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We consider the complexity of the equivalence and containment problems for 
regular expressions and context-free grammars, concentrating on the relationship 
between complexity and various language properties. Finiteness and boundedness of 
languages are shown to play important  roles in the complexity of these problems. An 
encoding into grammars of Tur ing  machine computations exponential in the size of 
the grammar is used to prove several exponential lower bounds. These lower bounds 
include exponential time for testing equivalence of grammars generating finite sets, 
and exponential space for testing equivalence of non-self-embedding grammars. 
Several problems which might be complex because of this encoding are shown to 
simplify for linear grammars. Other problems considered include grammatical covering 
and structural equivalence for right-linear, linear, and arbitrary grammars. 

1. INTRODUCTION 

T h e r e  are m a n y  p r o b l e m s  of  in te res t  c o n c e r n i n g  language  desc r ip to r s  such  as 

regular  express ions  and  con tex t - f r ee  g r a m m a r s  (cfg's).  T h e s e  p r o b l e m s  inc lude  

the  equ iva lence  p r o b l e m  ( G i v e n  two  language  descr ip tors ,  do  t hey  descr ibe  t he  
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same language ?), the containment problem (Given two descriptors, does the language 
described by the first contain the language described by the second ?), the gram- 
matical covering problem [10], and the structural equivalence of grammars [21, 25]. 
In this paper we study the computational complexity of these and other problems. 
The complexity is analyzed as a function of simply stated properties of the descriptors 
or languages involved. 

Section 2 concentrates on regular expression equivalence, and Section 3 on cfg 
equivalence. As an example of how complexity is related to language properties, 
testing a regular expression for inequivalence to a fixed regular language can be 
done in polynomial time if the fixed language is finite, is NP-eomplete if the fixed 
language is infinite but bounded, and is PSPACE-complete if the fixed language 
is unbounded. Testing two regular expressions for inequivalence is shown to be 
NP-complete for star-free regular expressions and PSPACE-complete for regular 
expressions of any fixed star height ~ 1. Testing both arbitrary and linear grammars 
for inequivalence to a fixed language can be done in polynomial time if the fixed 
language is finite, is NP-hard if the fixed language is infinite, is PSPACE-hard if 
the fixed language is unbounded, and is undecidable if the fixed language contains 
an unbounded regular subset. 

In Section 4, exponential lower time bounds are proved for a variety of problems, 
including the equivalence problem for cfg's generating finite languages. Exponential 
lower space bounds are also proved for a variety of problems, including the equivalence 
problem for non-self-embedding cfg's. The results utilize an encoding, of Turing 
machine computations into grammars, based upon a "squaring" capability of efg's 
that allows one to obtain cfg's for which the shortest or longest string in the generated 
language is exponential in the size of the grammar. This capability implies that 
decision algorithms which depend on the length of the shortest string will be expo- 
nential, and therefore complicates such problems as structural equivalence, equivalence 
of LL(k) grammars and boundedness of cfg's. We show simplications when the gram- 
mars involved in these problems are restricted to be linear efg's, so that the shortest 
string generated is linear in the size of the grammar. 

In Section 5 we study grammatical covering and structural equivalence. We show 
these problems are PSPACE-complete for right-linear and for linear cfg's. Also 
for arbitrary efg's, covering is undecidable, while structural equivalence is decidable, 
but PSPACE-hard. 

We use two main approaches to establishing lower bounds on the complexity 
of various problems. One approach is to encode Turing machine computations 
of a given complexity into a particular problem of interest. This approach has been 
used by Stockmeyer and Meyer [24, 29, 30]. The other approach is to encode into 
the problem of interest, the problem of determining whether a given language 
descriptor describes the set of all strings over a fixed finite alphabet. This latter 
approach has been used by Greibach [11], Hopcroft [12], and Hunt [14]. 
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Several preliminary definitions are needed to read this paper. We use [ x [ to denote 
the length of x if x is a string, and the cardinality of x if x is a set. 

See [13] for definitions of a regular set, regular or type-3 grammar, finite automaton, 
nondeterministic finite automaton (ndfa), context-free grammar (cfg), context-free 
language (cfl), derivation, leftmost derivation, Turing machine (Tin), and linear bounded 
automaton (lba). 

DEFINITION 1.1. We use A to denote the empty string and ~ to denote the empty 
language. 

Regular expressions over finite alphabet 27 are defined recursively as follows. 

A, 4, and each a in Z are regular expressions. 

I f  ,4 and B are regular expressions, then so are (A) kJ (B), (A) �9 (B), and 

(a) 
(b) 

(A)*. 
(c) Nothing else is a regular expression. 

The  language denoted by regular expression R is written L(R). 
The star height S H  of a regular expression is defined recursively: 

SH(a)----O for a i n Z ,  

SH(~)  = O, S H ( ~ )  = O, 

SH((A) u (B)) = max{SH(A), SH(B)}, 

SH((A) " (B)) = max{SU(A), SH(B)}, 

SH((A)*) = SH(A)  + 1. 

The star height of a regular set is the minimum of the star heights of the regular 
expressions denoting it. We call a regular expression of star height zero (i.e., with 
no occurrences of *) a (•, ")-expression. | 

The  star height of a regular set can be viewed as a measure of the complexity 
of its looping structure. 

For convenience, in writing regular expressions we frequently remove redundant 
parenthesis when no ambiguity can arise. However, the fully parenthesized version 
of these regular expressions are assumed to be processed by algorithms. 

For cfg's, we use *~ to mean derives (via a sequence of zero or more steps) and 
*~L to mean derives via a leftmost derivation. For  a sequence of  productions ~r, 
we write =>'~ or ~ to indicate that ~r is the production sequence used in the derivation. 

DEFINITION 1.2. For cfg G ~ (N, Z, P, S) and nonterminal A in N, L(A) = 
{w [ w is in 27* and A ~ w}. The  language generated by the grammar, L(G), is defined 
to be L(S). 
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G is called linear if the right side of each production is in Z* • 27*NZ*, and right- 
linear if the right side of each production is in Z* ~3 Z*N. G is reduced if every 
nonterminal not equal to S can be used in some derivation of some string in L(G). 
A language is called linear if it can be generated by some linear cfg. | 

In discussing cfg's we generally make the following notational conventions. Let  
G ~ (N, Z, P,  S) be a cfg. Then  a, b, c, etc., denote elements of Z;  u, v, w, etc., 
denote elements of Z*;  A, B, C, etc., denote elements of N; X, Y, Z, etc., denote 
elements of N u Z; and c~, fi, ~, etc., denote elements of (N u Z)*. 

DEFINITION 1.3. For grammar G ~ (N, Z, P, S), the size of grammar  G, denoted 
t a [ ,  is 

J G [ = ( [ N I + ] 2 7 1 +  • [A~!) ' ( log( lN]+[27])) .  | 
A ~ I I ~ P  

DEFINITION 1.4. A language L _C Z* is said to be bounded if and only if there 
exist strings w x ,..., wk in Z*  such tha tL  _C Wl* .-. w~*. A language that is not bounded 
is said to be unbounded. 

A language L C Z *  is said to be cofinite if Z*  - -  L is finite. 
A language L _C Z*  is said to be commutatiq:e if and only if for all words u and v 

inL, u ' v - - v ' u .  | 

DEFINITION 1.5. Let  L _C Z*  and x be in 27*. Then  

x\L -~ {y [ x "yeL}  and L/x = {y [y" xeL}.  | 

DEFINITION 1.6. P, NP, PSPACE, and CSL are the classes of languages recog- 
nized by deterministic polynomially t ime bounded Tm,  nondeterministic polynomially 
time bounded Tin,  nondeterministic polynomially space bounded T m ,  and non- 
deterministic lba, respectively. A language in P is said to be p-decidable. Ndtime(T(n))  
and Ndtape(T(n)) are the classes of languages recognized by nondeterministic T(n) 
t ime bounded T m  and nondeterministie T(n) space bounded Tin,  respectively. | 

DEFINITION ] .7. L is polynomially reducible to M if there exists a function f 
computable by some deterministic polynomially t ime bounded T m  such that x 
is in L if and only if f(x) is in M.  A language is NP-hard if  all languages in NP are 
polynomially reducible to it. A language is NP-complete if it is in NP and is NP-hard.  
A language is PSPACE-hard if all languages in PSPACE are polynomially reducible 
to it. A language is PSPACE-complete if it is in PSPACE and is PSPACE-hard.  | 

A language which is NP-hard can be considered to be "computationally intractable." 
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The  complement of every language in P is also in P. We will use the following 
lemma, the first two parts of which are from [27]. 

LEMMA 1.8. (1) Every language recognized by some nondeterministic polynomially 
space bounded Tm is also in P S P A C E .  

(2) Let M be in P S P A C E .  Then M is in P S P A C E .  

(3) Let M be PSPACE-complete.  Then M is PSPACE-complete.  

Proof of (3). From (2), M is in PSPACE. Since M is PSPACE-complete,  there 
exists a polynomially time bounded function g such that y is in M if and only if 
g (y )  is in M.  Therefore,  y is in M if and only if g (y )  is in M. Now let L be any 
language in PSPACE. By the completeness of M, there exists a polynomially time 
bounded f u n c t i o n f  such that x is in L if and only i l l ( x )  is in M.  But then x is in L 
if and only if g( f ( x ) )  is in M. Since g o f  is clearly a polynomially t ime bounded 
function, we conclude that M is PSPACE-hard.  [ ]  

DEFINITION 1.9. A function f is log-space computable if there exists a deterministic 
T m  with a two-way read-only input tape, a one-way output tape and one two-way 
read-write working tape, which started with a string x on its input tape, will halt 
having written f ( x )  on its output tape and having visited at most log(] x ]) working 
tape squares. A function f is log-lin computable if it is log-space computable and 
there exists a constant c > 0 such that ]f(x)[ ~ c "] x [. A T m  corresponding to a 
log-lin computable function is called a log-lin transducer. L is log-lin reducible to M 
if there exists a log-lin computable function f such that x is in L if and only if f ( x )  
is in M. A language is CSL-hard if all languages in CSL are log-lin reducible to it. 
A language is CSL-complete if it is in CSL and is CSL-hard.  | 

LEMMA 1.10. (1) A language that is CSL-hard is also PSPACE-hard .  

(2) A language that is CSL-complete is also PSPACE-complete.  

Proof. Part (1) follows from a ~roof technique used in [4, 32]. Let  M be CSL-hard  
and let L in PSPACE be recognizable in space n m. Let  c be a new symbol and L '  
be the language 

L' = {xc ~ x ~ M and [ xc ~ ] = ] x [~}. 

Then  L '  is in CSL and hence log-lin reducible to M. L is polynomially reducible 
to M by the function that first maps a string x into xe p such that ]xe~l = ] x ]% 
and then applies to the resulting string the log-lin map from L '  to M. 

Part (2) follows from (1) and the fact that CSL CPSPACE.  x~ 

The  concepts of CSL-hard  and CSL-complete  are thus special case of PSPACE-hard 
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and PSPACE-complete.  The  CSL-hard languages require essentially linear space 
on any nondeterministic Tm,  as indicated by the following simple fact. 

PROPOSITION 1.11. Let r be any positive rational <1. Let L be CSL-hard. Then 
L is not accepted by any n ~ tape-bounded nondeterministic Tm. 

Proof. ]barra [18] has shown that for all positive integersp, q ~ 1, 

Ndtape(n~'/'~) D Ndtape(n~/(q+l)). 

This implies that for all positive rationals r ~ 1, Ndtape(n *) ~ CSL. But if L is an 
element of Ndtape(n~), then CSL = Ndtape(nr). [ ]  

Let M be a nondeterministic T m  with state set S, tape alphabet T, start state 
q0 in S, and set of final accepting states F _C S. Let 2J = T k3 (S • T) kJ {#}, where 
# is not in T v3 (S • T). Let T(n) be a function such that T(n) >~ n for all n. 

DEFINITION 1.12. Let M be a T(n) tape-bounded nondeterministic T m  as 
described above. Let x = x 1 '-- x~ be an input to M. An instantaneous description 
(of M on x), abbreviated i.d., is any word in T* �9 (S X T) �9 T* of length T(n). The 
word (q0, Xl)x2 "" xn~ rln)-n, where ~ is a special symbol denoting the blank tape 
square, is an initial i.d. Any i.d. (of M on x) that contains an accepting state is called 
a final i.d. We assume, without loss of generality, that M cannot make a move from 
a final i.d. Instantaneous description IDi+ 1 follows from i.d. IDi if and only if there 
exists a move of M which changes ID i into IDi+ 1 in one operation. A valid computation 
(of M on x) is a sequence of i.d.'s # IDo # "'" # IDt # ,  where IDi+l follows from 
IDi for 1 <~ i ~ t, ID o is an initial i.d., 119 t is a final i.d., and t ~ T(n). A string 
in 27" is an invalid computation (of M on x) if it is not a valid computation. 

The  transition function of M determines a certain function f u  from 27 a into 2 za, 
which we call the i.d. transition function and which is defined precisely in [14]. Roughly 
speaking, for three consecutive symbols in an i.d. delimited by # ' s ,  fM specifies 
what the corresponding three symbols in a following i.d. can be. | 

2. REGULAR EXPRESSION I~QUIVALENCE 

In  this section, we study the complexity of various equivalence problems involving 
regular expressions. The  regular expressions in this section are assumed to be over 
alphabet {0, 1} unless we state otherwise. We use the following abbreviations for 
several predicates involving testing pairs of regular expressions for inequivalence: 

R I N E Q  ~ {(R, S) ] R and S are inequivalent regular expressions}, 

R I N E Q - ( u ,  -) = {(R, S) [ R and S are inequivalent (t3, .)-expressions}, 

571/12/a-7 
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RINEQ-(over 0) ~ {(R, S) I R and S are inequivalent regular expressions over {0}}, 

RINEQ-(one bounded) = {(R, S) ]R  and S are inequivalent regular expressions 
and at least one of L(R) and L(S) is a bounded language}, 

RINEQ-(both bounded) = {(R, S) ]R  and S are inequivalent regular expressions 
denoting bounded languages}, 

RINEQ-(star height k) = {(R, S) r R and S are inequivalent regular expressions 
of star height k}, 

RINEQ-cofinite = {(R, S) ] R and S are inequivalent regular expressions denoting 
cofinite sets}. 

For any fixed regular language L0, there is a set of regular expressions that do 
not denote L 0 . Membership of an arbitrary regular expression in this set of regular 
expressions is a predicate which we abbreviate as follows. 

