New Minimal Linear Inferences in Boolean Logic
Independent of Switch and Medial

Anupam Das 94
University of Birmingham, UK

Alex A. Rice @&
University of Cambridge, UK

—— Abstract

A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most

once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid
implication. Linear inferences have played a significant role in structural proof theory, in particular
in models of substructural logics and in normalisation arguments for deep inference proof systems.

Systems of linear logic and, later, deep inference are founded upon two particular linear inferences,
switch : xA(yVz) = (xAy)Vz, and medial : (wAz)V (yAz) = (wVy)A(zVz). It is well-known
that these two are not enough to derive all linear inferences (even modulo all valid linear equations),
but beyond this little more is known about the structure of linear inferences in general. In particular
despite recurring attention in the literature, the smallest linear inference not derivable under switch
and medial (“switch-medial-independent”) was not previously known.

In this work we leverage recently developed graphical representations of linear formulae to
build an implementation that is capable of more efficiently searching for switch-medial-independent
inferences. We use it to find two “minimal” 8-variable independent inferences and also prove that no
smaller ones exist; in contrast, a previous approach based directly on formulae reached computational
limits already at 7 variables. One of these new inferences derives some previously found independent
linear inferences. The other exhibits structure seemingly beyond the scope of previous approaches
we are aware of; in particular, its existence contradicts a conjecture of Das and Strassburger.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting; Theory
of computation — Proof theory; Theory of computation — Linear logic

Keywords and phrases rewriting, linear inference, proof theory, linear logic, implementation
Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.14

Supplementary Material An associated implementation can be found here:
Software (Source Code): https://github.com/alexarice/lin_inf [25]
archived at swh:1:dir:47d6487bfda3d3848d7289f3b5cfael1824e2ae78

Funding This work was supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants
in Proofs, project reference MR/S035540/1. Alex Rice acknowledges funding from the Royal Society.

Acknowledgements The authors would like to thank Lutz Strassburger, Ross Horne and Matteo
Acclavio for several interesting discussions surrounding this work. We are also grateful to the

anonymous reviewers for their valuable feedback and suggestions.

1 Introduction

A linear inference is a valid implication ¢ — ¥ of Boolean logic, where ¢ and 1 are linear,
i.e. each variable occurs at most once in each of ¢ and . Such implications have played a
crucial role in many areas of structural proof theory. For instance the inference switch,

s:axA(yVvz) = (xAy)Vz

governs the logical behaviour of the multiplicative connectives % and ® of linear logic [16],
and similarly the inference medial,

© Anupam Das and Alex A. Rice;

oY licensed under Creative Commons License CC-BY 4.0
6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 14; pp. 14:1-14:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
https://anupamdas.com/
https://orcid.org/0000-0002-0142-3676
mailto:alex.rice@cl.cam.ac.uk
https://alexarice.github.io/
https://orcid.org/0000-0002-2698-5122
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://github.com/alexarice/lin_inf
https://archive.softwareheritage.org/swh:1:dir:47d6487bfda3d3848d7289f3b5cfae1824e2ae78;origin=https://github.com/alexarice/lin_inf;visit=swh:1:snp:023c1fef567616b8fbc114fb02790dce5c7300cd;anchor=swh:1:rev:b3f6ba34f5597735b3130be9c4f29a5bb9684455
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

m: (wAz)V(yAz) = (wVy)A(xVz)

together with the structural rules weakening and contraction, governs the logical behaviour
of the additive connectives @ and & [26, 27]. Both of these inferences are fundamental to
deep inference proof theory, in particular allowing weakening and contraction to be reduced
to atomic form [6, 5], thereby admitting elegant “geometric” proof normalisation procedures
based on atomic flows [18, 19]. One particular feature of these normalisation procedures is
that they are robust under the addition of further linear inferences to the system, thanks to
the atomisation of structural steps.

On the other hand the set of all linear inferences L plays an essential role in certain
models of linear logic and related substructural logics. In particular, the multiplicative
fragment of Blass’ game semantics model of linear logic validates just the linear inferences
(there called “binary tautologies”) [3], and this coincides too with the multiplicative fragment
of Japaridze’s computability logic, cf., e.g., [20]. From a complexity theoretic point of view,
the set L is sufficiently rich to encode all of Boolean logic: it is coNP-complete [30, 15].

It was recently shown by one of the authors, together with Strassburger, that, despite its
significance, L admits no feasible! axiomatisation by linear inferences unless coNP = NP
[14, 15], resolving a long-standing open problem of Blass and Japaridze for their respective
logics (see, e.g., [21]). From a Boolean algebra point of view, this means that the class
of linear Boolean inequalities has no feasible basis (unless coNP = NP). From a proof
theoretic point of view this means that any propositional proof system (in the Cook-Reckhow
sense [8, 9], see also [22]) must necessarily admit some “structural” behaviour, even when
restricted to proving only linear inferences (unless coNP = NP).

An immediate consequence of this result is that s and m above do not suffice to generate
all linear inferences (unless coNP = NP), even modulo all valid linear equations.? In fact,
this was known before the aforementioned result, due to the identification of an explicit 36
variable inference in [30].3 Already in that work the question was posed whether such an
inference was minimal, and since then the identification of a minimal {s, m}-independent
linear inference has been a recurring theme in the literature of this area.

It has been verified in [11] that a minimal {s, m}-independent linear inference must be
“non-trivial”, as long as we admit all true linear equations. Intuitively, “non-triviality” rules
out pathological inferences such as t Ay - zVyorzA(yVz) = xV (yAz). For these
inferences the variable, say, y is, in a sense, redundant; it turns out that they may be
derived in {s, m}, modulo linear equations, from a smaller non-trivial “core”. We recall these
arguments in Section 2.

Furthermore [11] identified a 10 variable linear inference that is not derivable by switch
and medial (even under linear equations), which Strassburger conjectured was minimal
[29]. Around the same time Sipraga attempted a computational approach, searching for
independent linear inferences by brute force [31]. However, computational limits were reached
already at 7 variables. In particular, every linear inference of up to 6 variables is already
derivable by switch and medial, modulo linear equations; due to the aforementioned 10
variable inference, any minimal independent linear inference must have size 7,8,9, or 10.

By “feasible”, in this work, we always mean polynomial-time computable. This is a natural condition
arising from proof theory [8, 9], and is also required for the result to be meaningful: it prevents us just
taking the entire set L as an axiomatisation.

The valid linear equations are just associativity, commutativity, and unit laws, cf. [14, 15].
Strassburger refers to the inference as a “balanced tautology”, but like the “binary tautologies” of Blass
and Japaridze, these are equivalent to linear inferences. In particular we recast Strassburger’s example
as a bona fide linear inference in Section 3.1.

