22 research outputs found

    Geodetic topological cycles in locally finite graphs

    Full text link
    We prove that the topological cycle space C(G) of a locally finite graph G is generated by its geodetic topological circles. We further show that, although the finite cycles of G generate C(G), its finite geodetic cycles need not generate C(G).Comment: 1

    End spaces and spanning trees

    Get PDF
    AbstractWe determine when the topological spaces |G| naturally associated with a graph G and its ends are metrizable or compact.In the most natural topology, |G| is metrizable if and only if G has a normal spanning tree. We give two proofs, one of them based on Stone's theorem that metric spaces are paracompact.We show that |G| is compact in the most natural topology if and only if no finite vertex separator of G leaves infinitely many components. When G is countable and connected, this is equivalent to the existence of a locally finite spanning tree. The proof uses ultrafilters and a lemma relating ends to directions

    On the homology of locally finite graphs

    Full text link
    We show that the topological cycle space of a locally finite graph is a canonical quotient of the first singular homology group of its Freudenthal compactification, and we characterize the graphs for which the two coincide. We construct a new singular-type homology for non-compact spaces with ends, which in dimension~1 captures precisely the topological cycle space of graphs but works in any dimension.Comment: 30 pages. This is an extended version of the paper "The homology of a locally finite graph with ends" (to appear in Combinatorica) by the same authors. It differs from that paper only in that it offers proofs for Lemmas 3, 4 and 10, as well as a new footnote in Section

    Extremal Infinite Graph Theory

    Get PDF
    We survey various aspects of infinite extremal graph theory and prove several new results. The lead role play the parameters connectivity and degree. This includes the end degree. Many open problems are suggested.Comment: 41 pages, 16 figure

    Bases and closures under infinite sums

    Get PDF
    AbstractMotivated by work of Diestel and Kühn on the cycle spaces of infinite graphs we study the ramifications of allowing infinite sums in a module RM. We show that every generating set in this setup contains a basis if the ground set M is countable, but not necessarily otherwise. Given a family N⊆RM, we determine when the infinite-sum span N of N is closed under infinite sums, i.e.when N=N. We prove that this is the case if R is a field or a finite ring and each element of M lies in the support of only finitely many elements of N. This is, in a sense, best possible. We finally relate closures under infinite sums to topological closures in the product space RM

    On prisms, M\"obius ladders and the cycle space of dense graphs

    Full text link
    For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.Comment: 33 pages; 5 figure
    corecore