RINEQ(L0) = {R ] R is a regular expression and L(R) ~ L0}. 

The results in this section on the complexity of inequivalence problems are sum- 
marized below. 

Problem Complexity 

RINEQ CSL-complete 
RINEQ-(L), -) NP-complete 

RINEQ-(over 0) NP-complete 

RINEQ-(one bounded) NP-complete 

RINEQ-(both bounded) NP-complete 

For all k /> 1, RINEQ-(star height k) CSL-complete 
RINEQ-cofinite CSL-hard 

l in P i fL 0 is finite 
RINEQ(L0) NP-complete i fL 0 is infinite but bounded 

CSL-complete i fL 0 is unbounded 

Note that boundedness plays a major role in these results. In particular, the com- 
plexity of RINEQ(L0) is completely characterized by whether L 0 is finite, infinite 
but bounded, or infinite. 

First we explicitly state some well-known facts about regular expressions and 
regular sets. 

LEMMA 2.1. (1) Given an arbitrary regular expression R, a ndfa M such that 
L(M) = L(R) can be constructed deterministically in time bounded by a polynomial 
in lRI .  
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(2) Given two arbitrary regular expressions R and S, the predicate 
"L(R)  n L(S)  - - ~ "  can be decided deterministically in time bounded by a polynomial 
i n [ R I §  

(3) Given two inequivalent regular expressions R and S, there exists a string x such 
that x is in L(R)  n L ( S )  or x is in L(R)  ~ L ( S )  and such that ] x{ ~< 2~(IRl+lsl ~, where 
c is a constant independent of R and S. 

(4) Given an arbitrary string x in {0, 1}* and an arbitrary regular expression R, 
membership of x in L(R)  can be decided deterministically in time bounded by a polynomial 

in l x l  + l R l  [11. 

(5) A regular set R is infinite ~f and only i f  there exist strings ul , u2, u 3 in {0, 1}* 
with u2 nonnull such that Ux " u~* �9 u 3 C_ R [13]. 

(6) A regular set R over X is unbounded i f  and only i f  there exist strings r, s, x, 
and y in X* and distinct a, b in C such that r �9 {ax, by}* �9 s C_ R. 

(7) Let Z and A be nonempty finite alphabets, and let h: X* --~ A* be a homo- 
morphism. Then there exists a log-lin transducer that given as input a regular expression R 
over Z, outputs a regular expression S such that L(S)  = h(L(R)). 

Proof. (1) In  [1, p. 322], after taking into account a variation in the definition 
of ndfa. 

(2) Construct in polynomial t ime ndfa 's  MR = (K1,  {0, 1}, 31 , ql ,171) and 
M s ~ (K  2 , {0, 1}, 52, q2,F2) accepting L(R)  and L(S) ,  respectively. Construct a 
directed graph whose set of nodes is K 1 • K 2 . T h e  graph has an edge from node 
(P l ,  Pc) to ( r l ,  r~) if and only if either r 1 is in 31(Pl , 0) and r e is in ~e(P~, 0), or if  
r a is in 31(pl , 1) and r e is in 32(pc , 1). Then  L ( R ) n L ( S )  is nonnull if and only if 
the graph has a path from node (ql,  qe) to a node consisting of a pair of accepting 
states. The  graph can be constructing and the path question answered in deter- 
ministic polynomial time. 

(3) This follows from the fact that a ndfa with n states can be converted into 
a deterministic finite automaton with 2 n states that recognizes the same language. 
Therefore, there exist finite automata exponential in t R]  + ] S [  for recognizing 
L(R) r~ L (S )  and L(R) c~ L(S) .  

(6) If: The  proof in [8, pp. 142-143], that  2J* is unbounded when 27 contains 
at least two elements, can be applied to show that R is unbounded when 
it contains r �9 {ax, by)* �9 s. 

Only if: F rom [12, L e m m a  3.1]. 

(7) Let  S be the regular expression that results from replacing each occurrence 
in R of each symbol a in Z with h(a). [] 

We next present without proof a result of Stockmeyer and Meyer [30]. 
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PROPOSITION 2.2. {R I R is a regular expression over {0} and L(R) ~ 0"} is NP-  
complete. 

We also note the following proposition, which is implicitly proved in [24]. 

PROPOSITION 2.3. RINEQ is in CSL. 

The  next proposition also is from [24]. Since we make several observations below 
about the regular expressions involved in the proof of this proposition, we sketch 
its proof. 

PROPOSITION 2.4. RINEQ({O, 1}*) is CSL-complete. 

Proof. Observe that from Proposition 2.3, RINEQ({0, 1}*) is in CSL. 
The  proof that RINEQ({0, 1}*) is CSL-hard  consists of two parts. First, for each 

lba M there exists a deterministic log-lin transducer that when given a string 
y = al . . . . .  an as input, outputs a regular expression fl~ over a finite alphabet 27 
such that L(fiu) = 27* if and only if M does not accept y. 

Let the tape alphabet, state set, accepting states, and start state of M be denoted 
by T, S, F, and qo, respectively. Let  # be a new symbol not an element of T t.) (S • T) 
and let fM be the i.d. transition function for M. Then  2J - -  {#} k) T U (S • T) 
and flu = fil + f12 + fla, where 

f l l  == ((27 - -  { # } )  U # . (( .v'  __ { ( q o ,  a l ) } )  U ( q o ,  a l ) "  ((~v, _ {a2} ) 

u a , .  ( . . .  u a , , -  ( ( Z  - -  { # } ) )  " . ) ) ) )  " Z * ;  

and 

/~3 -~ U 27 , .  ~ .  %.  %.  27~t ~ . ( 2 7 ~ _ / M ( ~ , ,  ~ ,  < 0 )  27*. 
o-1, o-2,5~3E_Y' 

The construction of flu has an interpretation in terms of Definition 1.12 (with 
T(n) = n). L(fiy) is the set of invalid computations of M on x. Expressions fit ,  f12, 
and f13, respectively, denote strings that do not begin with the initial i.d. for y 
(bracketed by # ) ,  that do not contain an accepting state, and that are not of the form 
of a sequence of i.d. 's (separated by # )  each of which (except for the first) follows 
from the previous i.d. The  reader should note that the regular expression fly has 
no nested occurrences of "* ' s . "  Also, I Z'* --L(fiu) [ equals the number  of distinct 
sequences of moves of M that result in the acceptance of y. 

Second, the regular expression fly over 27 can be encoded into a regular expression 
fly over {0, 1} in such a way that L(fly) = {0, 1}* if and only if L(fi,j) = Z'* and the 
encoding process is accomplished by a deterministic log-lin space transducer. More-  
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over, this encoding can be accomplished in such a way that fly also has no nested 
occurrences of "* ' s "  and I{0, 1}*--L(~u)l  = IX*- -L( f lv ) [ .  The  details of the 
encoding are standard and are left to the reader. [ ]  

Combining Propositions 2.3 and 2.4 gives the following result f rom [24]. 

THEOREM 2.5. RINEQ is CSL-complete. 

We now characterize the complexity of RINEQ(L0) in terms of the complexity 
of L 0 . Note that an algorithm to test for membership in RINEQ(L0) has as its input 
a single regular expression R, and determines if L(R) =/-L o , The  time and space 
required by the algorithm are functions of the length of the input string, viz. r R ]; 
these functions may involve constants that depend on L0.  The  algorithm can be 
designed to incorporate implicitly properties of L0.  For instance, even though the 
algorithm does not receive a regular expression denoting L 0 as input, the algorithm 
can be designed to incorporate such a regular expression. 

THEOREM 2.6. 

(1) 
(2) 
(3) 

Proof. 

Let L o be any fixed regular set. 

l f  L o is finite, then RINEQ(Lo) is in P. 

I f  Lo. is infinite but bounded, then RINEQ(Lo) is NP-complete. 

l f  L o is unbounded, then RINEQ(Lo) is CSL-complete. 

There  exist regular expressions E and F such that L(E) = Lo andL(F)  = L o . 
An algorithm for RINEQ(L0) can begin by testing if L ( R ) C L  o . By L e m m a  2.1(2), 
this can be decided deterministically in t ime bounded by a polynomial in I R I by 
deciding if L ( R ) n  L(F) = r The  remainder of the proof diverges for the three 
parts of the theorem. 

(1) L(R) contains L 0 if and only if each of the finite number  of strings in L 0 
is also in L(R). From Lemma  2.1(4), membership in L(R) of each of these strings 
can be tested in t ime polynomial in the input to the algorithm, I R t. Therefore, 
"L(R) CL0" and "L(R)D_L0" can each be tested deterministically in time bounded 
by a polynomial in r RI .  

(2) Assume the algorithm has determined that L(R)C_L o . Since L 0 is fixed, we 
may assume that strings w 1 ,..., w~ are known such that L 0 C wl* . . . . .  wk*. From 
Lemma  2.1(3), L 0 is not a subset of L(R) if and only if there exists a string in Lo n L(R) 
of length ,<2clRI. Here c is a constant that depends on L o . ThereforeLo is inequivalent 
to L(R) if and only if there exist k integers i 1 ,..., i~ each ~<2cr RI such that the string 
x = w~l . . . . .  w~k is in L o c~ L(R). These k integers can be represented as k binary 
strings v 1 ..... v~ each of length ~ c I R  t. A nondeterministic polynomially t ime 
bounded algorithm can verify that L o is not a subset of L(R) by working as follows. 
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S t e p  1. The  algorithm nondeterministically guesses k binary strings v 1 ,..., v~ 
each of length ~ c  �9 ] R [. These  strings are to be interpreted as representing integers 
,'1 . . . .  , i ~ .  

S t e p  2. T h e  algorithm constructs an ndfa MR such that L ( M R )  = L ( R ) .  From 
L e m m a  2.1(1), this can be done deterministieally in t ime polynomial in I R l- 

S t e p  3. Let  3 be the transition function of M R  �9 For all positive integers i and 
for 1 ~< j ~ k, define a Boolean matrix Aiwj whose element in row m and column n 
equals 1 if q~ is in 3(qm, w~i), and equals 0 otherwise. Also, let B be the Boolean 
matrix defined by the Boolean matrix product 

B = �9 . . . . .  A 
1 ~ Wk 

so that the element in row m and column n of B equals I if and only if % is in 3(qm,  x) .  

The  algorithm calculates each of A~I , A ~  ..... A ~  by successive squaring. T h e  
algorithm then multiplies these matrices together to compute the matrix B. By 
inspection of B, the algorithm verifies that x is not in L ( R ) .  

S t e p  4. Let  N be some fixed ndfa such that L ( N )  = L o . The  algorithm verifies 
that x is in L 0 by a method analogous to that used in Step 3. 

T h e  number  of matrix multiplications in Steps 3 and 4 is O([ v 1 [ + "" + Ivk l) 
O ( k  �9 c �9 [ R I). T h e  dimensions of the matrices calculated in Step 3 equal the number  
of states of -MR �9 Both k and the dimensions of the matrices calculated in Step 4 
depend on L 0 , and are independent of R. Therefore the algorithm operates in 
polynomial time, and so RINEQ(Lo) is in NP. 

Now we show that RINEQ(L0) is NP-hard.  Since L o is infinite, from L e m m a  2.1(5) 
there exist strings u I , u2, and u a in {0, 1)* with u 2 nonnull such that ul " u2* �9 u3 -CLo �9 
Let  h: 0 " - + { 0 ,  1}* be the lambda-free homomorphism defined by h ( 0 ) =  u 2. 
By L e m m a  2.1(7), for any regular expression R over {0}, a regular expression S 
over {0, 1} can be constructed deterministically in t ime bounded by a polynomial 
in ] R [  such that 

L ( S )  = u 1 �9 h ( r ( R ) )  " u~ w ( L  o - -  ua . uz*  " u~). 

ButL(S)  = L 0 if and only ifL(R) = 0". Therefore, from Proposition 2.2, RINEQ(L0) 
is NP-hard.  

(3) RINEQ(L0) is easily seen to be in CSL. The  lba corresponding to Proposi- 
tion 2.3 can be supplied as input (R, E) where E is a regular expression such that 
L ( E )  -= r o .  

We now show that RINEQ(Lo) is CSL-hard.  Since Lo is unbounded, by Lemma  
2.1(6) there exist strings r, s, x, and y in {0, 1}* such that r "{0x, ly}* �9 s C L o .  Let 
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h: (0, 1}* --~ {0, l}* be the lambda-free homomorphism defined by h(0) - -  0x and 
h(1) ~ ly. By Lemma  2.1(7) there exists a log-lin transducer that given as input 
any regular expression R, produces as output a regular expression S such that 

L ( S )  = r " h(L(R))  " s u (L o c~ r "{0x, ly}*"  s). 

But L ( S )  = L o if and only if L(R)  = {0, 1}*. Thus,  by Proposition 2.4 and the 
transitivity of log-lin reducibility, RINEQ(L0) is CSL-hard.  | 

The  proof in (2) above that RINEQ(L0) is in NP is an extension of the proof in 
[30] that "L(R) v ~ 0""  is in NP. 

Next we consider the effect on the complexity of the regular expression equivalence 
problem of eofiniteness and fixed star height, two properties of the regular sets 
extensively studied in the literature (see [6, 22, 23]). We note that part  (1) of the 
following theorem has been stated in [15, 30]. 

THEOREM 2.7. (1) R I N E Q - ( u ,  ") is NP-complete. 

(2) For all k ~ 1, RINEQ-( s tar  height k) is CSL-complete. 

(3) RINEQ-cofini te  is CSL-hard.  

Proof. (1) Cook [7] has shown that the set of nontautological D 3 Boolean forms, 
i.e., nontautological Boolean forms in disjunctive normal form with at most three 
literals per clause, is NP-complete.  Let  f = c a v c 2 v --" v cm be any arbitrary 
Ds-Boolean form. Then  each clause ci is the Boolean product of at most three literals. 
Let  the number  of variables appearing in f be n. 

Without loss of generality, we assume that no variable occurs both complemented 
and uncomplemented in the same clause. For each ci let /3,. =/3..1"/3i2 . . . . .  ~3in, 
where 

/3,.j = (0 u 1), if xj and 2j are not literals in ct,  

= (0), if ~. is a literal in c,., 

= (1), if xj is a literal in c i . 

Let  fl = (ill) w (f12) w ... L) (tim). Then  L(fl) = (0, 1) n if and only i f f  is a tautology. 
Clearly/3 and a (u ,  ")-expression denoting (0, 1}" can be constructed deterministically 
in t ime bounded by a polynomial in [ f l .  Thus,  {(R, S) [R and S are inequivalent 
(u ,  .) expressions} is NP-hard.  But this set is easily seen to be in NP. 