A. Das and A. A. Rice

Since 2013 there have been significant advances in the area, in particular through the
proliferation of graph-theoretic tools. Indeed, the interplay between formulae and graphs was
heavily exploited for the aforementioned result of [14, 15]. Since then, multiple works have
emerged in the world of linear proof theory that treat these graphs as “first class citizens”,
comprising a now active area of research [23, 2, 1, 7].

Contribution

In this work we revisit the question of minimal {s, m}-independent linear inferences by
exploiting the aforementioned recent graph theoretic techniques. Such an approach vastly
reduces the computational resources necessary and, in particular, we are able to provide a
conclusive result: the smallest {s, m}-independent linear inference has size 8. In fact there

are two minimal such ones:*

(zVwAw)A((@Az)V((yVy)AZ))
= (A@VY)V(wVy)A((w Az")Vv2)

(1)

(wAw) V(@A) A(yAY)V(2A2))
= (wAy)V({(@V @@ AZ)A(@ ANY)V2))

(2)

We dedicate some discussion to each of these separately in Section 3.2, and include a manual
verification of their soundness and {s, m}-independence in Appendix A, as a sanity check.

Our main contribution is an implementation that checks inference for {s, m}-derivability,
which was able to confirm that all 7 variable linear inference are derivable from switch and
medial. In fact we found (1) independently of the implementation presented in this paper.®
Ultimately, we improved the implementation to run on inferences of size 8 too, and our
inference (1) was duly found, as well as (2) above and its dual. One highlight of this find is
that it exhibits a peculiar structural property that refutes Conjecture 7.9 from [15], as we
explain in Section 3.2.2.

Our implementation [25] is split into a library and an ezecutable, where the executable
implements our search algorithm described in Section 5.2, and the library contains foundations
for working with linear inferences using the graph theoretic techniques presented in Section 4.
These are written in Rust and designed to be relatively fast while maintaining readability.
Our intention is that this could form a reusable base for future investigations in the area,
both for linear formulae and for the recent linear graph theoretic settings of [23, 2, 1, 7].

2 Preliminaries

Throughout this paper we shall work with a countably infinite set of variables, written
x,y, 2z etc. A linear formula on a (finite) set of variables V is defined recursively as follows:
T and L are linear formulae on &, the empty set of variables (called units or constants).
x and —x are linear formulae on {x}, for each variable 2.
If ¢ is a linear formula on V; and 9 is a linear formula on Vs, with V; NV, = &, then
p V1 and @ A ¢ are linear formulae on V; U Vs.

4 Minimal with respect to inter-derivability; unique up to associativity, commutativity, renaming of
variables and De Morgan duality.

5 These two developments were respectively communicated via blog posts [24] and [13].

6 Note that the restriction of negation to only variables does not compromise expressivity, since the De
Morgan laws preserve linearity on a set of variables.

14:3

FSCD 2021

14:4

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

A linear formula that does not contain T or L is constant-free. A linear formula with no
negated variables (i.e. formulas of form —z) is negation-free. Later in the paper, we will be
able to restrict our search to inferences between constant-free negation-free formulae.

In what follows, we shall omit explicit consideration of variable sets, assuming that they
are disjoint whenever required by the notation being used.

A relation ~ on linear formulae is closed under contexts if for all ¢, 1, x, we have:

o~ = pAX~YAX e~ = eV X ~Y VX
o~ = XA~ XAY o~ = xVe~x VY

An equivalence relation (on linear formulae) that is closed under contexts is called a (linear)
congruence.

» Definition 1 (Linear equations). Let ~, be the smallest congruence satisfying,

OV ~ac PV @A AX) ~ac (P AY) A X
PAY ~ac Y N V(P VX) ~ac (P VY) VX

~y 1s the smallest congruence satisfying:

AT~ oV L~y TAp~yp LV~
AL~y L VT~ T LA~y L TV~ T

~acu 18 the smallest congruence containing both ~,c and ~,.

Note that we can have ¢ ~, 1 even when ¢ and v have different sets of variables. Moreover,
~, generates a unique normal form of linear formulae by maximally eliminating constants:

» Proposition 2 (Folklore, e.g. [10]). Every formula is ~,-equivalent to a unique constant-free
formula, or is equivalent to L or T.

» Remark 3 (On logical equivalence). Clearly, if ¢ ~,c, 9 then ¢ and 1) are logically equivalent.
In fact, for linear formulae, we also have a converse: two linear formulae ¢ and v are logically
equivalent if and only if ¢ ~,c, t [14, 15]. This property follows from Proposition 2 above,
the results of Section 2.2, and the graphical representation of linear formulae and their
semantics in Section 4.

2.1 Linear inferences

A linear inference is just a valid implication ¢ — v (with respect to usual Boolean
semantics) where ¢ and v are linear formulae. The left-hand side (LHS) and right-hand
side (RHS) of a linear inference, generally speaking, need not be linear formulae on the
same variables. Nonetheless we shall occasionally refer to linear inferences “on V” or “on n
variables”, assuming that the LHS and RHS are both linear formulae on some fixed V with
V| = n.

There are two linear inferences we shall particularly focus on, due to their prevalence in
structural proof theory. Switch is the following inference on 3 variables,

s:zA(yVz)—=(xAy)Vz (4)
and medial is the following inference on 4 variables:

m:(wAz)V(yAz)— (wVy A(xV2) (5)

A. Das and A. A. Rice

We may compose switch and medial (and more generally an arbitrary set of linear
inferences) to form new linear inferences by construing them as term rewriting rules. More
generally, we will consider rewriting derivations modulo the equivalence relations ~,. and
~,cu We introduced earlier. In the latter case, as previously mentioned, the underlying set of
variables may change during a derivation, though Proposition 2 will later allow us to work
with some fixed set of variables throughout {s, m} derivations.

» Definition 4 (Rewriting). We write —s and —, for the term rewrite systems generated
by (4) and (5) respectively. Le. —s and —my are the smallest relations satisfying (4) and
(5), respectively, closed under substitution and contexts. Write @ ~»m ¥ if there are @', s.t.
© ~ac @ —m Y ~ac ¥, and @ ~my Y for the same with ~,c replaced by ~aey. Define ~s,
~sus ~ms, ~msu Stmilarly (in particular, ~>ms = ~>m U~).

We write ~>ms for the reflexive transitive closure of ~>ms, and say @ — 1 is {s,m}-
derivable if ¢ Soms ¥. We may similarly write % g (or ¢ om V), saying ¢ — ¢ is
{s}-derivable (resp., {m}-derivable), and similarly for other sets of linear inferences.

