9 research outputs found

    The Critical Radius in Sampling-based Motion Planning

    Full text link
    We develop a new analysis of sampling-based motion planning in Euclidean space with uniform random sampling, which significantly improves upon the celebrated result of Karaman and Frazzoli (2011) and subsequent work. Particularly, we prove the existence of a critical connection radius proportional to Θ(nβˆ’1/d){\Theta(n^{-1/d})} for nn samples and d{d} dimensions: Below this value the planner is guaranteed to fail (similarly shown by the aforementioned work, ibid.). More importantly, for larger radius values the planner is asymptotically (near-)optimal. Furthermore, our analysis yields an explicit lower bound of 1βˆ’O(nβˆ’1){1-O( n^{-1})} on the probability of success. A practical implication of our work is that asymptotic (near-)optimality is achieved when each sample is connected to only Θ(1){\Theta(1)} neighbors. This is in stark contrast to previous work which requires Θ(log⁑n){\Theta(\log n)} connections, that are induced by a radius of order (log⁑nn)1/d{\left(\frac{\log n}{n}\right)^{1/d}}. Our analysis is not restricted to PRM and applies to a variety of PRM-based planners, including RRG, FMT* and BTT. Continuum percolation plays an important role in our proofs. Lastly, we develop similar theory for all the aforementioned planners when constructed with deterministic samples, which are then sparsified in a randomized fashion. We believe that this new model, and its analysis, is interesting in its own right

    Probabilistic completeness of RRT for geometric and kinodynamic planning with forward propagation

    Full text link
    The Rapidly-exploring Random Tree (RRT) algorithm has been one of the most prevalent and popular motion-planning techniques for two decades now. Surprisingly, in spite of its centrality, there has been an active debate under which conditions RRT is probabilistically complete. We provide two new proofs of probabilistic completeness (PC) of RRT with a reduced set of assumptions. The first one for the purely geometric setting, where we only require that the solution path has a certain clearance from the obstacles. For the kinodynamic case with forward propagation of random controls and duration, we only consider in addition mild Lipschitz-continuity conditions. These proofs fill a gap in the study of RRT itself. They also lay sound foundations for a variety of more recent and alternative sampling-based methods, whose PC property relies on that of RRT

    Near-Optimal Multi-Robot Motion Planning with Finite Sampling

    Full text link
    An underlying structure in several sampling-based methods for continuous multi-robot motion planning (MRMP) is the tensor roadmap (TR), which emerges from combining multiple PRM graphs constructed for the individual robots via a tensor product. We study the conditions under which the TR encodes a near-optimal solution for MRMP---satisfying these conditions implies near optimality for a variety of popular planners, including dRRT*, and the discrete methods M* and CBS when applied to the continuous domain. We develop the first finite-sample analysis of this kind, which specifies the number of samples, their deterministic distribution, and magnitude of the connection radii that should be used by each individual PRM graph, to guarantee near-optimality using the TR. This significantly improves upon a previous asymptotic analysis, wherein the number of samples tends to infinity, and supports guaranteed high-quality solutions in practice, within bounded running time. To achieve our new result, we first develop a sampling scheme, which we call the staggered grid, for finite-sample motion planning for individual robots, which requires significantly less samples than previous work. We then extend it to the much more involved MRMP setting which requires to account for interactions among multiple robots. Finally, we report on a few experiments that serve as a verification of our theoretical findings and raise interesting questions for further investigation.Comment: Submitted to the International Conference on Robotics and Automation (ICRA), 202

    Optimistic Motion Planning Using Recursive Sub- Sampling: A New Approach to Sampling-Based Motion Planning

    Get PDF
    Sampling-based motion planning in the field of robot motion planning has provided an effective approach to finding path for even high dimensional configuration space and with the motivation from the concepts of sampling based-motion planners, this paper presents a new sampling-based planning strategy called Optimistic Motion Planning using Recursive Sub-Sampling (OMPRSS), for finding a path from a source to a destination sanguinely without having to construct a roadmap or a tree. The random sample points are generated recursively and connected by straight lines. Generating sample points is limited to a range and edge connectivity is prioritized based on their distances from the line connecting through the parent samples with the intention to shorten the path. The planner is analysed and compared with some sampling strategies of probabilistic roadmap method (PRM) and the experimental results show agile planning with early convergence

    Sampling-Based Motion Planning: A Comparative Review

    Full text link
    Sampling-based motion planning is one of the fundamental paradigms to generate robot motions, and a cornerstone of robotics research. This comparative review provides an up-to-date guideline and reference manual for the use of sampling-based motion planning algorithms. This includes a history of motion planning, an overview about the most successful planners, and a discussion on their properties. It is also shown how planners can handle special cases and how extensions of motion planning can be accommodated. To put sampling-based motion planning into a larger context, a discussion of alternative motion generation frameworks is presented which highlights their respective differences to sampling-based motion planning. Finally, a set of sampling-based motion planners are compared on 24 challenging planning problems. This evaluation gives insights into which planners perform well in which situations and where future research would be required. This comparative review thereby provides not only a useful reference manual for researchers in the field, but also a guideline for practitioners to make informed algorithmic decisions.Comment: 25 pages, 7 figures, Accepted for Volume 7 (2024) of the Annual Review of Control, Robotics, and Autonomous System

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure

    Multilevel Motion Planning: A Fiber Bundle Formulation

    Full text link
    Motion planning problems involving high-dimensional state spaces can often be solved significantly faster by using multilevel abstractions. While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles, which allows us to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces. Given such a structure and a corresponding admissible constraint function, we can develop highly efficient and optimal search-based motion planning methods for high-dimensional state spaces. Our contributions are the following: We first introduce the terminology of fiber bundles, in particular the notion of restrictions and sections. Second, we use the notion of restrictions and sections to develop novel multilevel motion planning algorithms, which we call QRRT* and QMP*. We show these algorithms to be probabilistically complete and almost-surely asymptotically optimal. Third, we develop a novel recursive path section method based on an L1 interpolation over path restrictions, which we use to quickly find feasible path sections. And fourth, we evaluate all novel algorithms against all available OMPL algorithms on benchmarks of eight challenging environments ranging from 21 to 100 degrees of freedom, including multiple robots and nonholonomic constraints. Our findings support the efficiency of our novel algorithms and the benefit of exploiting multilevel abstractions using the terminology of fiber bundles.Comment: Submitted to IJR
    corecore