(2) The  regular expressions constructed in the proof of Proposition 2.4 are 
all of star height equal to I. For any k >/ 1 it is easy to modify flu of the proof of 
Proposition 2.4 in such a way that the resulting regular expression has star height 
equal to k and the language denoted by the resulting expression equals L(fl~). 
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(3) Every context-sensitive language is accepted by some lba M such that 
for any input y all computations of M on y terminate in t ime ~2~IYl, where c is a 
constant independent of y. Therefore, there are only a finite number  of distinct 
sequences of moves of M that result in the acceptance of y. Consequently, L(/3v) 
of the proof of Proposition 2.4 is a cofinite set. [ ]  

Note that in the proof of Theorem 2.7(3), the regular expressions involved are 
known to denote cofinite sets. Thus,  testing for inequivalence is hard even when 
one is told that the input regular expressions denote cofinite sets. 

Next we consider the inequivalence problem when bounded languages are involved. 
Note the following simple relationship between star height and boundedness. 

PROPOSITION 2.8. The star height of any infinite but bounded regular set is equal to 1. 

Proof. This result follows trivially from the result in [9] that every bounded 
regular set is a member  of the smallest family of sets which contain all finite sets, 
all sets of the form w* (w a finite length string), and which is closed with respect 
to finite union and finite product. [ ]  

We next use the following lemma, from [8], relating commutativity and boundedness 
for the regular sets. 

LEMMA 2.9. (1) A language L is commutative i f  and only i f  there exists a word w 
such that L C w*. 

(2) A language of the form A * is bounded i f  and only i f  A is commutative. 

Proof. For a proof of (1), see [8, p. 169]. Statement (2) follows from the fact 
in [8, p. 171] that, letting u, v be strings over {0, 1}, u �9 v @ v �9 u implies {u, v)* 
is not bounded. [ ]  

THEOREM 2.10. There exists a deterministic polynomially time bounded Tm M such 
that M,  when given a regular expression R as input, determines i f  L(R)  is bounded and 
i f  so outputs strings w 1 , w 2 ,..., w~ such that L(R)  C_C_ wl* �9 w2* . . . . .  wk* and such that 

Iwll +[w21 +""  + Iwkl ~< IR/. 

Proof. The  proof is by induction on the depth d of nesting of regular operators 
in the regular expression R. I f  d ---- 0, then L(R)  = $, A, 0, or 1 ; and L(R) C 0", 0", 
0", or 1", respectively. Assume that the theorem holds for all regular expressions 
of depth ~ k .  Let  d = k + 1. Then  R = (A) w (B), (A) .  (B), or (A)*. 

Case 1. I f  R = (A) k) (B), then L(R) is bounded if and only if both L(A)  and 
L(B) are bounded. I f L ( A ) C  xx* . . . . .  xm* andL(B)_Cyx* . . . . .  Yn* with 

Ixal+'"+lx,,~l<~lAI and ]y~l+...+[y,,l<~lB[, 



EQUIVALENCE, CONTAINMENT, COVERING 235 

then L(R) C_ xl* . . . . .  x,~* " Y l *  . . . . .  Yn* and 

] X l l - ~ - " ' " - [ - [ x m l - ~ - l Y l  r §  ly~l  ~< [R[ .  

Case 2. I f  R ~ (A) �9 (B), then L(R) is bounded if and only if L(A) is empty, 
L(B) is empty, or both L(A) and L(B) are bounded. But the emptiness problem for 
regular expressions is trivially p-decidable. I f  neither L(A) nor L(B) is empty, then 
the proof is similar to that of Case 1. 

Case 3. I f  R ~ (A)*, by Lemma 2.9(2) L(R) is bounded if and only if L(A) 
is commutative. If  L(A) = r or A, then L(A) is trivially commutative. Otherwise 
a nonempty string x in L(A) can be found deterministically in time bounded by a 
polynomial in [A I such that I x l  ~ I A I, But by Lemma 2.9(1), L(A) is com- 
mutative if and only if there exists a string w such that L(A) C w*. But any such 
w must have the property that x ~ w " for some nonnegative integer n. M finds 
each of the prefixes w of x, such that x - -  w ~ for some n. For each such w, M tests 
whether L(A) n w* = (~. From Lemma 2.1(2), this test can be done deterministically 
in time bounded by a polynomial in I A I. 

We can now state our results on inequivalence of bounded languages. 

THEOREM 2.11. (1) RINEQ-(one bounded) is NP-complete. 

(2) RINEQ-(both bounded) is NP-complete. 

(3) RINEQ-(over O) is NP-complete. 

Proof. By Proposition 2.2, these languages are NP-hard. That  they are in NP 
can be seen by combining Theorem 2.10 and the proof of Theorem 2.6(2). 

We note that all of our results about equivalence apply equally to containment. 
For example, the following analogs of Theorems 2.6 and 2.11 hold. 

THEOREM 2.12. Let L o be any fixed regular set. 

(a) I f  L o is finite, then {R [ R is a regular expression and L(R) ~_ L0} is in P. 

(b) l f  L o is infinite but bounded, then { R I R is a regular expression and --7[L(R) D_L0] } 
is NP-complete. 

(c) l f  L o is unbounded, then {R [ R is a regular expression and -7[L(R) D_Lo] } 
is CSL-complete. 

THEOREM 2.13. {(R, S) r R and S are regular expressions, at least one of L(R) 
and L( S) is bounded, and --n[L(R) D_L(S)]} is NP-complete. 

The proofs are almost identical to those of Theorems 2.6 and 2.11 and are left 
to the reader. 
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The results in this section and [16] suggest that the reason there has been little 
success in finding "canonical" forms for arbitrary regular expressions may be due 
to the difficulty of testing for equivalence. Moreover, our results here and in [16] 
show that the equivalence problem for most of the subclasses of the regular sets or 
regular expressions studied in the literature are as hard as the equivalence problem 
for arbitrary regular expressions. However, the equivalence problem may be simpler 
for unambiguous regular expressions, i.e., regular expressions for which every string 
in the denoted language is described by the regular expression in only one way (see [5]). 
We note that all of the proofs in this section involve highly ambiguous regular 
expressions. Moreover, we are unable to show anything about the complexity of the 
equivalence problem for unambiguous regular expressions. We feel that the un- 
ambiguous regular expressions are a reasonable candidate for a nontrivial subclass 
of the regular expressions with a deterministic polynomially time bounded equivalence 
problem. 

OPEN PROBLEM 1. Is the equivalence problem for the unambiguous regular 
expressions in P, NP-complete, etc. ? 

3. CONTEXT-FREE LANGUAGE EQUIVALENCE 

In this section, we concentrate on the complexity of testing a cfg to determine 
if it generates some fixed cfl. For any fixed cfl L 0 we define 

GINEQ(L0) = {G ] G is a cfg and L(G) 4: L0}. 

Also, for any fixed linear cfl Lo, we define 

LGINEQ(Lo) = {G I G is a linear cfg and L(G) 4: Lo}. 

The main result of this section is that: 

(1) If L o is finite, then GINEQ(Lo) is in P. 

(2) If L o is infinite, then GINEQ(Lo) is NP-hard. 

(3) I l L  o is unbounded, then GINEQ(Lo) is PSPACE-hard. 

(4) If L o contains an unbounded regular subset, then GINEQ(Lo) is not 
recursive. 

This result is analogous to Theorem 2.6, except that (2) and (3) above give only 
lower bounds on complexity. Obtaining upper bounds is an open problem. 

Identical results hold for LGINEQ(Lo). Moreover, for the linear cfg's, these lower 
bounds are "tight" in the sense that they are exact for certain fixed languages. For 
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the infinite but bounded linear language 0", LGINEQ(0*) is in NP. For the un- 
bounded linear language L = {w # w rev I w in {0, 1}*}, LGINEQ(L) is in PSPACE. 

We also show that if a cfg L o contains an infinite regular subset, then GINEQ(L0) 
is as hard as GINEQ(0*). 

We now explicitly state some well-known facts about cfg's. We assume in this 
section that the grammars involved have some finite nonnull terminal set Z. 

LEMMA 3.1. (1) Given an arbitrary regular expression R, a right-linear cfg G 
can be found deterministically in time bounded by a polynomial in [R[  such that 
L(G) = L(R) [21. 

(2) Given an arbitrary cfg G and an arbitrary ndfa M, a cfg G' can be found 
deterministically in time bounded by a polynomial in ] G ] + ] M I such that L(G')  = 
L(G) n L(M) .  Furthermore, i f  G is linear, then so is G'. 

(3) There exists a deterministic polynomially time bounded Tm that decides whether 
an arbitrary cfg generates the empty set [2]. 

(4) There exists a deterministic polynomially time bounded Tm that, given an 
arbitrary cfg G and an arbitrary string w, decides i f  w is in L(G). 

(5) Let Z and A be nonempty finite alphabets, and let h: Z* --~ A* be a homo- 
morphism. Then there exists a log-lin transducer that given as input a efg G with terminal 
set Z, outputs a cfg G' with terminal set A such that L(G')  = h(L(G)). 

(6) Given an arbitrary cfg G, an equivalent reduced cfg G' can be found deter- 
ministically in time bounded by a polynomial in G. Furthermore, i f  G is linear, then 
so is G' [2]. 

(7) Let G be a c fg for  which L(G) is infinite. Then there exist strings u, v, w, x, y 
in Z*  with v �9 x nonnull, such that 

{u.  v i -  w" x ' . y  1 i >~ O) CL(G) [8]. 

(8) GINEQ({O, 1}*) and LGINEQ({O, 1}*) are both not recursive. 

(9) Let G be a reduced cfg with L(G) C- ~o. Then L(G) is bounded i f  and only i f  
for all nonterminals A of G, both LA(G ) ~ {u [ A *~ uAv} and RA(G ) = (v [ A *~ uAv} 
are commutative [8]. 

Proof. (2) In polynomial time, modify G so that the maximum length of the 
right-hand side of any production is 2. Then obtain G' by using the method of 
[8, p. 88], with the extension that for each production A --~ A in G and each state p 
in M ,  G' has the production 

(p, A , p ) ~  A. 

(4) If w = A, check if w is in L(G) by testing for emptiness the grammar 
obtained from G by deleting all productions with a terminal in the right-hand side. 



238 H U N T ,  ROSENKRANTZ AND SZYMANSKI 

If  w va A, then modify G to eliminate lambda-productions, as follows. Let G 
(N, 27, P, S). Find the set N z of nonterminals whose generated languages contain A. 
Consider the production 

A ---> %Blc~IB 2 "'" Bka k , k ~ O, 

where each Bi  is in N~ and each o~ i is in ( ( N -  N a ) U  27)*. For this production, 
new nonterminals X1,  X 2 ,..., Xl~ are introduced and the production is replaced 
by the set of productions 

i ---> aoa i " "  0~le if %% "'" a k va A, 

A ~ %X1,  

X i --~ oQXi+l, 1 ~ i < k, 

X i  --~ Bic~iXi+l, 1 ~ i < k, 

X i - * .  Bi(xio~i+ 1 " . .  o~  1 ~ i ~ k 

We note that a polynomial time procedure for eliminating lambda-productions has 
been independently obtained by Yehudai [31]. 

The grammar is then converted to Chomsky normal form by the methods of [2], 
and membership of w in the language generated by the grammar is determined by 
the Cocke-Younger-Kasami algorithm [2]. 

(5) Let G' be the cfg that results from replacing each occurrence in G of each 
symbol a in 27 with h(a). 

(8) GINEQ({0, 1}*) is shown not to be recursive in [13]. The  languages 
involved in that proof are all linear, and so the same construction also proves that 
LGINEQ({0,  1}*) is not recursive. [ ]  

We now prove a series of technical lemmas. We begin with a cfl analog of Lemma 
2.1(6). A result closely related to Proposition 3.2 appears in [12]. 

PROPOSITION 3.2. A cfl L is unbounded i f  and only i f  there exist strings w, x, and y 
in Z *  and distinct a, b in Z such that every string in w �9 {ax, by}* is a pref ix  o f  some 
string in L,  or every string in {xa, yb} * �9 w is a suffix of  some string in L.  

Proof. Only if: Assume L is unbounded. From Lemma 3.1(9), for some reduced 
cfg G with start symbol S generating L, there is a nonterminal A such that LA(G ) = 

{u l A ~ uAv} or RA(G) = { v i a  *~ uAv}  is noncommutative. Assume LA(G ) is 
noncommutative. Then there exist strings Ul, u2 in LA(G) such that u 1 �9 u 2 :~ u2 " ux �9 
By Lemma 2.9(2), {u 1 , uz}* is an unbounded regular set. Thus  by Lemma 2.1(6) 
there exist strings r, s, x, a n d y  in 27* and distinct a, b in 27 such that r �9 {ax, by}* �9 s C_ 
{ul, u2}* C LA(G ). Since G is reduced, there exist strings Zl,  z 2 in 27" such that 
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S *~ z a A z . , .  Let  w - -  z 1 " r. Then  every string in w �9 { a x ,  b y } *  is a prefix of some 
string in L. I f  R A ( G )  is noncommutative,  the proof  is similar. 

If: This  follows from an application of the proof in [8, pp. 142-143] that if X 
contains at least two elements, then X* is unbounded.  [ ]  

DEFINITION 3.3. A cfl L 0 is said to be d e c i p e r a b l e  if  and only if for all strings 
u, v, w, x and y in S*  such that v . x :# A and such that  {u �9 v i �9 w �9 x i �9 y [ i > / O )  C L o ,  

u �9 v i �9 w " x i " y ~ -  u �9 v j �9 w �9 x 7~ �9 y implies i ~ j = k 

for all integers i , j ,  k ~ 0. | 

We now prove several lemmas, culminating in the result that every infinite cfl 
either has an infinite regular subset, or is decipherable. 

LEMMA 3.4. C o n s i d e r  x ,  y ,  z i n  X *  w i t h  x n o n n u l l .  I f  x �9 y ~ -  y �9 z ,  t h e n  t h e r e  

e x i s t  s t r i n g s  r ,  s i n S *  a n d  i n t e g e r  p ~ O s u c h  t h a t  x = r �9 s, z = s �9 r ,  a n d  y ~ ( r  �9 s )  ~ �9 r .  

P r o o f .  The  proof is by induction on the length of Ix  "Yl. I f  I x  "Yl ~ 1, then 
since x is nonnull, x ~ z and y ~ A. Let  r - -  A, s = x, and p ~ 0. 