Finally, we also write «:msu for the reflexive transitive closure of ~>msy, and say that
© — 1 is {s, m}-derivable with units if ¢ 5 msu Y. Similarly for s, ~omu and other sets
of linear inferences.

. . . * . . .
Clearly, s and m are wvalid, so any derivation ¢ ~-nyg, 1 comprises a linear inference.

» Example 5 (“Mix"). Units can help us derive even constant-free linear inferences. For
instance, mix: ¢ A) — ¢ V 1) is {s, m}-derivable with units:

(p/\w’vacu <P/\(J—V1/)) —s (WAJ—)\/w’Vacu ¢A(Tv@) —’s (w/\T)\/@Nacu (,0\/1#
Note that mix is not derivable without using instances of ~,.

» Example 6 (Weakening and duality). By setting ¢ = T and ¢ = L in Example 5, we have:
Lo TAL ey TV L mpe, T

Using this we may {s, m}-derive weakening, ¢ — ¢ V x, with units as follows:
¢ ~acu ©V (LAX) Smsu @V (T AX) ~acu ¢V X

Notice that v*-rmsu is closed under De Morgan duality: If ¢ M*_}msu x and ¢ and y are obtained
from ¢ and x, respectively, by flipping each V to a A and vice versa, then y 5 msu . This
follows by direct inspection of s, m and each clause of ~,,; indeed the same property holds
for ~ s by the same reasoning. As a result, we also have that coweakening, PAX =, is
{s, m}-derivable with units.

We are now able to state the main theorem of this paper:

» Theorem 7. Suppose ¢ is a linear formula over Vi and v is a linear formula over Vo and
r: o — 1 is a linear inference. Then if [V1 N Vo < 7 we have that ¢ ~»mey 1.

Furthermore, there is a valid linear inference o — 1 on 8 variables with ¢ Fomsy ¥, so T
is maximal with the property above.

2.2 Trivial inferences

In order to state Theorem 7 above in its most general form, we have allowed linear formulae
to include constants and negation, and linear inferences to be between formulae with different
variable sets. However it turns out that we may proceed to prove Theorem 7, without loss of

14:5

FSCD 2021

14:6

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

generality, by working with constant-free, negation-free formulae on some fixed set of variables,
as was already shown in [11]. This is done by defining the notion of a trivial inference, whose
{s, m}-derivability, with units, may be reduced to that of a smaller non-trivial inference.

» Definition 8. An inference ¢ — v is trivial at a variable x if [T /x] — [L/x] is
again a valid inference. An inference is trivial if it is trivial at one of its variables.

» Example 9. The mix inference from Example 5, x Ay — z V y, is trivial at x and trivial
at y. Note, however, that it is not trivial at and y “at the same time”, in the sense that
the simultaneous substition of | for x and y in the LHS and T for z and y in the RHS does
not result in a valid implication. In contrast, the linear inference w A (z Vy) — wV (z A y)
from [11] is, indeed, trivial at « and y “at the same time”.

Neither switch nor medial are trivial.

» Remark 10 (Global vs local triviality). Note that triviality is closed under composition by
linear inferences: if ¢ — 1 is trivial at and ¢ — x is valid, then ¢ — x is trivial at z.
Similarly for x — 9 if x — ¢ is valid. One pertinent feature is that the converse does not
hold: there are “globally” trivial derivations that are nowhere “locally” trivial. For instance
consider the following derivation (from [15, Remark 5.6]):

WATA(YVz)w=swA(zAYy)Vz)w=s(WAZ)V(ZAY) ~m (WVIT)A(YV2)

The derived inference is just an instance of mix, from Example 5, on the redex w A x, which
is trivial. However, no local step is trivial.

To prove (the first half of) Theorem 7, in Section 5 we will actually prove the following
apparent weakening of that statement:

» Theorem 11. Let n < 8. Let ¢ and v be constant-free negation-free linear formulae on n
variables and suppose ¢ — 1 is a non-trivial linear inference. Then ¢ oms V.

In fact this statement is no weaker at all, and we will now see how the consideration of
triviality allows us to only deal with such special cases without loss of generality.

» Proposition 12 ([11, Theorem 34]). Let ¢ and ¢ be linear formulae on Vi and Vs,
respectively, and let r: o — ¥ be a linear inference. There is a non-trivial linear inference
r' ¢’ =" on some V' CVy N Vs such that r: o — 1 is {s,m,r'}-derivable with units.

Note in particular that, in the statement above, if r’ is {s, m}-derivable with units, then
so is r. This is also the case for the next result.

» Proposition 13. Let r: ¢ — ¢ be a non-trivial linear inference among variables V # &.
Then there is a constant-free negation-free non-trivial linear inference v’ : @' —)" on V s.1.
r:o — 1 is {s,m,r' }-derivable with units.

Proof. First, note that both ¢ and 1) must be linear formulae on V, since ¢ — 1 is non-trivial.
For the same reason, no variable can occur positively in ¢ and negatively in ¢ or vice-versa,
since ¢ — 1 is non-trivial, and so any negated variable may be safely replaced by its positive
counterpart. From here, we simply set ¢’ and ¢’ to be the constant-free formulae (uniquely)
obtained from Proposition 2 by ~,. Non-triviality of r’ follows from that of r by logical
equivalence. <

» Corollary 14. The statement of Theorem 11 implies (the first half of) the statement of
Theorem 7.

A. Das and A. A. Rice

Proof. Let r be as in Theorem 7. Let r’ be the non-trivial linear inference obtained by
Proposition 12 above, and let r”” be the non-trivial constant-free negation-free linear inference
thence obtained by Proposition 13. By Theorem 11, r” is {s,m}-derivable and so, by
Proposition 12 and Proposition 13, r is also {s, m}-derivable with units. <

It is clear that if an inference is derivable with switch and medial then it is also derivable
with switch, medial, and units. The following proposition, while not necessary for the proof
of Corollary 14, allows the the converse in some cases, and is the reason why our search
algorithm in Section 5 will only check for {s, m}-derivability.

» Proposition 15 (Follows from [11], Lemma 28). Suppose ¢ — v is a non-trivial constant-
free negation-free linear inference that is {s, m}-derivable with units. Then @ — 1 is also
{s, m}-derivable (without units).

The idea here is to systematically rewrite a derivation with units to one without, line by
line under Proposition 13. Crucially, the invariant of non-triviality constrains the contexts
in which constants may occur, ensuring that the constant-elimination procedure preserves
instances of s or m.

2.3 Minimality of inferences

Let us take a moment to explain the various notions of “inference minimality” that we shall
mention in this work.

