11 research outputs found

    The Cook-Reckhow definition

    Full text link
    The Cook-Reckhow 1979 paper defined the area of research we now call Proof Complexity. There were earlier papers which contributed to the subject as we understand it today, the most significant being Tseitin's 1968 paper, but none of them introduced general notions that would allow to make an explicit and universal link between lengths-of-proofs problems and computational complexity theory. In this note we shall highlight three particular definitions from the paper: of proof systems, p-simulations and the pigeonhole principle formula, and discuss their role in defining the field. We will also mention some related developments and open problems

    New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. Systems of linear logic and, later, deep inference are founded upon two particular linear inferences, switch : x ? (y ? z) ? (x ? y) ? z, and medial : (w ? x) ? (y ? z) ? (w ? y) ? (x ? z). It is well-known that these two are not enough to derive all linear inferences (even modulo all valid linear equations), but beyond this little more is known about the structure of linear inferences in general. In particular despite recurring attention in the literature, the smallest linear inference not derivable under switch and medial ("switch-medial-independent") was not previously known. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find two "minimal" 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. One of these new inferences derives some previously found independent linear inferences. The other exhibits structure seemingly beyond the scope of previous approaches we are aware of; in particular, its existence contradicts a conjecture of Das and Strassburger

    Proof complexity of positive branching programs

    Get PDF
    We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, just like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL, rather than P or NC1, respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT. Our system eLNDT+ is obtained by restricting their systems to a positive syntax, similarly to how the 'monotone sequent calculus' MLK is obtained from the usual sequent calculus LK by restricting to negation-free formulas. Our main result is that eLNDT+ polynomially simulates eLNDT over positive sequents. Our proof method is inspired by a similar result for MLK by Atserias, Galesi and Pudl\'ak, that was recently improved to a bona fide polynomial simulation via works of Je\v{r}\'abek and Buss, Kabanets, Kolokolova and Kouck\'y. Along the way we formalise several properties of counting functions within eLNDT+ by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.Comment: 31 pages, 5 figure

    On linear rewriting systems for Boolean logic and some applications to proof theory

    Get PDF
    Linear rules have played an increasing role in structural proof theory in recent years. It has been observed that the set of all sound linear inference rules in Boolean logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and right-)linear rewrite rule. In this paper we study properties of systems consisting only of linear inferences. Our main result is that the length of any 'nontrivial' derivation in such a system is bound by a polynomial. As a consequence there is no polynomial-time decidable sound and complete system of linear inferences, unless coNP=NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access some required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for Boolean logic.Comment: 27 pages, 3 figures, special issue of RTA 201

    Enumerating Independent Linear Inferences

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.Comment: 33 pages, 3 figure

    A System of Interaction and Structure III: The Complexity of BV and Pomset Logic

    Get PDF
    Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is ÎŁ2p\Sigma_2^p-complete. We also make some observations with respect to possible sequent systems for the two logics

    Enumerating Independent Linear Inferences

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'
    corecore