Let  !x  . y  [ ~- k > 1 and assume that the lemma holds for all strings x',  y ' ,  z '  
i n X *  with x ' . y '  = y ' - z ' a n d  l x " Y ' t  < k .  

C a s e  1. I f  i x ]  = [ y [ , t h e n x  = y  = z .  L e t r  = x , s  = A ,  a n d p  = 0 .  

C a s e  2. I f [ x F  > l Y ] , t h e n x  = y ' d f o r s o m e d i n 2 : + . B u t x ' y  = y ' z i m p l i e s  
y ' d ' y  = y - z ,  w h i c h i m p l i e s z = d ' y .  L e t r  = y , s = d ,  a n d p  = 0 .  

C a s e  3. I f ! x ]  < ]y r ,  t h e n y  = x ' d f o r s o m e s t r i n g d i n 2 7  + . B u t x - y = y - z  
implies x . x ' d  = x ' d ' z ,  which implies x ' d  = d ' z .  Since x is nonnull  by 
assumption, j x �9 d I < I x �9 y ]. Thus  by the inductive hypothesis, there exist strings 
r, s in Z* and i n t e g e r p ' / > 0  such that x = r ' s ,  z = s ' r ,  and d = ( r ' s ) P " r .  
Let  y = ( r - s )  p ' + l ' r .  [ ]  

LEMMA 3.5. C o n s i d e r  u ,  v ,  w ,  x ,  y i n  S *  w i t h  b o t h  v a n d  x n o n n u l l .  I f  t h e r e  e x i s t  

i n t e g e r s  i ,  j ,  k ~ O s u c h  t h a t  u - v i " w " x i " y ~ u " vJ  " w " x 1~ " y w i t h  i v ~ j o r  i v~  k ,  

t h e n  t h e r e  e x i s t  s t r i n g s  r ,  s i n  X *  a n d  i n t e g e r s  m ,  n ,  p > / 0  s u c h  t h a t  v m ~ r �9 s ,  x n - ~  s �9 r ,  

a n d  w -= ( r  " s ) ~ "  r .  

P r o o f .  A s s u m e u ' ~ , ~ ' w ' x  i ' y  = u ' v ~ ' w ' x  k ' y . T h e n v  i " w " x i = v j " w " x ~. 

Since both v and x are nonnull, i :A j if and only if i v~ k. 

C a s e  1. I f  i ) j ,  then i = j + m  with m > 0 .  Then  k > i .  Thus  h = i + n  
with n > 0 .  Thus  , J+ '~  " w . x i ~ v ~ ' w " x i+" implies v ~ " w = w " x n, and the 
conclusion follows from Lemma 3.4. 
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Case  2. I f  j > i, t h e n  j = i + m w i t h  m > 0 a n d  k < i. T h u s  i = k + n w i t h  

n > 0. T h u s  v i �9 w �9 x l~+n = v i+m �9 w �9 x k impl ies  v m �9 w = w �9 x ~, a n d  the  conc lus ion  

fol lows f r o m  L e m m a  3.4. [ ]  

LEMMA 3.6. Cons ider  u,  v ,  w ,  x ,  y in  27* w i t h  both  ~ a n d  x nonnul l .  I f  there ex is t  

in tegers  i, j ,  k >/ O such t ha t  u " v i " w . x i " y = u " v j  . w " x ~ " y w i t h  i ~ j or  i v~ k ,  

t hen  {u �9 C �9 w �9 x ~ �9 y [ l ~ 0} is regular .  

Proo f .  S u p p o s e  t h e r e  exist  in tegers  i , j , k  > 0 s u c h  t h a t  u ' v i ' w  " x  i " y  ~-  

u �9 v~ �9 w �9 x ~ �9 y w i t h  i =# j or  i =# k. F r o m  L e m m a  3.5 t h e r e  exist  in tegers  m, n, p >~ 0 

a n d  s t r ings  r, s in  27* such  t ha t  v TM = r ' s ,  x '~ = s ' r ,  a n d  w = ( r ' s ) 9 " r .  T h u s ,  

{u " v t " w " x t " y l l ~ O} --- 1,.) {u'v a+b . . . .  w " x a+b'mn " y ] b ~ 0 }  
O<a<mn 

= ~ { u ' v ~ ' ( r ' s ) b ~ ' ( r ' s ) ~ ' r ' ( s ' r ) b ' ~ ' x ~ ' y ] b ~ O }  
O<~a<mn 

= (.J { u "  v '~" ( r "  s )~" ( ( r"  S)"~")b" r "  x" " y  I b >1- O} 
O~a<mn 

= U u ' v a ' ( r ' s ) P ' ( ( r ' s ) m * ' ~ ) * ' r ' x a ' Y ,  
O<~a<mn 

w h i c h  is a f ini te  u n i o n  of  regu la r  sets  a n d  h e n c e  is regular .  [ ]  

THEOREM 3.7. L e t  L be a n y  in f in i te  eft. T h e n  e i ther  L has  an  in f in i te  regu lar  subset,  

or L is decipherable .  

Proo f .  S u p p o s e  L is no t  dec ipherab le .  T h e n  the re  exist  s t r i ngs  u, v, w, x and  y 

in 27* w i t h  v ' x @ A  s u c h  t h a t  { u ' C ' w - x  ~ ' y l l > / 0 } _ _ C L 0 ,  and  t h e r e  exist  

i n t ege r s  i , j , k > ~ 0  s u c h  t h a t  u ' V ' w . x  ~ ' y = u . v j ' ~ v ' x  ~ - y  w i t h  i @ j  or  

j :#  k. I f  e i t he r  v = A or x = A, t h e n  (u �9 v ~ �9 w �9 x ~ �9 y [ l > / 0 }  is an  inf in i te  regu la r  

set  a n d L  has  an  inf in i te  regu la r  subse t .  I f  b o t h  v and  x are n o n n u l l ,  t h e n  b y  L e m m a  3.6, 

( u "  V ' w "  x ~ " y l l  >~ 0} is an  inf in i te  regular  set  and  L has  an  inf in i te  regu la r  

subse t .  [ ]  

W e  n o w  p rove  a resu l t  o n  t h e  complex i ty  of  G I N E Q ( L 0 ) .  

THEOREM 3.8. L e t  L o be a n y  cfl t ha t  conta ins  an  in f in i te  regu lar  subset.  T h e n  

G I N E Q ( O * )  is p o l y n o m i a l l y  reducible  to G I N E Q ( L o ) .  

Proo f .  Since  L o has  a n  inf in i te  regu la r  subse t ,  t h e r e  exist  s t r ings  w I , w 2 , a n d  w a 

in  27* w i t h  w 2 n o n n u l l  s u c h  t h a t  w x �9 w2* �9 w 3 _CL 0 . T h u s ,  L 0 is t he  d is jo in t  u n i o n  

of  w I �9 w2* �9 w 3 a n d L  x = L 0 (~ (27* - -  w a �9 w2* �9 Wa). L e t  h: 0*  - +  27* b e  the  l a m b d a -  
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free homomorphism defined by h(0) ~ w~. Since w 1 , w~, and w8 are fixed strings 
and L 1 is a fixed eft, by Lemma 3.1(5) given any cfg G, a efg G' can be found deter- 
ministically in time bounded by a polynomial in [ G[  such that 

L(G' )  = w 1 �9 h(L(G)) " w 3 ~3 L 1 . 

But L(G')  -~ L o if and only if L(G) = 0". [ ]  
It follows immediately from Proposition 2.2 and Lemma 3.1(1) that GINEQ(0*)  

is NP-hard. However, we do not know if it is an element of either NP or PSPACE. 
I f  GINEQ(0*)  is a member of neither of these classes, then by Theorem 3.8, neither 
is GINEQ(L0) whenever L0 has an infinite regular subset. The proof in [8] that every 
cfl contained in 0* is regular implies that GINEQ(0*)  is decidable, but does not 
directly address its complexity. 

OPEN PROBLEM 2. IS GINEQ(0*)  an element of either NP or PSPACE ? 
We now prove the main result of this section. 

THEOREM 3.9. 

(1) 
(2) 
(3) 
(4) 

Proof. 

Let  L o be an arbitrary cfl. 

I f  L o is finite, then GINEQ(Lo)  is in P.  

I f  L o is infinite, then GINEQ(Lo)  is NP-hard.  

I l L  o is unbounded, then GINEQ(Lo)  is P S P A C E - h a r d .  

I f  L o contains an unbounded regular subset, then GINEQ(Lo)  is not recursive. 

Throughout  the proof the reader is reminded that Lo is considered to be a 
f ixed cfl. (I) There exists an ndfa M such that L ( M )  = L o . I f  L ( G ) n  L ( M )  is not 
empty, then L(G) ~ L o . By Lemma 3.1(2) and (3), this can be determined deter- 
ministically in time bounded by a polynomial in ] G [. I f  L(G) ~ L ( M )  = q~, then 
L(G)  C_L o . Thus, to verify that L(G)  ~ - L  o it suffices to check that all strings w in 
L 0 are also elements of L(G).  Since there are only a finite number of such strings, 
Lemma 3.1 (4) implies that this can be accomplished deterministically in time bounded 
by a polynomial in f G I. 

(2) I f  L 0 has an infinite regular subset, then Theorem 3.8, Lemma 3.1(1) 
and Proposition 2.2 imply that GINEQ(L0) is NP-hard. I f  L o has no infinite regular 
subsets, then by Proposition 3.7 it is decipherable. Since L o is an infinite eft, from 
Lemma 3.1(7) there exist strings u, v, w, x, y in 27* with v " x nonnull, such that 
{u �9 # �9 w �9 x i �9 y ] i ~ 0} _C L o . Since L 0 contains no infinite regular subsets, both r 
and x are nonnull. 

Let  h: 0"---~ 27* be the lambda-free homomorphism defined by h ( 0 ) =  v. For 
any regular expression R over {0}, by Lemma 2.1(1) and (7), a ndfa accepting the 
language u ' h ( L ( R ) ) ' w "  x* "y  can be found deterministieally in time bounded 
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by a polynomial in [ R ]. Therefore, from Lemma 3.1(2), a cfg G can be found deter- 
ministically in time bounded by a polynomial in I R I, such that 

L ( G )  = (u " h ( L ( R ) )  " w " x *  " y n Lo) u ( L  o n ( Z *  - -  u . v*  . w . x *  . y ) ) .  

We now show that L ( G )  = L o if and only if L ( R )  = 0" .  

I f  L ( R )  = 0", then h ( L ( R ) )  = v*  and L ( G )  clearly equals L o . I f  L ( R )  ~ 0", then 
there exists a nonnegative integer i such that 0 i is not inL(R). Let z = u �9 v ~ �9 w �9 x i �9 y 

and suppose z is in L ( G ) .  Then  since z is clearly not an element of 

L 0 n (Z* --  u �9 v* -w �9 x* .y),  

z is in u ' h ( L ( R ) ) ' w "  x * ' y .  Thus there exist nonnegative integers j and k with 
i = / - j  such that z = u - v  ~ ' w ' x  i ' y  = u ' # ' w ' x  l~'y.  But this contradicts the 
decipherability of L o . Thus  z is not in L ( G )  and L ( G )  ~ - L  o . Therefore, RINEQ{R I R 
is a regular expression over 0 and L ( G )  ~- 0"} is polynomially reducible to GINEQ(Lo).  
From Proposition 2.2, GINEQ(Lo) is therefore NP-hard. 

(3) By Proposition 3.2, we assume there exist strings w, r, s in Z* and distinct 
a, b in Z such that every string in w �9 {ax, by}* is a prefix of some string in L o . An 
analogous proof holds for the suffix case. Let  h: {0, 1}* --~ 27* be the lambda-free 
homomorphism defined by h(0) = a x a x  and h(1) = axby.  By Lemma 2.1(1) and (7) 
and Lemma 3.1(2), for every regular expression R, a cfg G can be found deter- 
ministically in time bounded by a polynomial in I R ] such that 

L ( G )  = ( w  " h ( L ( R ) )  " byax  " Z *  o Lo) u ( L  o n ( Z *  - -  w . {axax ,  axby}*  " byax  . Z*) ) .  

We now show that L ( G )  - -  L o if and only if L ( R )  = {0, 1)*. 
If  L ( R )  - -  {0, 1}*, then h ( L ( R ) )  = {axax ,  axby}*  and L ( G )  clearly equals L o . I f  

L (R)~{0 ,1}* ,  then there exists z in {0 ,1}* - -L(R) .  Suppose w . h ( z ) . b y a x  

is a prefix of some string in L ( G ) .  Then  there exists a string v in Z* such that 
w �9 h ( z )  �9 b y a x "  v is in L ( G ) .  Since w �9 h ( z )  �9 byax  �9 v is not in 

g o  n ( z *  - w . { a x a x ,  a x b y }  * �9 b y a ~  . Z * ) ,  

w " h ( z )  �9 b y a x "  v is in 

w �9 h ( L ( R ) )  �9 b y a x .  Z *  c~ L 0 .  

But this implies h(z )  is in h ( L ( R ) ) ,  which implies z is in L ( R ) .  Thus  w �9 h ( z )  �9 byax  

is not a prefix of any string in L(G); and L ( G )  ~ L o . Therefore, RINEQ({0, 1)*) 
is polynomially reducible to GINEQ(L0). Hence from Proposition 2.4, GINEQ(L0) 
is PSPACE-hard.  
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(4) Since Lo contains an unbounded regular subset, by L e m m a  2.1(6) there 
exist strings r, s, x, and y in Z*  and distinct a, b in 27 such that r �9 {ax, by}* �9 s C_L o . 
Thus  L 0 can be expressed as the disjoint union 

L o = r .  {ax, by}*" s k) (L o n (Z*  - -  r .  (ax, by}*" s)). 

Let h: {0, 1}* -+  Z* be the lambda-free homomorphism defined by h(0) ~ ax and 
h(1) = by. By Lemma  3.1(5) and (2), given any cfg G with terminal alphabet {0, 1}, 
a efg G'  can be found effectively such that 

L(G ' )  -= r"  h(L(G))  " s t3 (Lo n (Z*  - -  r " {ax, by}*" s)). 

But L(G ' )  = L o if and only if L(G)  = {0, 1}*, which from Lemma 3.1(8) is un- 
decidable. []  

Theorem 3.9(4) extends Hopcroft ' s  result in [12] that GINEQ(L0) is undeeidable 
if L 0 is any unbounded regular set. We also note the result [8] that it is decidable 
to test equivalence of a pair of cfg's when one of them generates a bounded language. 