Size minimality refers simply to the number of variables the inference contains. E.g.
when we say that the 8-variable inferences in the next section are size minimal (or “smallest”)
non-{s, m}-derivable with units (or {s, m}-independent linear inferences, we mean that
there are no {s, m}-independent linear inferences with fewer variables.

A linear inference ¢ — v is logically minimal if there is no ~,¢,-distinct interpolating
linear formula. Le. if ¢ — x and x — 1 are linear inferences, then x is ~,¢,-equivalent to ¢
or 9 (and so, by Remark 3, is logically equivalent to ¢ or).

Finally, a linear inference ¢ — ¢ is {s, m}-minimal if there is no formula x s.t. @ ~>mns X
or x ~ms ¥ and x — 9 or ¢ — Y, respectively, is a valid linear inference which is not a
logical equivalence.

It is clear from the definitions that any logically minimal inference is also {s, m}-minimal,
though the converse may not be true. The reason for considering {s, m}-minimality is that
it is easier to systematically check by hand. In fact, the implementation we give later in
Section 5 further verifies that our new 8-variable inferences are logically minimal.

Logical minimality also serves an important purpose for our proof of Theorem 11, as it
allows the following reduction, greatly reducing the search space for our implementation, in
fact to nearly 1% of its original size for 8 variable inferences:”

» Lemma 16. Suppose the statement of Theorem 11 holds whenever ¢ — 1 is logically
minimal. Then the statement of Theorem 11 holds (even when ¢ — 1 is not logically
minimal).

Proof. Suppose we have a non-trivial inference between constant-free negation-free linear
inferences ¢ — 1. Then ¢ — 1 can be refined into a chain of logically minimal linear
inferences ¢ — xg — -+ — Xn — ¥. All of these must be non-trivial, as triviality of any of
them would imply triviality of ¢ — 1, cf. Remark 10. Therefore if all such inferences are
derivable from switch and medial (with units) then so is ¢ — 1, by transitivity. |

7 5364/514486 ~ 1.04%

14:7

FSCD 2021

14:8

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

3 New 8-variable {s, m}-independent linear inferences

In this section we shall present the new 8-variable linear inferences of this work ((1) and
(2) from the introduction), and give self-contained arguments for their {s, m}-independence
and {s, m}-minimality, as a sort of sanity check for the implementation described in the
next section. We shall also briefly discuss some of their structural properties, in reference
to previous works in the area. Thanks to the results of the previous section, in particular
Proposition 13 and Remark 10, we shall only consider non-trivial constant-free negation-free
linear inferences with the same variables in the LHS and RHS. Furthermore, by Proposition 15
we shall only consider {s, m}-derivability (i.e., without units).

3.1 Previous linear inferences

In [30] Strassburger presented a 36-variable inference that is {s, m}-independent, by an
encoding of the pigeonhole principle with 4 pigeons and 3 holes. He there referred to it as a
“balanced” tautology, but in our setting it is a linear inference that can be written as follows:3

3 A 3 7 3 7
AN N@igva) NN A Wi Vi) AN N (zig Vzig)
1=17=1 i=17=1 1=17=1
(w11 Voo Vas) A (Y11 Vyar Vys) A (211 V221V 231))
N vV ((l’/ll\/l’QQVl’gQ) 74\ (y'l \/y22\/y32) A (le \/222\/232))
Vo ((zh Vahy Vass) A (yy Vyse Vyss) A (251 V 25y V 233))
Vo (w31 Voge Vagg) A (Ys Vs Vyss) A (231 V230 Vo 233))

In [11] Das noticed that a more succinct encoding of the pigeonhole principle could be carried
out, with only 3 pigeons and 2 holes, resulting in a 10-variable {s, m}-independent linear
inference. A variation of that, e.g. as used in [12], is the following:

EVwAW)AYVY)A(uVE)A((zAx)V2) (©)

= (A@VY))VAD)V @A)V (wVy)AZ)
In fact this is not a {s, m}-minimal inference, but we write this one here for comparison to
one of the new 8-variable inferences in the next subsection. It can be checked valid and
non-trivial by simply checking all cases, or by use of a solver. We do not give an argument
for {s, m}-independence here, but such an argument is similar to the one we give for an
8-variable inference Equation (7), which is given the next subsection.

3.2 The two minimal 8 variable {s, m}-independent linear inferences

Pre-empting Section 5.2, let us explicitly give the two minimal linear inferences found by our
algorithm and justify their {s, m}-independence and {s, m}-minimality, as a sort of sanity
check for our implementation later. As we will see, they both turn out to be significant in
their own right, which is why we take the time to consider them separately.

8 We write Strassburger’s inference by encoding each qi1j as xij, each gi2j as yij, each g;3; as z;;, and
using “primed” variables instead of duals, with the LHS of the inference being the appropriate instances
of excluded middle.

A. Das and A. A. Rice

3.2.1 A refinement of the 3-2-pigeonhole-principle

First let us consider the 8 variable linear inference that may be used to derive Equation (6),
cf. Appendix A.1 (identical to (1) from the introduction):

(zV(wAw)A((zAz)V((yVy)AZ))
= (A@Vy))V(wVy)A((w Az")Vv2)

(7)

Recalling the notion of “duality” from Example 6, let us formally define the dual of a linear
inference ¢ — x to be the linear inference y — @, where ¢ and x are obtained from ¢ and
X, respectively, by flipping all Vs to As and vice-versa. Considering linear inferences up to
renaming of variables, we have:

» Observation 17. (7) is self-dual.

Indeed, the formula structure of the RHS is clearly the dual of that of the LHS, and the
mapping from a variable in the LHS to the variable at the same position in the RHS is, in
fact, an involution. I.e., u is mapped to itself; v is mapped to y which in turn is mapped
to v; v’ is mapped to w which is in turn mapped to v’; x is mapped to ' which in turn is
mapped to x; and z is mapped to itself. Validity may be routinely checked by any solver,
but we give a case analyis of assignments in Appendix A.2.

We may also establish {s, m}-independence and {s, m}-minimality by checking all applic-
ations of s or m to the LHS (note that we do not need to check the RHS, by Observation 17
above). This analysis is given explicitly in Appendix A 4.

3.2.2 A counterexample to a conjecture of Das and Strassburger

Finally, our search algorithm found a completely new linear inference (identical to (2) from
the introduction):

((wAw) Vv (zAz)) Ay AY')VI(zA2))
= (wAy)V((@V (@ AZ))A("AY)V 2))

(8)

Again, validity is routine, but a case analysis is given in Appendix A.3. We may establish
{s, m}-independence and {s, m}-minimality again by checking all possible rule applications.
This analysis is given in Appendix A.5.

