8 research outputs found

    From left-regular to Greibach normal form grammars

    Get PDF
    Each context-free grammar can be transformed to a context-free grammar in Greibach normal form, that is, a context-free grammar where each right-hand side of a prorfuction begins with a terminal symbol and the remainder of the right-hand side consists of nonterminal symbols. In this short paper we show that for a left-regular grammar G we can obtain a right-regular grammar G’ (which is by definition in Greibach normal form) which left-to-right covers G (in this case left parses of G’ can be mapped by a homomorphism on right parses of G. Moreover, it is possible to obtain a context-free grammar G” in Greibach normal form which right covers the left-regular grammar G (in this case right parses of G” are mapped on right parses of G)

    Cover results and normal forms

    Get PDF
    The purpose of this paper was to sketch an area of problems for the concept of cover. We showed that in spite of some remarks in the literature the problem of covering (unambiguous and -free) cfg's with cfg's in GNF is open. Moreover we gave some properties of covers and we showed a relation between covers and parsability

    A survey of normal form covers for context-free grammars

    Get PDF
    An overview is given of cover results for normal forms of context-free grammars. The emphasis in this paper is on the possibility of constructing É›-free grammars, non-left-recursive grammars and grammars in Greibach normal form. Among others it is proved that any É›-free context-free grammar can be right covered with a context-free grammar in Greibach normal form. All the cover results concerning the É›-free grammars, the non-left-recursive grammars and the grammars in Greibach normal form are listed, with respect to several types of covers, in a cover-table

    On the equivalence, containment, and covering problems for the regular and context-free languages

    Get PDF
    We consider the complexity of the equivalence and containment problems for regular expressions and context-free grammars, concentrating on the relationship between complexity and various language properties. Finiteness and boundedness of languages are shown to play important roles in the complexity of these problems. An encoding into grammars of Turing machine computations exponential in the size of the grammar is used to prove several exponential lower bounds. These lower bounds include exponential time for testing equivalence of grammars generating finite sets, and exponential space for testing equivalence of non-self-embedding grammars. Several problems which might be complex because of this encoding are shown to simplify for linear grammars. Other problems considered include grammatical covering and structural equivalence for right-linear, linear, and arbitrary grammars

    Context-Free Grammars: Covers, Normal Forms, and Parsing

    Get PDF

    Context-Free Grammars: Covers, Normal Forms, and Parsing

    Get PDF
    This monograph develops a theory of grammatical covers, normal forms and parsing. Covers, formally defined in 1969, describe a relation between the sets of parses of two context-free grammars. If this relation exists then in a formal model of parsing it is possible to have, except for the output, for both grammars the same parser. Questions concerning the possibility to cover a certain grammar with grammars that conform to some requirements on the productions or the derivations will be raised and answered. Answers to these cover problems will be obtained by introducing algorithms that describe a transformation of an input grammar into an output grammar which satisfies the requirements. The main emphasis in this monograph is on transformations of context-free grammars to context-free grammars in some normal form. However, not only transformations of this kind will be discussed, but also transformations which yield grammars which have useful parsing properties
    corecore