29,623 research outputs found

    Pole Dancing: 3D Morphs for Tree Drawings

    Full text link
    We study the question whether a crossing-free 3D morph between two straight-line drawings of an nn-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(log⁥n)O(\log n) steps, while for the latter Θ(n)\Theta(n) steps are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli

    Improved bounds for the crossing numbers of K_m,n and K_n

    Full text link
    It has been long--conjectured that the crossing number cr(K_m,n) of the complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):= floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing conjecture states that the crossing number cr(K_n) of the complete graph K_n equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In this paper we show the following improved bounds on the asymptotic ratios of these crossing numbers and their conjectured values: (i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1); (ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and (iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83. The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8, respectively. These improved bounds are obtained as a consequence of the new bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to set up a quadratic program on 6! variables whose minimum p satisfies cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic optimization techniques combined with a bit of invariant theory of permutation groups to show that p >= 4.3593.Comment: LaTeX, 18 pages, 2 figure

    Polynomiality, Wall Crossings and Tropical Geometry of Rational Double Hurwitz Cycles

    Get PDF
    We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbers, such cycles are piecewise polynomial in the entries of the special ramification; the chambers of polynomiality and wall crossings have an explicit and "modular" description. A main goal of this paper is to simultaneously carry out this investigation for the corresponding objects in tropical geometry, underlining a precise combinatorial duality between classical and tropical Hurwitz theory

    Area Inequalities for Embedded Disks Spanning Unknotted Curves

    Full text link
    We show that a smooth unknotted curve in R^3 satisfies an isoperimetric inequality that bounds the area of an embedded disk spanning the curve in terms of two parameters: the length L of the curve and the thickness r (maximal radius of an embedded tubular neighborhood) of the curve. For fixed length, the expression giving the upper bound on the area grows exponentially in 1/r^2. In the direction of lower bounds, we give a sequence of length one curves with r approaching 0 for which the area of any spanning disk is bounded from below by a function that grows exponentially with 1/r. In particular, given any constant A, there is a smooth, unknotted length one curve for which the area of a smallest embedded spanning disk is greater than A.Comment: 31 pages, 5 figure

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    Weak hyperbolicity of cube complexes and quasi-arboreal groups

    Get PDF
    We examine a graph Γ\Gamma encoding the intersection of hyperplane carriers in a CAT(0) cube complex X~\widetilde X. The main result is that Γ\Gamma is quasi-isometric to a tree. This implies that a group GG acting properly and cocompactly on X~\widetilde X is weakly hyperbolic relative to the hyperplane stabilizers. Using disc diagram techniques and Wright's recent result on the aymptotic dimension of CAT(0) cube complexes, we give a generalization of a theorem of Bell and Dranishnikov on the finite asymptotic dimension of graphs of asymptotically finite-dimensional groups. More precisely, we prove asymptotic finite-dimensionality for finitely-generated groups acting on finite-dimensional cube complexes with 0-cube stabilizers of uniformly bounded asymptotic dimension. Finally, we apply contact graph techniques to prove a cubical version of the flat plane theorem stated in terms of complete bipartite subgraphs of Γ\Gamma.Comment: Corrections in Sections 2 and 4. Simplification in Section
    • 

    corecore