This new inference exhibits a rather interesting property, which we shall frame in terms
of the following notion, since it will be used in the next section:

» Definition 18. Let ¢ be a linear formula on a variable set V. For distinct x,y € V, the
least common connective (lcc) of x and y in ¢ is the connective V or A at the root of the
smallest subformula of ¢ containing both x and y.

Note that, in the inference (8) above, the lcc of w’ and &’ changes from V to A, but the lcc of
y and 3’ changes from A to V. No such example of a minimal linear inference exhibiting both
of these properties was known before; switch, medial and all of the linear inferences of this
section either preserve V-lces or preserve A-lees. In fact, Das and Strassburger showed that
any valid linear inference preserving A-lees is already derivable by medial [15, Theorem 7.5],
and further conjectured that there was no minimal inference that preserves neither A-lccs
nor V-lces. Naturally, our new inference is a counterexample to that:

» Theorem 19. Conjecture 7.9 from [15] is false.

14:9

FSCD 2021

14:10

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

4 A graph-theoretic presentation of linear inferences

A significant cause of algorithmic complexity when searching for linear inferences is the
multitude of formulae equivalent modulo associativity and commutativity (~,c). For example,
for 7 variables, there are 42577920 formulae (ignoring units), yet only 78416 equivalence
classes. Under Remark 3 it would be ideal if we could deal with ~,.-equivalence classes
directly, realising logical and syntactic notions on them in a natural way. This is precisely
what is accomplished by the graph-theoretic notion of a relation web, cf. [17, 28, 14, 15].

Throughout this section we work only with constant-free negation-free linear formulae,
cf. Theorem 11. Recall the notion of least common connective (lec) from Definition 18.

» Definition 20. Let ¢ be a linear formula on a variable set V. The relation web (or
simply web) of v, written W(p), is a simple undirected graph with:

The set of nodes of W(p) is just V, i.e. the variables occurring in .

For xz,y € V, there is an edge between x and y in W(p) if the lcc of x and y in ¢ is A.

When we draw graphs, we will draw a solid red line & —— y if there is an edge between
x and y, and a green dotted line x y otherwise.

» Example 21. Let ¢ be the linear formula w A (z A (y V 2)). W(¢p) is the following graph:

w>—<x
Y z

Note that linear formulae equivalent up to associativity and commutativity have the same
relation web, since ~,c does not affect the lccs. For instance, if ¥ = (w A x) A (2 V y), then
W(%) is still just the relation web above. In fact, we also have the converse:

» Proposition 22 (E.g., [15], Proposition 3.5). Given linear formulae ¢ and v, ¢ ~ac ¥ if
and only if W(p) = W(¥).

Thus relation webs are natural representations of equivalence classes of linear formulae
modulo associativity and commutativity.

It is easy to see that the image of W is just the cographs. A cograph is either a single node,
or has the form R—S or R S for cographs R and S.° A cograph decomposition
of a cograph R is just a definition tree according to these construction rules (its “cotree”),
from which we may easily extract a linear formula with web R. Note from Example 21 that
the cograph decomposition of a relation web need not be unique, since formulae equivalent
modulo associativity and commutativity have the same relation web.

Cographs admit an elegant local characterisation by means of forbidden subgraphs:

» Definition 23. P, is the following graph:

w——x

y—=

A graph G is Py-free if none of its induced'® subgraphs are isomorphic to Py.

9 Formally, R S has as nodes the disjoint union of the nodes of R and the nodes of S; edges within
the R component are inherited from R and similarly for S; there is also an edge between every node in
R and every node in §. R S is defined similarly, but without the last clause.

10 An induced subgraph is one whose edges are just those of G restricted to a subset of the nodes.

A. Das and A. A. Rice

» Proposition 24 (E.g. [17, 28]). A graph is a cograph if and only if it is Py-free. Thus,
relation webs are just the Py-free graphs whose nodes are variables.

Note, in particular, that this characterisation gives us an easy way to check whether
a graph is the web of some formula: just check every 4-tuple of nodes for a P;,. What is
more, we may also verify several semantic properties of linear inferences, such as validity and
triviality, directly at the level of relation webs:

» Proposition 25 (Follows from Proposition 4.4 and Theorem 4.6 in [15]). Let ¢ and ¢ be
linear formulae on the same set of variables. ¢ — 1 is a valid linear inference if and only if
for every maximal clique P of W(p), there is some Q C P such that Q is a maximal clique

of W(1).

» Proposition 26 (E.g., [15], Proposition 5.7). Let ¢ and 1 be linear formulae on the same
variables. @ — 1 is a linear inference that is trivial at x if and only if for every maximal
cliqgue P of W(yp), there is some Q C P\ {z} such that Q is a mazimal clique of W(1)).

Note that the criterion for triviality is a strict strengthening of that for validity, as we would
expect. For both of the results above, there is a dual characterisation in terms of maximal
stable sets instead of maximal cliques. For instance, the characterisation of validity morally
states “whenever ¢ evaluates to 1, then v evaluates to 1”. The dual characterisation is that
for every maximal stable set @) of W(¢) there is a maximal stable set P of W(y) with P C @,
which morally states “whenever 1 evaluates to 0, then ¢ evaluates to 0”. We will not make
use of these dual characterisations in this work.

» Example 27 (Validity of switch and medial, triviality of mix). The switch and medial inferences
can be construed as the following “graph rewrite” rules on relation webs, respectively:

w——x w——=

z z Yy—2z y—>2z

It is easy to see that the validity criterion of Proposition 25 holds for each of these rules.

For s, the maximal cliques {x,y} and {z, z} in the LHS are mapped to {z,y} and {z} in the
RHS respectively. For m, the maximal cliques {w,z} and {y, z} in the LHS are mapped to
themselves in the RHS.

Now consider the trivial inference x A y — x V y, construed as the graph rewrite rule:

We can easily verify the criterion for triviality at x from Proposition 26 since the only
maximal clique on the LHS, {z,y} has {y} C {z,y} \ {z} as a maximal clique on the RHS.

» Remark 28. With the results in this section, the notation for inferences between formulae
can be equally used for relation webs. For example, for webs R and S, we can write R ~>yns S
is valid to mean that the inference between (any choice of) the underlying linear formulae is
an instance of ~vs, and R @ms S to mean the there is a derivation from switch and medial
between the underlying formulae. Since these relations are invariant under associativity and
commutativity, they are independent of the particular cograph decomposition chosen.

Furthermore, to prove Theorem 11, it is sufficient to show that for all webs R and S with
size less than 8, if R — S is valid and non-trivial then R oms S.

