2) assigning data to it in the constructor, and 3) updating 

@utt/getFS to record its sampling rate. 
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