The  proofs of Theorems 3.8 and 3.9 go through for several proper subclasses 
of the efl's as well. These subclasses include the linear eft's, the metalinear eft's [8], 
and the languages accepted by nondeterministie 1-reversal bounded 1-counter 
machines (see [3]). In  particular, the following two theorems have proofs identical 
to those of Theorems 3.8 and 3.9. 

THEOREM 3.10. Let  L o be any linear cfl that contains an infinite regular subset. 
Then L G I N E Q ( O * )  is polynomially reducible to L G I N E Q ( L o ) .  

THEOREM 3. l 1. Let  L o be an arbitrary linear cfl. 

(1) I f L o  is finite, then L G I N E Q ( L o )  is in P.  

(2) I f  L o is infinite, then L G I N E Q ( L o )  is NP-hard .  

(3) I f  Lo is unbounded, then L G I N E Q ( L o )  is P S P A C E - h a r d .  

(4) I f  L o contains an unbounded regular subset, then L G I N E Q ( L o )  is undecidable. 

Moreover, for linear cfl's the "lower bounds"  in Theorem 3.11 are " t ight"  as 
discussed above. 

PROPOSITION 3.12. L G I N E Q ( O * )  is in N P .  

Proof. For a linear cfg G with terminal alphabet {0}, an equivalent right-linear 
cfg G'  can bc found by replacing every production ~ / ~  u B v  of  G, where A and B 
are nonterminals, by .4--+ u"  vB .  Moreover, given any right-linear grammar G, 
a ndfa M such that L ( M )  = L(G)  can be found deterministically in time bounded 

57I/I2/2-8 
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by a polynomial in [ G [. But L(M) @ 0* can be verified nondeterministically in 
time bounded by a polynomial in / M]  as in the proof of Theorem 2.6(2). [] 

Hopcroft [12] has presented an algorithm for deciding G I N E Q ( { w # w  rev [w 
in {0, 1}*}) for arbitrary cfg's G. This algorithm can be modified to show that 
GINEQ(L0) is decidable for a variety of different unbounded cfl's L o . We do not 
know if any equivalent algorithm is executable by some polynomially space-bounded 
Tm. However, such a polynomially space-bounded algorithm does exist for the 
linear cfg's. 

PROPOSITION 3.13. Let L o = {w # w ] w in {0, 1}*}. Then LGINEQ(Lo) is in 
PSPACE.  

Proof. The polynomially space-bounded algorithm that tests a given linear 
efg G = (Nx, 27, P1, S) for membership in LGINEQ(Lo) is presented below. 

Step 1. Determine whether A is in L(G). I f  so, G is in LGINEQ(Lo) and the 
algorithm halts. 

Step 2. Verify that L(G) is infinite. If  not, G is in LGINEQ(Lo). 

Step 3. Rewrite G if necessary so that it is reduced, has no lambda-productions, 
and has no production whose right side is a single nonterminal. Call the resulting 
linear cfg G 2 ~- (Nz , Z, P2 , S). 

Step 4. Verify that L(G2) n (27* - -  {0, 1}* �9 # "{0, 1}*) is empty. Otherwise G 
is in LGINEQ(Lo). 

Comment. If  L(G) = Lo, then for each A in N2, either L(A) c_ {0, 1}* �9 # .  {0, ~)* 
or L(A) equals a unique terminal string. 

Step 5. For each A in N 2 verify that L(A) C {0, 1}* �9 # �9 {0, 1}* or that I L(A)[ = 1. 
Otherwise G is in LGINEQ(L0). 

Step 6. For each A in Nz such that ]L(A)] = 1, substitute the unique terminal 
string in L(A) for every occurrence of A in the right side of a production of G~. 
From G2, delete A and every production whose left side is A. Call the resulting 
linear cfg G 3 . 

Comment. G3 = (Nz, 27, Pz, S) and each production of G z has the form A --* t 
or A -* tlBt2, with A, B in N3, t in {0, 1}* �9 # �9 {0, 1}*, and t l ,  t~ in {0, 1}*. 

Step 7. For each A in N8 find a string in L(A) and call this string XA. I f  L(G3) 
L0, then XA must be of the form u#urevv rev or vu#u rev, for u, v in {0, 1}*. Verify that 
each XA has one of the two above forms. Otherwise G is in LGINEQ(Lo). 
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Comment. If  A~ - - u # u r e v v  rev and L(G3) ~ -Lo ,  then A can only appear in 
sentential forms of form z v A z  rev. Similarly if XA = VU#U rev and L(G3) = Lo ,  
then A can only appear in sentential forms of form zAvrevz  rev. 

Step 8. For each production A--~ t such that XA = u # u  revvrev, verify that 
t = w#wrevvrev, for some w in {0, 1}*; and for each production A --~ t such that 
XA = v u # u  rev, verify that t = v w # w  rev, for some w in {0, 1}*. Otherwise G is in 
LGINEQ(L0).  

Step 9. For each production A --~ taBt 2 such that XA = u#urevvrev, verify that 
t lXBt 2 - -  w#wrevvrev, and for each production A ~ t lBt  2 such that X A = v u # u  rev, 
verify that t lXBt 2 = vw#w rev, for some w in {0, 1}*. Otherwise G is in LGINEQ(L0).  

Step 10. Verify that X s = u # u  rev. Otherwise G is in LGINEQ(L0).  

Comment. I f  G 3 satisfies the tests in Steps 8-10, then L(G3)_CL 0 . This can be 
verified by induction; the inductive hypothesis is: I f  X A = u#urevv rev, then L(A)  C 
{w#wrevv rev ] w C {0, 1}*} and if XA = VU#U rev then L(A)  C {VW#W rev [ W E {0, 1}*} 

for all nonterminals A of G 3 . 

Step 11. Construct the right-linear grammar G 4 = ( N 3 , X , P ~ , S ) ,  where 
A - *  y B  is in P~ if and only if A --~ y B y '  is in P3 and A --+ y is in P4 if and only if 
A --~ y # y '  is in P3,  where A, B are in Na and y, y '  are in {0, 1}*. 

Step 12. Construct a nondeterministic finite automaton M such that L ( M )  = 

L(a,). 

Step 13. Verify that L ( M )  = {0, 1}*. I f  so, then L(G) = L 0 ; otherwise G is in 
LGINEQ(L0).  

Since G is linear, each of Steps 1-13 is executable in space bounded by a polynomial 
in ] G ]. Note that Steps 1-12 are executable in time bounded by a polynomial in 
] G [. From Proposition 2.3, Step 13 can be done in polynomial space. [ ]  

This algorithm can be modified to show that such sets as LGINEQ({a*b ~ [ n ~> 1}) 
are elements of NP. 

OPEN PROBLEM 3. (1) Does there exist an infinite but bounded cfl L o such that 
GINEQ(Lo) is an element of NP ? 

(2) Does there exist an unbounded cfl L o such that GINEQ(Lo) is an element 
of PSPACE ? 

Finally, as in Section 2, analogous results hold for containment as well. 
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4. AN EXPONENTIAL COMBINATORIAL STRUCTURE 

A natural analog of the "squaring" operator introduced in [24] that complicates 
several problems related to the cfg's is presented. We exploit this structure to prove 
that the equivalence and containment problems for cfg's generating finite sets require 
time at least 2 en/(l~ n) on any nondeterministic Tm. We also prove that the equivalence 
and containment problems for non-self-embedding cfg's require tape at least 2c~/d~ 

The exponential lower time bounds for equivalence and containment immediately 
apply to cfg's generating bounded languages. We also prove a metatheorem that 
implies an exponential lower time bound for a variety of predicates on cfg's generating 
bounded languages. 

We present several problems that may be exponential due to the cfg "squaring" 
structure. These problems include structural equivalence of cfg's [21, 25], s-grammar 
equivalence [20], and LL(k) grammar equivalence [26]. We note subexponential 
upper bounds on certain of these problems when restricted to the linear cfg's. 

We now illustrate the cfg "squaring" structure with the grammar G 4 generating 
the language 

L(G4) = { w l w c { O ,  1 } * a n d l w l  ~24} �9 

The grammar has start symbol S 4 and contains the following productions. 

S 4 ~  S.S3, 

$3 -~ 82S2, 

S~ -~ $1S1, 

S~ -~ SoSo, 

So--~O I 1 1 A. 

PROPOSITION 4.1. There exists a constant c > 0 such that for all integers n >/ 1, 
there exists a cfg G~ with L(G,~) = {w lw  in {0, 1}* and [ wl  ~ 2"} and ] G~] 
c- n - (log n). 

Proof. The productions of G,~ are S~ --~ Sn_IS~_ 1 , S~_ 1 --+ S~_2S~_ 2 ..... and 
So-~  o I 11 ;~. [] 

DEFINITION 4.2 [28]. A function T(m) is said to be a running time if there is a 
deterministic T m  M such that, for each input word x to M, M computes on x for 
precisely T(I x 1) steps. | 

THEOREM 4.3 [28]. Ndtime(T2(n))--Ndt ime(Tl(n))  ~ 6 ,  whenever T2(n) is a 
running time and lim,~_,~ (T~(n)/Tl(n + 1)) = oo. 
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W e  next  p resen t  an encod ing  of  Tm computa t ions  in to  cfg 's  genera t ing  finite sets. 
T h i s  encoding  is the  basis  of our  exponent ia l  t ime  lower bounds .  

PROPOSITION 4.4. Let M be any arbitrary nondeterministic 2 ~ t ime  bounded single 
tape Tin, for some integer constant c > O. Let  the state set, tape alphabet, start state, 

and set of  accepting states of  M be denoted by S, T, qo , and F, respectively. Let 2: = 
T v3 ( S  • T ) v ) { # } ,  where # is a symbol not in T v ) ( S  x T). Then there exists a 
deterministic log-space transducer M '  such that M ' ,  when given a nonnull input x = 
a x . . . . .  a~, outputs a cfg G, such that 

(ii) L(G,)  = (Z' v) {),}) '=~ i f  and only i f  x is not in L ( M ) ;  

(iii) ]G~ } ~  c e a ' n ' ( l o g  n), where cM is a constant depending only upon M 

not x; and 

(iv) M '  is O(n " (log n)) time bounded. 

Proof. W e  refer to the ins tantaneous  descr ip t ions  defined in Def ini t ion 1.12, 
taking T(n) = 2 *n. Also we let  (Z:)**(k) denote  Z'[~'1, where  Z' is a finite a lphabet  
and  k is an express ion deno t ing  the posi t ive integer  [k]. 

G~. is const ructed  so tha t  L(G~) equals  the  Set of  inval id computa t ions  of M on x 
of length  ~ 2 2 . ' ~  1 + 3 " 2 *~ + 8. Any  val id  computa t ion  of M on x is a s t r ing over  27 
of  the  fo rm #- [ [ (2 :  - -  {#})** 2 c~] "#]~, where  k ~< 2 ~ + 1. T h u s  alI val id  c o m p u t a -  
t ions of M on x have length ~ 1  + (2 *n + 1) �9 (2 c** + l)  = 2 ~cn + 2 cn+l + 2. 

A s t r ing Y of length  ~<2 2c~+1 + 3 �9 2 cn -F 8 is an inval id  computa t ion  if and  only if 

(1) [7  [ is less than  the length  of  the  init ial  i .d. ,  i.e., 

r ~  S x = ( Z w { a } ) * * ( 2  ~n + 1); 

(2) 2 '2~'~ @ 2 en+l @ 3 ~ l y J ~< 22c~+1 + 3 �9 2 ~" + 8, i.e., 

y e Sz [2:**(2 *~'~ q- 2 ''~+1 + 3)] " [(X v0 {~})**(22~' q- 2 ~'~ + 5)]; 

(3) bY i ~ 22~ q- 2~~1 q- 2 but 7 does not  end  in " # " ,  i.e., 

7 e Sa = [(2; U {a})**(22~n § 2 ~n+a + 1)] �9 ( Z  - -  {#});  

(4) 7 contains  an error  be tween two consecut ive i .d. 's ,  i.e., 

Y ~ & = U [ ( 2 : u  {a})**(22~- + 2 c- + 1)1 �9 ~ 1  ~ 2  ~3 
~I �9 c'2" ~ 

�9 [S**(2  r - -  2)] - ( Z  a - - f M ( % ,  % ,  % ) ) .  [(X u {a})**(2 ec" q- 2 cn -+- 1)]; 
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(5) [7  [ ~ 22c~ %- 2 ~+1%- 2 bu t  7 contains  no symbol  of fo rm (qr t) wi th  
qf ~ F  and t ~ T, i.e., 

(( )** 7 ~ & =  2 7 -  U{(q~, t )  to{a} (2 ~ + 2  o-+1+2); 
qy~F 
tET 

o r  

(6) ]Yl  ~< 2~cn + 2 ~n+1%- 2 bu t  7 does not  begin  wi th  

#(qo ,  x0 -x~ . . . . .  x , .  [(~)**(20- - n)] .#.  

I f  y satisfies (6), then  

(6.1) y does not  begin  wi th  # ' ( q 0 ,  xa) �9 x 2 . . . . .  x ,  ; or 

(6.2) y does not  contain  two occurrences  of # ;  or 

(6.3) y does contain  two occurrences  of # ,  bu t  the  first and second # ' s  
in y are not  separa ted  by  2 cn characters;  or 

(6.4) y has a nonb lank  character  in its j t h  posi t ion,  where  n %- 2 ~ j  ~< 
2 ~n + 1. 

All  s tr ings sat isfying (6.1) are e lements  of 

3 6 = [ ( ~  - -  { # } )  U # "  [(27 - -  {(qO' Xl)}) I )  (q0, x l ) "  [(27 - -  {x=}) v0 x~" [... 

�9 [ ( Z  - -  {Xn_l} ) U Xn_ 1 �9 [(27 - -{X'n})] ]  " " ] ] ] ]  

�9 [(27 u { I } ) * * ( 2  2~" + 2 ~"+1 -+- 1)]. 

All  s t r ings sat isfying (6.2) also satisfy (1), (3), or (6.1). All  s tr ings sat isfying (6.3) 
are elements  of 

S T = # "  [(27 U {a})**(2 ~" - -  1)] " # "  [(27 V0 {h})**(2 2~" %- 2 ~"+1%- 1)] 

to # "  [(X - -  { # } ) * * ( 2  ~" + 1)1 " [(27 U {h} )**(2  ~c'~ + 2e")]. 