The final component needed to be able to work fully with webs is a way to check if a
given inference is an instance of switch or medial. Such characterisations exist:

14:11

FSCD 2021

14:12

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

» Proposition 29 ([28, Theorem 5]). Let R — S represent a constant-free negation-free
non-trivial linear inference. Then R — S is derivable from medial if and only if:

Whenever t ——y in 'R, also x —vy in S.
Whenever x y inR but xt——y in S there exists w and z such that
w—2x w—2x
is an induced subgraph of R and >< is an induced subgraph of S.
Yy——= Yy——=

The second condition can, in fact, be replaced by simply requiring that R — S is valid [15,
Theorem 7.5]. A relation web characterisation for switch derivability can also be found in
[28, Theorem 6.2], however we do not use it in our implementation.

5 Implementation

As stated in previous sections, Theorem 11 is proved using a computational search. In this
section we describe the algorithm used to search for {s, m}-independent inferences, as well as
some of the optimisations we employ so that this search finishes in a reasonable time. Many
of these optimisations may be of self-contained theoretical interest.

t,!1 which offers a combination of good performance

The implementation is written in Rus
(both in terms of speed and memory management) but also provides a variety of high
level abstractions such as algebraic data types. Furthermore, it has built-in support for
iterators, allowing the code to be written in a more functional style, and has a built-in testing
framework, meaning that sanity checks can be built into the code base. The code is available
at [25] and has been split into two parts: a lébrary containing types for undirected linear
graphs and formulae and some operations on them, and an ezecutable which implements the

search algorithm using this library as a base.

5.1 Library

The library portion of the implementation defines methods for working with relation webs,
as well as the ability to convert formulae to relation webs and vice versa. The majority of
the library consists of the LinGraph trait, which is an interface for types that can be treated
as undirected graphs. This allows us to query the edges between variables as well as perform
more involved operations such as checking whether a graph is P;-free. We may also ask
whether a pair of relation webs forms a valid linear inference and check whether the inference
is trivial using Propositions 25 and 26.

Storing graphs and relation webs. The library was designed with the intention of storing
graphs as compactly as possible. Therefore there are implementations of LinGraph which
pack the data (a series of bits for whether there exists an edge between each pair of nodes)
into various integer types. The implementation is given for unsigned 8 bit, 16 bit, 32 bit
(which can store up to 8 variable graphs), 64 bit, and 128 bit integers. Furthermore there
is an implementation using vectors (variable length arrays) of Boolean values, which is
less memory efficient but can store relation webs of arbitrary size. A further improvement
could be to use an external library implementing bit arrays to make a memory efficient, yet
infinitely scalable implementation.

"Unttps://www.rust-lang. org/

https://www.rust-lang.org/

A. Das and A. A. Rice

Checking an inference between graphs. In order to implement linear inference checking,
we use a data type representing maximal cliques of a relation web, which we represent as the
trait MClique. It is possible to use Rust’s inbuilt HashSet!? to do this but, as above, a more
memory efficient solution is provided where we store the data in a single integer, with each
bit determining whether a node is contained in the clique. For example a maximal clique on
an 8 node graph can be encoded into a single byte. While checking for linear inferences and
triviality, the main operation on maximal cliques is asking whether one is a subset of the
other. This operation can be carried out very quickly using bitwise operations. Lastly we
also need a way to generate the maximal cliques of a relation web. This is done using the
Bron-Kerbosch algorithm [4], which is fast enough for our purposes (as we are only finding
the maximal cliques of relatively small graphs).

Working with isomorphism. There is also code for working with isomorphisms of graphs,
which is used in the search algorithm to shrink the search space further. This is implemented
as a module where permutations and operations on these permutations are defined, as well
as having the ability to apply a permutation to the nodes of a graph, to get a new but
isomorphic graph.

Generating all Py-free graphs. The library also has a function that allows all Pj-free
graphs of a certain size to be generated. The naive algorithm for doing this which simply
generates all graphs and checks each one for being P,-free is computationally infeasible for
graphs with more than a few variables, as the number of graphs scales superexponentially
with the number of variables (for instance there are 22* 7-variable relation webs). Instead,
we use a recursive algorithm that generates all Py-free graphs of size n by first generating the
P,-free graphs of size n — 1 and then checking all possible extensions of these graphs to see if
they are Py-free. Correctness of this procedure is due to the fact that induced subgraphs
of a Ps-free are themselves Py-free. In fact, a further optimisation is also added: when we
check whether the extensions are Py-free, it is sufficient to only check if subsets of the nodes
containing the added node are not isomorphic to Py, instead of checking every subset.

Sanity checks. Finally, the library also contains some automated tests used as sanity checks
on the code, which may be used to check various implementations against each other.

5.2 Search algorithm

The main part of the implementation is a search algorithm to find logically minimal non-
trivial inferences between relation webs that are not derivable from switch and medial. The
search algorithm functions in multiple phases. After each phase the results are serialised and
saved to disk so that the algorithm can be restarted from this point.

Phase 1: generating P,-free graphs on n nodes. Suppose we are searching for {s,m}-
independent linear inferences between webs on n variables. The first phase, as described in
the previous section, is to gather all P;-free graphs with n nodes.

2https://doc.rust-lang.org/std/collections/struct.HashSet.html

14:13

FSCD 2021

https://doc.rust-lang.org/std/collections/struct.HashSet.html

14:14

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

Phase 2: identifying isomorphism classes and canonical representatives. To describe the
second phase we need to introduce some new notions. Without loss of generality, we will
assume henceforth that the variable set is given by ¥V = {0,...,n — 1}.

» Definition 30. Note that the function ¢ : {(x,y) € NxN | z < y} — N given by
vz, y) =x+ ZKyz is a bijection. Define the numerical representation of a linear graph
R, written N(R), to be the natural number whose t(x,y)™ least significant bit is 1 if and
only if (x,y) € R.

This is the encoding used to store graph in integers as described in the previous section.

» Definition 31. Given a bijection p : V — V, we write p(R) for the graph on V with edges
(p(x), p(y)) for each edge (z,y) € R. R and S are isomorphic if S = p(R), for some
bijection p : V — V, in which case p is called an isomorphism from R to S.

As isomorphism is an equivalence relation, we can partition the set of P,-free graphs into
isomorphism classes. It can readily be checked that N (from Definition 30) is injective and
can therefore be used to induce a strict total ordering on graphs. Say that a relation web
is least if it is the smallest element in its isomorphism class (with respect to this ordering
induced from N).

The second phase of the algorithm is to identify these least relation webs, as well as
identify the isomorphism between every relation web and its isomorphic least relation web.
It will become clear why this data is needed later on in the section. To obtain this, first
the relation webs are sorted (by numerical representation) and then, taking each graph
R in turn, applying every possible permutation to its nodes, and seeing if any result in a
smaller web (with respect to N). If none do then we record it as a least relation web (with
the identity isomorphism). Otherwise suppose it is isomorphic to R’ with isomorphism p
where N(R') < N(R). As we are checking graphs in order, we must already know that
R’ is isomorphic to least graph R” with isomorphism 7. Then we can record R as being
isomorphic to R” with isomorphism 7 o p. This allows us to use the following lemma.

» Lemma 32. The statement of Theorem 11 follows from the following: for any valid
non-trivial logically minimal inference R — S on n < 8 wvariables, where R is least, we have
R ~oms S.

Proof. To show the statement of Theorem 11, let R and S be relation webs on n variables
and suppose R — § is a non-trivial linear inference (cf. Remark 28). By Lemma 16, we can
further assume that R — S is logically minimal. Then let p be an isomorphism from R to
R’ least isomorphic to R, and let &’ = p(S). Then R “oms S if and only if R/ ~oms &', as
required. <

The above lemma allows us to only search inferences from least webs to arbitrary webs.
This increases the speed of the search greatly as it turns out there are relatively few least
webs. For example, there are 78416 P,-free graphs with 7 variables with only 180 of them
being least (the number of isomorphism classes). Note that we may not similarly restrict the
RHS of inferences to least webs. This means we need to know the maximal cliques of every
P,-free graph to determine whether there are inferences between them.

Phase 3: generating all maximal cliques. In phase three we generate all the maximal
cliques of the graphs found in phase one and store them so that they do not need to be
recomputed every time we check a linear inference. As we can store each maximal clique in a
single byte, storing all this data is feasible.

A. Das and A. A. Rice

Phase 4: generating “least” linear inferences. With the maximal clique data, phase
four of generating a list of all valid linear inferences (from a least web to an arbitrary web)
can be easily done by iterating through all possible combinations and checking them using
Proposition 25.

Phase 5: checking for non-triviality. Similarly phase five of checking which of these
inferences are non-trivial is also simple using Proposition 26. This data is stored in a
HashMap of sets for quick indexing.

Phase 6: restricting to logically minimal inferences. Phase six is now to restrict our
inferences to only those that are logically minimal. Write ®% be the set of webs distinct
from R that R (non-trivially) implies. We calculate, for a least web R, the set Mg of webs
S with R — S a logically minimal linear inference using the identity:

Mp=%r\ |J O
R/IEPR
Note that to calculate this, we need to be able to generate 5 for arbitrary (i.e. not necessarily
least) webs. This is where the isomorphism data stored in phase two becomes useful, as if p
is an isomorphism from R to R’, with R’ least, we can use,

O ={p 1(S) | S € Pr'}

to generate @, where we already have ®x,. In the implementation, we generate each &
on the fly (from ®x/), though we could have pre-generated all of these, which might provide
further speedup for this phase.

Phase 7: checking for switch-medial derivability. The last phase is to check the remaining
inferences, of which there are now few enough to feasibly do so. Logically minimal inferences
have one further benefit: a logically minimal inference (and in fact any {s, m}-minimal
inference) ¢ — 9 is derivable from switch and medial if and only if it is derivable from a
single switch or medial step. To check if it is a medial we can use the criterion for medial
derivability from Proposition 29.

To check if the inference R — S is a switch, we simply run through all possible cograph
decompositions of R and check if any of the possible switch applications yields S. It would
have been possible to use the criterion for switch derivability from [28] (mentioned at the
end of Section 4), but running through possible partitions of the nodes of R was fast enough
and easier to implement.

Evaluation and main results. After running all phases on 7 variables, we found that there
were 78416 Py-free graphs of which 180 were least. There were 35110 non-trivial inferences
from a least web to an arbitrary web of which 1352 were minimal. Of these minimal inferences,
968 were an instance of switch, 384 were an instance of medial, and there were no other
inferences, which completes the proof of Theorem 11.

Furthermore, the algorithm was fast enough to run on 8 variables, where there were
1320064 Py-free graphs of which 522 were least. There were 514486 non-trivial inferences
from a least web to an arbitrary web of which 5364 were minimal, Of these, 3506 were an
instance of switch, 1770 were an instance of medial, and there were 88 other inferences. After
quotienting out by isomorphism (as restricting to inferences from least graphs does not rule
out self isomorphisms on the LHS of the inference), we were left with 3 inferences, of which
two were dual to each other leaving the logically minimal {s, m}-independent inferences given
in Section 3. These give a proof of Theorem 7, the main theorem of this paper.

14:15

FSCD 2021

14:16

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

6 Conclusions

In this work we undertook a computational approach towards the classification of linear
inferences. To this end we succeeded in exhausting the linear inferences up to 8 variables,
showing that there are two (distinct) 8 variable linear inferences that are independent of
switch and medial. One of these new inferences contradicts a Conjecture 7.9 from [15].
Conversely, all linear inferences on 7 variables or fewer are already derivable using switch
and medial.

We point out that it should be possible to adapt our implementation to a variety of
logics and, in particular, graph-based systems such as those from [2, 1, 7]. This would be an
interesting avenue for future work.

—— References

1 Matteo Acclavio, Ross Horne, and Lutz Straflburger. An analytic propositional proof system
on graphs. CoRR, abs/2012.01102, 2020. arXiv:2012.01102.

2 Matteo Acclavio, Ross Horne, and Lutz Straflburger. Logic beyond formulas: A proof system
on graphs. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbricken,
Germany, July 8-11, 2020, pages 38-52. ACM, 2020. doi:10.1145/3373718.3394763.

3 Andreas Blass. A game semantics for linear logic. Ann. Pure Appl. Log., 56(1-3):183-220,
1992. d0i:10.1016/0168-0072(92)90073-9.

4 Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16(9):575-576, 1973.

5 Kai Brunnler. Deep inference and symmetry in classical proofs. PhD thesis, Dresden University
of Technology, Germany, 2003. URL: http://hsss.slub-dresden.de/hsss/servlet/hsss.
urlmapping.MappingServlet?id=1064911987703-3819.

6 Kai Brinnler and Alwen Fernanto Tiu. A local system for classical logic. In Robert Nieuwenhuis
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
8th International Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings,
volume 2250 of Lecture Notes in Computer Science, pages 347-361. Springer, 2001. doi:
10.1007/3-540-45653-8_24.

7 Cameron Calk, Anupam Das, and Tim Waring. Beyond formulas-as-cographs: an extension of
boolean logic to arbitrary graphs. CoRR, abs/2004.12941, 2020. arXiv:2004.12941.