All str ings sat isfying (6.4) are e lements  of 

S 8 - - -  .~7 r~+l" [(~' kJ {h})**(2 ~" - -  n - -  1)] -(27 - -  {~}) 

�9 [ (Z  to {a} )** (2  ee,~ @ 2en+l)].  

W e  note  tha t  all s t r ings in S 1 u "" u S s have length ~<2~n+l + 3"  2 ~ n +  8. Al l  
s tr ings in S 6 U S T to Ss tha t  do not  satisfy (6.1), (6.2), or (6.3) have length greater  
than  2 2~" + 2 e**+1%- 2; and thus  they  are not  val id  computa t ions .  Final ly ,  any s t r ing 
of  length ~ 2  2~+t %- 3 - 2 ~* + 8 not  in S 1 u "" u S s is a va l id  computa t ion  of M 
on x. 
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For fixed T m  M and variable x with n = I x [, cfg's G 1 ..... G 8 can be constructed 
such that G~ = (N,  , S ,  H i ,  S);L(G~) = S~ ; ] G~ [ ~ k " n " (log n), where k depends 
only upon M;  N~ n N~ ---- {S} for 1 ~ i < j ~ 8; and S does not occur on the right 
side of any production. We only present G 1 and G 6 . The  other cfg's are constructed 
analogously. 

H a is defined by 

S ~ /1(1) ZI(1) 

A(~) _~ A(~) A(1) c n  on- -1  o n - - 1  

A(1) A(1) A(t) 
c n - - 1  ---)" e n - - 2  o n - - 2  

iZ~l)  ---~ ~ 1 0 " 1  I " '"  I O'm , 

H~ is defined by 

S -+/I(6)i~(6) 
~ 0  ~ 0  

Let  

where 27 = {~1 ," ' ,  gin}. 

A~ 6)-+ c,i [ # A ~  6) for ('i e 27 and ('i ~ # ,  

A~ ~) -+  a~ I (qo, Xl) A~ 6) for aa e Z' and % ~ (qo, xt), 
. . .  

A(e)n-1 --~ O'k [ Xn_lA(6)n for a~ e Z' and ak r xn_l, 

/(6) -+  at for cr~ ~ Z and cr~ 4: x~, 

B~6) _~ p(6) p(n) t~(6) 
~ 2 e n ~ e n + l ~ O  

C(O C(6) C(6) 
2on ---)" 2 e n - - 1  2 c n - - 1  

. . .  

c~ ~ ~ ,~ I ~'11 " "1  , , , , .  

G ,  = (N~ to ... to N~ , Z ,  ~ to ... to n ,  , S). Then L(G,O=Sl to ' "uS, ;  
L(Gx) C (27 to {A})**(2 ~*-+1 + 3 . 2  r + 8); L(G~) = (27 to {A))**(2 z*"+l + 3 . 2  *" + 8) 
if and only if x is not in L(M);  and ] G~ I ~< CM" n(log n), where cm is a constant 
depending only upon M not x. We leave the proof that (iv) also holds to the reader. [ ]  

THEOREM 4.5. There exists a constant e > 0 such that both the equivalence problem 
and the containment problem for cfg's generating finite sets require time at least 2en/(l~ 
infinitely often (i.o.) on any nondeterministic multitape Tm. 
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Proof. By Theorem 4.3 and the fact that a 2 aln time bounded nondeterministic 
multitape T m  can be converted into a 2 a2n time bounded nondeterministic single-tape 
T m  with d 2 ~ d l ,  there exists a constant d ~ 1 and a 2 an time bounded nondeter- 
ministic single-tape T m  M such that the recognition of L(M)  on any nondeterministic 
multitape T m  requires time />2 n i.o. By Proposition 4.4 there exists an O(n(log n)) 
time bounded deterministic log-space transducer M '  such that M' ,  when given 
an input x to M with [x I =  n, outputs a cfg G~ such that L ( G ~ ) C L ( n ) =  
(27 U {A)) ~2a"+l~3"2""+s, where 27 is a fixed finite alphabet depending upon M not x. 
Moreover, L(G~) =/= L(n) if and only if x is in L(M) .  Thus L(n) is not a subset of 
L(G~) if and only if x is in L(M) .  

The following nondeterministic algorithm verifies that x is in L(M) ,  if this is true. 

Step 1. Apply M '  to x, outputting Gx. 

Step 2. Verify that L(Gx) = L(Gn), where L(Gn) = L(n) and G~ contains the 
following productions (where an obvious shorthand is used to represent the productions 
whose righthand sides are terminal strings). 

A --~ A2a,+lAa~Aa~AanA3, A2dn+l -+  A2anA2a . . . . . .  

A1 -+ AoAo , Ao "-~ Z I A. 

Clearly n ' ( l o g n )  ~ [ G ~ [ + [ G n [  ~ q ' n ' ( l o g n ) ,  where c 1 is a constant 
depending only upon M not x. Let m = ] G~. t + I Gn [. The  time required to execute 
this algorithm nondeterministically is no greater than c 2 - n ' ( l o g n ) ,  the time to 
execute Step 1, plus the time to test G~ and G~ for equivalence or containment. 

Let T(k) be the time required by some fixed nondeterministic multitape T m  to 
test for equivalence or containment of two cfg's G and H that generate finite sets, 
where k = [ G I + I H [ .  Because time 2 n is required for verifying membership 
in L(M),  2 ~ ~ c2 " n �9 (log n) + T(m) i.o. Thus,  T(m) /> 2 c3n i.o. for some c 3 greater 
than zero. The  fact that m ~ c I �9 n �9 (log n) implies n >/(1/Cl) �9 (m/log n). The  fact 
that n �9 (log n) ~ m implies log n ~ log m, so that n /> ( l /q )  �9 (m/log m). Letting 
c 4 = c3/q , we conclude that 

T(m) ~ 2 ce~/(j~ i.o. [ ]  

Since all finite cfl's are bounded, the following immediate corollary of Theorem 4.5 
holds. 

THEOREM 4.6. There exists a constant c > 0 such that determining i f  

(a) L(G) C L(H), or 

(b) L(G) D L(H),  or 

(c) L(G) = L(H),  
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where G is an arbitrary cfg and H is a cfg generating a bounded language, requires 
time at least 2cn/l~ i.o. on any nondeterministic multitape Tm. 

These problems are shown to be decidable in [8]. 
Another analog of Theorem 4.5 holds for the non-self-embedding cfg's. 

DEFINITION 4.7. A reduced cfg G is said to be self-embedding if there exists a 
nonterminal 21 of G such that A *~ uAv, where both u and v are nonnull strings 
of terminals. A cfg that is not self-embedding is said to be non-self-embedding. 

PROPOSITION 4.8. Let M be any arbitrary nondeterministic 2 *" tape bounded Tm, 
for some constant c > O. Let the state set, tape alphabet, start state, and set of accepting 
states of M be denoted by S, T, qo , and F, respectively. Let Z = T u ( S X T) u {#}, 
where # is a symbol not in T u ( S X T). Then there exists a deterministic log-space 
transducer M '  such the M' ,  when given a nonnull input x = x 1 . . . . .  x n , outputs a 
non-self-embedding cfg Gx such that 

(i) L(G~.) = Z* i f  and only i f  x is not in L(M);  

(ii) [ Gx 1 ~< CM �9 n �9 (log n), where CM is a constant depending only upon M 
not x; and 

(iii) M '  is O(n ' ( log  n)) time bounded. 

Proof. G~ is constructed so that L(Gx) equals the set of invalid computations 
of M on x. We note that any valid computation of M on x is a string over X of the 
form # -  [[(Z - -  {#})** 2 *~] �9 # ]k  with k /> 1. 

A string y in Z* is an invalid computation of M on x if and only if 

(1) no # ' s  appear or only one # appears in y, i.e., 

y e & = ( z  - { # } ) *  to ( z  - { # } ) *  �9 # .  ( z  - { # } ) * ;  

(2) two consecutive # ' s  in 7 are separated by less than or greater than 2 c~ 
characters, i.e., 

r e  $2 = Z * .  # .  [ ( ( Z - -  {#)) vo {A})**(2 ~,, - -  1)]-  # - Z *  

u Z * .  # -  [ ( Z - -  (#}**(2 ~'~ + 1)] . ( Z - -  {#})* .  # .Z*;  

(3) y does not end in # ,  i.e., y ~ S 3 = 2J* �9 (2J --  {#}); 

(4) y does not contain any symbols (q: ,  t ) e F  • T, i.e., 

7 r 2 1 5  T))*; 
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o r  

(5) 7 contains an error between two consecutive i.d.'s, i.e., 

~ S~ = I.) Z * .  ,~ .  ,~ .  , a .  [~**(20" - -  2)] �9 (X" - - f ~ ( , 1 ,  , , ,  ~,))" Z*; 
5r O'2, O'3E~' 

(6) 7 does not begin with # "(q0, xl) ' x~ . . . . .  x ,  �9 [~**(2 c" - -  n)] " # .  Any 
string satisfying (6) that does not satisfy (1) or (2) must be of the form x �9 y �9 # �9 w, 
where Ix [  = n + l  and x @ # ' ( q 0 , x l ) ' X ~  . . . . .  x , ,  or [ y l  = 2 C " - - n  and 
y :~ 0"*(2 ~" - -  n) with x, y, w in Z*. I f  x ~ # �9 (q0, Xl) " x2 . . . . .  x ,  then 

7 e 8 6 = [(Z - -  {#}) u # "  [(Z - -  {(qo, Xx)}) u (q0, xl) 

�9 [ . . .  [ ( z  - { x . _ ~ } )  u x . _ ~ .  [ ( z  - ( x . } ) ] ]  . . .]11 �9 z * .  

I f  y ~ ~**(2 cn - -  n) then 

7 ~ s~ = # .  z - .  ( z  - {#})*  �9 ( ~  - {0, # } ) "  ( z  - {#})*  �9 # .  z* .  

But non-self-embedding cfg's G 1 ..... G~ can be constructed such that G i 
(AT.., 27, H ~ , S ) ;  L ( G ~ ) = S t ;  ]G~I ~ k ' n ( l o g n ) ;  N~nN~-- - -{S}  for 1 ~ i <  
j ~ 7, and S does not occur on the right side of any production. The construction 
of the grammars is straightforward and is left to the reader. 

G ~ = ( N  l u ' ' ' U N T , Z , H  I U ' - ' U H T , S ) ;  L(G~) = S  x ~ j . . ' u S  7; 

L(G~) :/= Z* if and only if x is not in L(M);  and I G~ I ~ CM " n �9 (Iogn), where 
CM is a constant depending only upon M not x. We leave the remainder of the proof 
to the reader. [ ]  

THEOREM 4.9. There exists a constant c > 0 such that both the equivalence problem 
and the containment problem for the non-self-embedding cfg's require tape at least 
2 cn/(l~ i.o. on any Tm. 

Theorem 4.9 follows from Proposition 4.8 and known space hierarchy results 
(see [13]) by an argument very similar to that of the proof of Theorem 4.5. Therefore, 
it is left to the reader. 

I t  is well known (see [13]) that non-self-embedding cfg's only generate regular 
sets. Moreover, given a non-self-embedding cfg G, an equivalent regular grammar H 
can be effectively obtained. Thus  the equivalence and containment problems for the 
non-self-embedding cfg's are easily seen to be decidable. Analogous to Theorem 2.6(3), 
the following corollary of Proposition 4.8 holds. 

PROPOSITION 4.1 0. There exists a constant c > 0 such that for any fixed unbounded 
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regular set Lo,  {GI G is a non-self-embedding cfg and L(G) 4: L0} requires tape at 
least 2c~/tl~ i.o. on any nondeterministic multitape Tin. 

The  proof is exactly analogous to the proof in Theorem 2.6(3) that RINEQ(L0) 
is CSL-hard  and is left to the reader. 

Another corollary of Theorem 4.5 is the following metatheorera about the com- 
plexity of predicates on the bounded cfl's. 

THEOREM 4.1 1. Let P be any nontrivial predicate on the bounded cfl's such that 

(a) P is true for all bounded regular sets, and 

(b) either .W ---- {L' I L '  = x\L, x c {0, 1}*, P(L] is true} or ~ = {L' ]L' = L/x, 
x ~ {0, 1}*, P(L) is true} is a proper subset of the bounded cfl's. 

Then there exists a constant c > 0 such that any nondeterministic multitape T m  
that recognizes {G I G is a cfg generating a bounded language and P(L(G))  is false} 
requires time at least 2 e~/(l~ i.o. 

Proof. We only prove the theorem for the case when 5r is a proper subset of 
the bounded cfl's. T h e  proof when ~ is a proper subset of the bounded cfl's is similar. 

Let  L be a bounded eft not in .W. Since L is bounded, there exist strings w 1 ,..., we 
in {0, 1} + such that L C Wl* . . . . .  wk*. Let  Z, G~, and G ,  be as in the proofs of 
Proposition 4.4 and Theorem 4.5. Let  $ be a symbol not in 27. Let  p: 27 u {$} ~ {0, 1} + 
be some 1-1 function with the property that for all s in 27 u {$}, I p(s)[ is a constant. 
Let  fi: (Z w {$})* -~  {0, I}* be the homomorphic  extension of p. Let  

r ~  = t ~ ( r ( c ~ ) )  �9 p ( s )  �9 ~ *  . . . . .  ~ *  u ~(L(G.)) �9 p ( S ) .  t .  

I f  L(Gx) = L(G~), then Lx = ~(L(G,))"  p($)" Wl* . . . . .  wk*. Thus  L~ is a regular 
bounded language; and by (a), P(L~) is true. Otherwise let z be in L(G~) --L(Gx).  
By the properties of/~, fi(z) " p($)IL~ = L. Thus  by (b), P(L~) is false. Hence P(L~) 
is true if and only if L(G~) ---- L(G,) .  Finally, given L, G~, and G~,  a cfg Gx' can 
be constructed deterministically in O([ G~ ] + [ G ,  [) time such that L(G~') = L~. 
Clearly L~ is bounded. T h e  remainder of the proof exactly parallels that of Theorem 4.5 
and is left to the reader. [ ]  

Thus,  such predicates as regularity, linearity, inherent ambiguity, and "L(G) is a 
deterministic eft" for the bounded cfl's all require at least exponential t ime on any 
nondeterministic multitape T m .  Moreover the proof of Theorem 4.11 shows that 
these lower bounds hold even for cfg's that are known in advance to generate bounded 
languages. 

A similar theorem holds for the bounded linear cfl's as well. 
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THEOREM 4.12. Let P be any nontrivial predicate on the bounded linear cfl's such that 

(a) P is true for all bounded regular sets, and 

(b) either ~L~ = {L' I L" =- x\L, x ~ {0, 1}*, P(L) is true} or ~ = {L' l L '  =- L/x,  
x ~ {0, 1}*, P(L) is true} is a proper subset of the bounded linear cfl's. 

Then {G ] G is a linear cfg generating a bounded language and P(L(G)) is false} is 
NP-hard. 

Proof. We only sketch the proof for the case when ~ is a proper subset of the 
bounded linear cfl's. 

L e t L  be a bounded linear cfl not in 5r Then  there exist strings w 1 ,..., wz in {0, 1} + 
such tha tL  _C wl* . . . . .  wk*. L e t f b e  a Ds-Bootean form with m clauses and n variables. 
Then  as in the proof of Theorem 2.7(1), a (U, ") regular expression fl can be con- 
structed deterministically in time bounded by a polynomial in I f ]  such that L(f i )C 
{0, 1}" and L(fi) = {0, 1}" if and only if f is a tautology. 

Let  the homomorphism p: {0, 1} -+ {0, 1} be defined by p(0) = 00 and p(l) ~ 01. 
Let 

rtr --  p(r(fl))" 10" wl* . . . . .  w,~* ~) {00, 01}"- 10 "L. 

Then  P(L~) is true if and only if L(t3) = {0, 1} ~, which is true if and only if f is a 
tautology. Clearly, given fl (as constructed in the proof of Theorem 2.7(1)), a linear 
grammar G B can be constructed deterministically in t ime bounded by a polynomial 
in [/8 I such that L(Ge) = L B . Again, clearly L~ is a bounded eft. [ ]  

Finally, we list several other problems which might be exponential in t ime or 
space due to the cfg "squaring" structure. Since this combinatorial structure is 
the essence of nonlinearity for cfg's, we also study the complexity of several of these 
problems when restricted to the linear cfg's. 

1. Structural equivalence of cfg's (for the definition see Definition 5.3 below): 

OPEN PROBLEM 4. IS structural equivalence of cfg's decidable by some 
polynomially space bounded T m  ? 

We show in Section 5 that for linear cfg's, structural equivalence is decidable 
in polynomial space. 

2. Boundedness of cfg's: 

OPEN PROBLEM 5. IS the predicate "L(G) is bounded" for cfg's p-decidable ? 

PROPOSITION 4.13. Boundedness for linear cfg's is decidable by some deterministic 
polynomially time bounded Tin. 
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Proof. Let G be reduced wi thL(G) ~ q~. From [9, Lemma 3.1], L(G) is bounded 
if and only if for each nonterminal A of G, both LA(G ) = {u]~/ ~> uAv} and 
RA(G ) = {v [ fil ~ uAv} are commutative. For linear cfg G and nonterminal A 
of G, cfg's ogq.~ and ~A such that L(~A) = LA(G) and L(~A) = RA(G ) are constructible 
in time polynomial in 1 G 1. Moreover, if G is linear, then so are ~cP A and ~A �9 

The following algorithm tests a cfg G for commutativity. 

Step 1. Reduce G. Let G' be the resulting reduced grammar. 

Step 2. Test i fL(G')  = 4- I fL(G ' )  = 4; thenL(G) is commutative. 

Step 3. Find a string x in L(G'). By Lemma 2.9(1), L(G') is commutative if and 
only if there exists a string w such that L(A) C_ w*. But any such w must have the 
property that x = w ~ for some nonnegative integer n. Find each of the prefixes w 
of x, such that x = w n for some n. For each such w, test whether L(G')  n w* is empty. 

From Lemma 3.1(6) and (3), Steps 1 and 2 are executable in polynomial time. 
For a nonempty linear grammar G, there exists an x in L(G) such that ] x ] ~ [ G [ 
and x can be found in polynomial time. For each w to be tested in Step 3, a deter- 
ministic finite automaton recognizing w* can be constructed in polynomial time. 
Therefore, a ndfa recognizing w* can be found in polynomial time. From Lemma 
3.1(2) and (3), Step 3 is therefore executable in polynomial time. [ ]  

Analogs of Proposition 4.t3 also hold for other classes of "linear-like" cfg's such 
as the metalinear cfg's. However, for arbitrary cfg's G, the length of the shortest 
string x in L(G) is not polynomially bounded in I G ]. 

3. Equivalence of s and LL grammars [20, 26]: 

OPEN PROBLEM 6. Are the equivalence problems for s-grammars or LL(k) grammars 
p-decidable ? 

DEFINITION 4.15. A cfg is an s-grammar (simple grammar) if and only if 

(1) The right side of every production begins with a terminal symbol; and 

(2) if A--~ aot and B ~ aft are distinct productions, where a is a terminal 
symbol, then A ~ B. | 

The  following result is shown in [17]. 

THEOREM 4.16. The equivalence problem for linear s-grammars is p-decidable. 

In each of  Open Problems (4)-(6) the nonlinear structure of  Proposition 4.1 causes 
the known algorithms to be exponential. 
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5. GRAMMATICAL COVERING AND STRUCTURAL EQUIVALENCE 

In Sections 2 and 3 we saw that for all infinite Lo,  RINEQ(L0) and GINEQ(L0) 
are computationally intractable even when decidable. In  this section we show that 
these results carry over to several more practically significant problems about cfg's, 
especially grammatical covering and structural equivalence. We investigate the 
complexity of grammatical covering and structural equivalence for the right-linear, 
linear, and arbitrary cfg's. 

The  main results of this section are summarized in Table I. 

TABLE I 

Problem 

Language Structural 
Class equivalence Covering equivalence 

Right-linear cfg PSPACE-complete PSPACE-complete PSPACE-complete 

Linear cfg Undecidable PSPACE-complete PSPACE-complete 

Arbitrary cfg Undecidable Undecidable Decidable, but 
PSPACE-hard 

DEFINITION 5.1 [10]. Let G 1 = (N1,  S ,  P1,  S~) and G 2 = (Ne, ~', Pe ,  S~) be 
cfg's. Let h be a map from P1 to P~ t3 {A}. Let h be extended to a map from PI* 
to Pz* by defining h(;~) = A and h(~rp) = h(rr) h(p) for all ~r i n / 1 "  and p in P1.  
We say that G 1 left covers G 2 under h if for all w in 2J* 

(1) whenever S 1 ~ w, then $2 =~(~ w; and 

(2) whenever $2 ~L W then there exists a ~r' such that h(rr') = rr and $1 =~L w. 

The notion of right covers is defined analogously except rightmost rather than 
leftmost deviations are considered. | 

Throughout  this section we frequently use the word cover as a generic term 
referring to both kinds of covering. We note the following obvious facts. 

PROPOSITION 5.2. (1) I f  G 1 covers G~, then L(G~) = L(G2). 

(2) I f  G 1 covers G~, then for any x in X*, the number of leftmost derivations 
of  x in G 1 is greater than or equal to the number of  derivations of  x in G~ . 

The notion of covering arose from the fact that compiler writers are frequently 
forced to parse according to a grammar more complex than the one they are actually 
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interested in. A covering map allows them to parse according to one grammar, but  
build a tree or call semantic routines according to another. 

Another notion of similarity of cfg's is provided by 

DEFINITION 5.3. Let G = (N, Z', P, S) be a cfg. Define the parenthesized grammar 
corresponding to G by 

~ ( a )  = (N, X ~ {[,  ]}, P ' ,  S), 

where "["  and "]"  are new symbols and P '  = {A --~ [a] [ A ~ a ~ P}. Two grammars 
GI and G2 are called structurally equivalent if L(~(G1) ) = L(~(G2)). 

PROPOSITION 5.4 [25]. I f  G x and G2 are structurally equivalent, then L(Ga) = L(G~). 

Structural equivalence essentially says that if you examine the sets of trees generated 
by the grammars in question, then these sets of trees are identical if intermediate 
nodes are considered to be unlabeled. The  following result has appeared several 
times in the literature [19, 21, 25]. 

PROPOSITION 5.5. It is decidable whether two arbitrary cfg's are structurally 
equivalent. 

A moment 's  reflection will reveal that these concepts (structural equivalence and 
grammatical covering) are less general than language equivalence. Consider the 
grammars of 

GI:S----~AIB G2:S--~CO[O 

A - - + 0 A I 0  C - - ~ D 0 [ 0  

B - + 0 B I 0 ,  D - + E 0 [ 0  

E - - ~ S 0 [ 0 .  

G 1 generates right-linear trees and G 2 generates left-linear trees so G 1 and G 2 cannot 
be structurally equivalent. Moreover, since G 1 has fewer productions than G~ and 
every production of G 2 is used in some derivation, G 1 cannot cover G 2 . Finally, 
note that G 1 is ambiguous but G 2 is not; hence G 2 cannot cover G 1 . Thus, neither 
of the concepts of covering and structural equivalence applies to G 1 and G 2 even 
though L( G1) = L( G2) = 0 +. 

In  this section, we reduce several problems to the equivalence problem for right- 
linear grammars. Let  

EQUIV-(right-linear) 
= {(G1, G2) I G1 and G 2 are equivalent right-linear grammars}. 

INEQUIV-(right-l inear)  
= {(GI, Gz) I G1 and G~ are inequivalent right-linear grammars}. 
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We use the following lemma. 

LEMMA 5.6. EQUIV-(right- l inear)  and INEQUIV-(r ight - l inear)  are both in 
P S P A C E .  

Proof. Inequivalence of two right-linear grammars can be verified (in a manner 
similar to the verification procedure in [24] for inequivalence of ndfa's) by a non- 
deterministic lba that guesses a string which is in one language, but not in the other. 
Therefore,  f rom Lemma  1.8(1), INEQUIV-(r ight- l inear)  is in PSPACE. From 
Lemma  1.8(2), EQUIV-(right-linear) is also in PSPACE. | 

We now consider the complexity of problems involving covering. We first establish 
several upper  bounds, using the equivalence test for linear s-grammars (Theorem 4.16) 
as a chief tool. 

LEMMA 5.7. {(Ga, G2, h) ] G 1 and G 2 are right-linear cfg's and G 1 covers G 2 
under h} is an element of  P S P A C E .  

Proof. Let GI ~- (Nx,  27, P1,  $1) and Gz ---- (N~, 27, Pz ,  Sz). We need efficient 
tests for 

(*) For all ~ (S 1 ~ w implies Sz ~1~(~) w), 

and 

(**) For all ~r ($2 ~ w  implies there exists zr' such that $1 : ~ ' w  and 
h(~') = ~). 

First we will show how (*) may be reduced to linear s-grammar equivalence. 
Define G'  = (N a , P ,  u 27, P ' ,  S0,  where 

P'  = {A --+ p B w  rev [ p ~ Pa and p = A --+ wB}  

U (A  --+ pw rev ] p ~ PI and p = A --+ w}. 

Thus,  L(G')  -~ {~w rev [ S 1 = "  w}. 
Next define G" = (N1 x (N2 W {A}), Pa u 27, P", (Sa,  $2)), where 

P" == {(A, B)  -,- p(C,  D) w rev [ p e P1,  there exists y such that 
p -~ A --~ y C  and h(p) == B --+ wD} 

u {(A, B) --,. p(C,  B)  ] p ~ Pa ,  there exists y such that 
p ~- A -+ y C  and h(p)  = A} 

W {(A, B) --~ p(C, A) w rev ] p e P , ,  there exists y such that 
p ~- A -+ y C  and h(p) -~ B --~ w} 

w {(./4, A) -+ p(C,  A) [ p e P1,  there exists y such that 
p ~ A --~ y C  and h(p)  : A} 
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Thus,  

k) {(A, B) ~ pw rev ] p �9 P l ,  there exists y such that  

p = A - - + y a n d h ( p )  = B ~ w }  

t.2 {(A, A) ~ p ] p ~ P1,  there exists y such that 
p -.: A ~ y  and h(p) = h}. 

hO,) ,~ 
L(G") {~o re~ [ S 2 =~ w and there exists y such that S~ =~ y}. 

Observe that G'  and G" are linear s-grammars and that 

G'! :-I G"[ = O(n2), where n = i G1 I + G,,I + [h l .  

We claim that 

L(c , )  = L(a")  if and only if (*). 

Proof of claim. Only if: Let  S 1 =;Tr W be a derivation of Gt �9 Then  7vto rev is in 
L(G') and hence ww rev is in L(G"). By the definition of G" this implies S 2 =~ht~ w. 

If: L(G') z/_ L(G") if and only if there exists ~r such that S 1 ~-~"w but  not 
So ~ . l ,~  w, which would violate (*). 

Hence, (• is polynomially reducible to linear s-grammar equivalence, which in 
turn by Theorem 4.16 is in P.  Thus,  (*) can be tested in PSPACE.  Second, we will 
show how (**) can be reduced to containment of right-linear grammars. 

Define G - -  (N1, /22,  P,  S~), where 

P - {A - ~. pB  I there exists y such that A --~ y B  is in *01 and p == h(A -,. yB)} 

u {A ~ p ] there exists y such that  A --+ y is in Pa and p -- h(A -,- y)}. 

Clearly L(G) := {h(rr) I there exists w such that S 1 ~ w}. 
Define G == (:\r2 , P=, P, S=), where 

P --, {A --* pB  [ p ~ P2 and there exists y such that p = A --~ yB}  

w {,q --~ p ; p e P2 and there exists y such that p - -  A --~ y}. 

Clearly L ( ~ )  - -  {rr I there exists w such that S 2 -->~ w}. 
The  reader may easily verify that  (7 and (~ are right-l inear and that '~ O ! + [ (~ I = 

O(I G11 !- i G,, :). 
We claim that oncc (*) is established, 

L(G) D L ( ~ )  if and only if (**). 

57I/r2/2-9 
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Proof of claim. Only if: Suppose S 2 ~ =  w. Then  rr is in L((7) and thus 7r is in 
L((7). Hence by definition of G, there exist ~r', y such that h(zr') = ~r and $1 ~ " '  y. 
But by (*), y must be w. 

If: Suppose ~r is in L(G). By definition of ~ ,  there exists w such that S 2 =~= w. 
By (**), there exists zr' such that h(rr') - -  ~r and S z =~" w. By definition of ~ ,  h(zr') 
is in L((7') and so zr is in L(G). 

Thus  (**) is polynomially reducible to right-linear grammar  containment. L ( G ) _  
L (~ )  if and only if L(G) t.) L( G) = L( G). A right-linear grammar  generating 
L((7) u L (~ )  can be found in polynomial time. From Lemma  5.6, the equivalence 
problem can be solved in polynomial space. Thus  (**) can be tested in polynomial 
space. | 

A more detailed argument is used in [17] to show the stronger result: 

LEMMA 5.8. {(G1, G 2 , h) l G 1 and Gz are linear cfg's and G z covers G 2 under h} 
is in P S P A C E .  

Since any map between the sets of productions of two grammars can be expressed 
in an amount of space proportional to the sizes of the grammars,  we have 

COROLLARY 5.9. {(G1, Gz) i G 1 and G~ are linear cfg's and G 1 covers Gz under 
some map h} is in P S P A C E .  

Proof. We simply test all possible maps from Pz to P2 ~3 {A} using the polynomially 
space-bounded algorithm of L e m m a  5.8 as a "subroutine."  | 

In the next lemma, we provide a lower bound on the complexity of covering 
problems. 

LEMMA 5.10. {(G1, G~, h) I G1 and G~ are type-3 grammars over {0, 1} and G 1 
covers G~ under h} is PSPACE-hard.  

Proof. Let G = (N, {0, 1}, P, $1) be an arbitrary type-3 grammar.  Let  G = 
({S}, {0, 1}, P, S) with 

P = { S - . O S ,  S--~ 1S, S - -*O,S - - , -  1}. 

Let  h: P ~ ,0 be defined by 

h(A -+ cx) = S --+ OS if a ~ (0}" N, 

= S - - - ~ I S  if ~xe{1} �9 N, 

= S- -+O if c~{O}, 

= S - + I  if a e  {1}. 
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We claim that G covers G under h if and only if L(G) = {0, 1}*. There are two 
distinct cases to consider. 

Case 1. L(G) ~ {0, 1}*. Since L(G) = {0, 1}*, Proposition 5.2 guarantees that 
no covering map exists. 

Case 2. L(G) = {0, 1}*. By induction on the number of steps in a derivation, 

$1 ~ wA for some nonterminal A implies S h~) wS. 

Thus,  

(*) S 1 :L w implies S h~) W. 

Next, suppose S ~ w. Since L(G) = L(G), there exists zr' such that S x = ~ '  w. 
By (*), S ~h~'~ w. Since G' is unambiguous h(zr') = zr and we have 

7r ,r t 
(**) S ~ w implies there exists ~r' such that h(rr') = ~r and S 1 ~ w. 

Thus,  G covers G under h. 
Since I G ! -~ I G j = O([ G l) and the equivalence to {0, 1}* problem is PSPACE- 

hard (Proposition 2.4 and Lemma 1.10), the covering problem is also PSPACE-hard.  
Next, we show that freedom to choose the map h in any possible way does not 

make this problem easier. 

COROLLARY 5.11. {G1, G2) 1 G1 and G 2 are type-3 grammars and G 1 covers G2} 
is PSPACE-hard. 

Proof. In  the proof of the previous lemma we saw that if L(G) ~= L(G) then 
no covering map exists. On the other hand, if L(G) = {0, 1}* = L(G), then there 
exists a covering map, namely, h of the proof of Lemma 5.10. Thus, a cover exists 
if and only i lL(G) = {0, 1}*. 

These results can be combined to show that all of our bounds are tight. 

THEOREM 5.12. Let Offl(T) = {(G1, G2, h) ] G1, G2 e T and G 1 covers G~ under h}. 
Let S~z(T ) = {(G1, G2) 1 G1, G2 ~ T and G 1 covers G2}. Then SPI(T ) and SP~(T) are 
PSPACE-complete for 

(a) T = {G I G is type-3}, 

(b) T = { G  1 G is right-linear}, 

(c) T = {G I G is linear}. 

Proof. Lemma 5.10 and Corollary 5.11 establish lower bounds for 5al and 6a2, 
respectively. Lemma 5.8 and Corollary 5.9 provide the necessary upper bounds. I 
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Let us next consider the general case of determining whether an arbitrary cfg 
covers another arbitrary Cfg. Using a technique reminiscent of that employed in 
the proof of Lemma  5.10, we show Theorem 5.13. The  proof of Theorem 5.13 assumes 
that "cover"  means left cover; an analogous proof holds for right cover. 

THEOREM 5.13. Let  5/' = { ( G 1 ,  G 2 , h )  I G 1 and G 2 are arbitrary cfg's over 
{0, 1} and G 1 covers Ge under h}. Then 5 ~ is not recursively enumerable. 

Proof. Let G be any cfg. We will construct G' ,  G", and h such that G'  covers G" 
under h if and only if L(G)  = {0, 1}*. Since this latter problem is well known to be 
undecidable and the complement of 5 P is clearly recursively enumerable we can 
conclude that 5 ~ is not recursively enumerable. 

An arbitrary cfg can be converted in polynomial t ime into an equivalent cfg G = 
(N, {0, 1}, P, S), for which the right side of each production is in (0 + 1 + A) N*.  

Define G'  = (N u {S', A}, {0, 1}, P ' ,  S'), where S '  and A are new characters and 
P' = Po • Px U P2 U P~ ~3 P4, with 

Po = {X ~ 0~ I X --* 0a ~ P}, 

P1 = {X---~ 1~ I X- -~  I ~ e P } ,  

P2 = { X - +  otl X - -+  a ~  P and c~ ~ N*}, 

P3 - -  {A ---~ 1}, 

P~ = {S'-- ,-  SA} .  

(Note that P = Po w P1 u P~). 
Define G" = ({S"}, {0, 1}, P", S"), where P" = {S" ~ OS", S" --+ 1S", S" --+ 1}. 
Finally, define h: P '  --*- P" ~ {A} by 

h(p) = S" --+ OS" if p c Po ,  

= S"--+ IS"  if pEP1, 
= S" --+ 1 if p E P 3 ,  

= A  if p ~ P~ w P 4 . 

We claim that G'  covers G" under h if and only if L(G)  = {0, 1}*. 

Case 1. L(G)  :/= {0, 1}*. Then  L(G')  = L (G)"  {1} :/- {0, 1}*- {1} = L(G"). Thus  
by Proposition 5.2, G' cannot cover G". 

Case 2. L(G)  = {0, 1}*. Then  L(G')  = L(G") = {0, 1}* -{1}. It  is readily seen 
by induction on the number  of steps in a leftmost derivation that 

S p ~" w A  implies S" h(,~)=> wS"  
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This in turn yields 

(*) S '  ~ w implies S" h~) w. 

Thus every derivation of G' maps onto a derivation of G". We must next show that 
every derivation in G" is mapped onto by some derivation in G'. 

Suppose S" ~ w for some 7r. Since L(G') = L(G") there exists a derivation 7r' 
of w in G'. Moreover, by (*), hOr' ) is a derivation of w in G". Finally, since G" is 
unambiguous, we conclude that h(Tr') = 7r. We thus conclude 

(**) S , ,~  w implies there exists 7r' such that h(Tr') 7r and S'  ~" =:5- W. 

Thus G' covers G" under h. | 

Since the map h described above works as a cover if any map does, we have the 
following 

COROLLARY 5.14. The set 5 f  = {(Gx, G2) [ G x and G 2 are arbitrary cfg's over 
{0, 1} and G x covers G~} is not recursively enumerable. 

In  summary then, the covering problem is PSPACE-complete for type-3, right- 
linear, and linear grammars, but is undecidable for arbitrary cfg's. 

Next we consider structural equivalence. 
We first dispose of a degenerate case, namely, structural equivalence of type-3 

grammars. Recall that every production of such a grammar is either of the form 
A --~ bC or A --~ b. Thus  the tree structure corresponding to any particular string 
is preordained by the fact that the grammar is type-3 and completely independent 
of the structure of the grammar itself! We thus are led to 

LEMMA 5.15. Two type-3 grammars are structurally equivalent i f  and only i f  their 
generated languages are equivalent. 

Proof. The "only if" portion is simply a restatement of Proposition 5.4. To 
establish the " i f"  portion, let G 1 and G2 be the relevant grammars and ~(G1) and 
~(G2) their parenthesis grammars. Observe that a x --' a,~ is in L(G,) if and only if 
[ax[a2[a3 "" [a~] n is in L(~(Gi)) .  Thus L(Ga) = L(G2) implies L(~(Ga)) = L(~(G2)), 
which is simply the definition of structural equivalence. II 

An immediate consequence of the preceding lemma is 

THEOREM 5.16. Let ~ = {(Gx, G2) I G 1 and G 2 are structurally inequivalent 
type-3 grammars over {0}}. Let 5r 2 = {(G1, G2) [ G1 and G~ are structurally inequivalent 
type-3 grammars over {0, 1}}. Then 
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(1) ~ is NP-complete. 

(2) 5g~ is PSPACE-complete.  

Proof. (1) By Lemma 5.15, 5O1 = {(G1, G2) I G1 and G~ are type-3 grammars 
over {0} and L(G1) 4= L(Gz)}. From Lemma 3.1(1) a regular expression can be con- 
verted in polynomial time into a right-linear cfg generating the same language. 
This right-linear grammar can be converted in polynomial time into an equivalent 
type-3 grammar. Therefore RINEQ-(over 0) is polynomially reducible to 5oa. Since 
RINEQ-(over 0) is NP-hard (from Theorem 2.11(3)), ~ is also NP-hard. In [30] 
it is shown that the inequivalence problem for ndfa's over {0} is solvable in non- 
deterministic polynomial time. Since type-3 grammars are clearly transformable to 
equivalent ndfa's in polynomial time, we conclude that SPa is in NP. 

(2) The  proof of (2) is similar, using Proposition 2.3 to establish that ~ is 
PSPACE-hard. From Lemmas 5.15 and 5.6, 5O~ is a member of PSPACE. | 

Next let us consider the more interesting cases, namely, right-linear, linear, and 
arbitrary context-free grammar structural equivalence. It turns out that the size 
of the terminal alphabet is irrelevant to the complexity of these problems because 
arbitrary symbols can be encoded by subtrees using a single terminal symbol. 

LEMMA 5.17. Let 5O = {(Ga, G2) I G  a and G 2 are structurally equivalent right- 
linear grammars over {0}}. Then 5 ~ is PSPACE-hard .  

Proof. Let  

~a- = {G I G is a type-3 grammar and L(G) = {1, 2}+}. 

We will show that Y is polynomially reducible to 50. Let  G = (N, {1, 2}, P, S) be 
an arbitrary type-3 grammar. Define G'  = (N, {0}, P ' ,  S), where 

P'  = {A --* OB I A --* 1B ~ P} 

U {A --+ OOB ] A --+ 2B ~ P}  

u { A - +  0 I A ~ 1 ~P}  

w ( A --+ OO r A ---, 2 e P } .  

Define G" = ({S"}, {0}, P", S"), where 

P" = {S" --~ 0S", S" --+ 00S", S" --* 0, S" ~ 00}. 

Observe that ala ~ -" a~ is in L(G) if and only if [Oa~[Oa~["'[Oa"] n iS in L(~(G') ) .  
Moreover, ala2 "" an is in {1, 2} + if and only if [0a~[0a2[ "''[0~-]" is in L(~(G")) .  This 
means that L(G) = {1, 2} + if and only if L(~(G' ) )  = L(~(G")) ,  which is true if and 
only if G' and G" are structurally equivalent. Since ] G']  + ] G" ] = O(1 G [) and 
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the translation is quite obviously executable in polynomial time, we conclude that 
3 -  is polynomially reducible to 5:. But 3"  is PSPACE-hard, by Proposition 2.4, 
Lemma 1.10(1), and Lemma 1.8(2). Thus  5:  is also PSPACE-hard. | 

LEMMA 5.18. Let 5:  = {(G1, G2) I G x and G 2 are structurally equivalent linear 
cfg's}. Then ~9 ~ is in P S P A C E .  

Proof. We can reduce the membership problem for 5:  to the equivalence problem 
for right-linear grammars in polynomial time. Let  G~ = (N~, 27, P i ,  Si) for i ---- 1, 2 
be the relevant input grammars. Define G~' = (N~, 27 w {$, r Pi', Si), in which 

P (  = {A --+ $uCvB k A ~ uBv ~ Pi} t3 {A --+ $u ] A --+ u ~ Pi}. 

Observe that 

Moreover, 

if and only if 

L(P,) C_ ($27*r -{$}. ~*. 

[ul[u~['"[u,[v] wn] "'" wz] Wl] cL(~(G~)) 

Sulr162 "'" $u~r ~ L( Gi'). 

It immediately follows that L(GI'  ) = L(G2' ) if and only if L(~(G1) ) = L(P(Ge)),  
which is true if and only if G 1 and Ge are structurally equivalent. 

Since I GI' ] + [ G2' ] = O([ G x [ + [ G 2 t) and the translation is clearly polynomial 
in time, we can apply Lemma 5.6 to see that ..~ is in PSPACE. | 

We combine the previous two lemmas, yielding 

THEOREM 5.19. The.following sets are PSPACE-complete: 

(a) {(G1, G2) [ G 1 and G~ are structurally equivalent type-3 grammars over S 
with 1271 ) 2 } ,  

(b) {(G a , G~) ] G 1 and G~ are structurally equivalent right-linear grammars over Z 
with ] 271 ~ 1}, 

(c) {(G1, G2) ] G 1 and G z are structurally equivalent linear cfg's over Z with 

127L >~ 1}. 

Proof. The  lower bounds on the complexity of these sets are provided by Theorem 
5.16 (and Lemma 1.8), Lemma 5.17, and Lemma 5.17, respectively. The  upper 
bound in each case is provided by Lemma 5.18. | 
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We have not been able to find a polynomially space-bounded algorithm for structural 
equivalence of arbitrary cfg's. The  problem is clearly PSPACE-hard  and is known 
to be decidable (Proposition 5.5); but  an exact characterization of the complexity 
of this problem remains open. Related results appear in [33]. We  conjecture, however, 
that no such polynomial ly space-bounded algorithm exists. 

6. CONCLUSION 

We have seen that the complexity of a variety of decidable questions about regular 
expressions and context-free grammars can be understood in terms of very simple 
underlying properties.  A natural combinatorial  structure for the context-free grammars 
was presented, which complicates several related problems including structural  
equivalence of context-free grammars and LL-equivalence.  Several problems were 
presented whose t ime and space complexity is provably exponential due to this 
structure. As a corollary we showed that many predicates on the bounded context- 
free languages require exponential  time, even on nondcterminist ic machines. 
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