8 Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional
calculus (preliminary version). In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle,
and Michael A. Harrison, editors, Proceedings of the 6th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 135-148. ACM, 1974.
doi:10.1145/800119.803893.

9 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36-50, 1979. doi:10.2307/2273702.

10 Anupam Das. On the proof complexity of cut-free bounded deep inference. In Kai Brinnler
and George Metcalfe, editors, Automated Reasoning with Analytic Tableaur and Related
Methods - 20th International Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8,
2011. Proceedings, volume 6793 of Lecture Notes in Computer Science, pages 134—148. Springer,
2011. doi:10.1007/978-3-642-22119-4_12.

11 Anupam Das. Rewriting with Linear Inferences in Propositional Logic. In Femke van
Raamsdonk, editor, 2/th International Conference on Rewriting Techniques and Applications
(RTA 2013), volume 21 of Leibniz International Proceedings in Informatics (LIPIcs), pages
158-173, Dagstuhl, Germany, 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2013.158.

http://arxiv.org/abs/2012.01102
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.1016/0168-0072(92)90073-9
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1064911987703-3819
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1064911987703-3819
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1007/3-540-45653-8_24
http://arxiv.org/abs/2004.12941
https://doi.org/10.1145/800119.803893
https://doi.org/10.2307/2273702
https://doi.org/10.1007/978-3-642-22119-4_12
https://doi.org/10.4230/LIPIcs.RTA.2013.158
https://doi.org/10.4230/LIPIcs.RTA.2013.158

A. Das and A. A. Rice

12

13

14

15

16

17

18

19

20

21

22
23

24

25
26

27

28

29
30

31

Anupam Das. An unavoidable contraction loop in monotone deep inference, 2017. URL:
http://cs.bath.ac.uk/ag/das/con-loop.pdf.

Anupam Das. A new linear inference of size 8. The Proof Theory Blog, June 2020. URL:
https://prooftheory.blog/2020/06/25/new-1linear-inference/.

Anupam Das and Lutz Straburger. No complete linear term rewriting system for propositional
logic. In Maribel Fernandez, editor, 26th International Conference on Rewriting Techniques
and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland, volume 36 of LIPIcs,

pages 127-142. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015. doi:10.4230/LIPIcs.

RTA.2015.127.

Anupam Das and Lutz Straflburger. On linear rewriting systems for boolean logic and some
applications to proof theory. Log. Methods Comput. Sci., 12(4), 2016. doi:10.2168/LMCS-12(4:
9)2016.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987. doi:10.1016/
0304-3975(87)90045-4.

Alessio Guglielmi. A system of interaction and structure. ACM Trans. Comput. Log., 8(1):1,
2007. doi:10.1145/1182613.1182614.

Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic
flows. Log. Methods Comput. Sci., 4(1), 2008. doi:10.2168/LMCS-4(1:9)2008.

Tom Gundersen. A General View of Normalisation through Atomic Flows. PhD thesis,
University of Bath, UK, 2009. URL: https://tel.archives-ouvertes.fr/tel-00441540.
Giorgi Japaridze. Introduction to cirquent calculus and abstract resource semantics. CoRR,
abs/math /0506553, 2005. arXiv:math/0506553.

Giorgi Japaridze. Elementary-base cirquent calculus I: parallel and choice connectives. CoRR,
abs/1707.04823, 2017. arXiv:1707.04823.

Jan Krajicek. The cook-reckhow definition. CoRR, abs/1909.03691, 2019. arXiv:1909.03691.
Lé Thanh Dung Nguyén and Thomas Seiller. Coherent interaction graphs. In Thomas Ehrhard,
Maribel Fernandez, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceedings Joint
International Workshop on Linearity & Trends in Linear Logic and Applications, Linearity-
TLLAQFLoC 2018, Oxford, UK, 7-8 July 2018, volume 292 of EPTCS, pages 104-117, 2018.
doi:10.4204/EPTCS.292.6

Alex Rice. Linear inferences of size 7. The Proof Theory Blog, October 2020. URL:
https://prooftheory.blog/2020/10/01/1inear-inferences-of-size-7/.

Alex Rice. lin_inf rust crate. https://github.com/alexarice/lin_inf, 2021.

Lutz Straflburger. A local system for linear logic. In Matthias Baaz and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 9th International Con-
ference, LPAR 2002, Tbilisi, Georgia, October 14-18, 2002, Proceedings, volume 2514 of Lecture
Notes in Computer Science, pages 388—402. Springer, 2002. doi:10.1007/3-540-36078-6_26.
Lutz Straflburger. Linear logic and noncommutativity in the calculus of structures. PhD thesis,
Dresden University of Technology, Germany, 2003. URL: http://hsss.slub-dresden.de/
hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293.

Lutz Straflburger. A characterization of medial as rewriting rule. In Franz Baader, editor,
Term Rewriting and Applications, 18th International Conference, RTA 2007, Paris, France,
June 26-28, 2007, Proceedings, volume 4533 of Lecture Notes in Computer Science, pages
344-358. Springer, 2007. doi:10.1007/978-3-540-73449-9_26

Lutz Straflburger. Personal communication, 2012.

Lutz Strafiburger. Extension without cut. Ann. Pure Appl. Log., 163(12):1995-2007, 2012.
doi:10.1016/j.apal.2012.07.004.

Alvin Sipraga. An automated search of linear inference rules. Summer research project.
Supervised by Alessio Guglielmi and Anupam Das, 2012. URL: http://arcturus.su/mimir/
autolininf.pdf.

14:17

FSCD 2021

http://cs.bath.ac.uk/ag/das/con-loop.pdf
https://prooftheory.blog/2020/06/25/new-linear-inference/
https://doi.org/10.4230/LIPIcs.RTA.2015.127
https://doi.org/10.4230/LIPIcs.RTA.2015.127
https://doi.org/10.2168/LMCS-12(4:9)2016
https://doi.org/10.2168/LMCS-12(4:9)2016
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.2168/LMCS-4(1:9)2008
https://tel.archives-ouvertes.fr/tel-00441540
http://arxiv.org/abs/math/0506553
http://arxiv.org/abs/1707.04823
http://arxiv.org/abs/1909.03691
https://doi.org/10.4204/EPTCS.292.6
https://prooftheory.blog/2020/10/01/linear-inferences-of-size-7/
https://github.com/alexarice/lin_inf
https://doi.org/10.1007/3-540-36078-6_26
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293
https://doi.org/10.1007/978-3-540-73449-9_26
https://doi.org/10.1016/j.apal.2012.07.004
http://arcturus.su/mimir/autolininf.pdf
http://arcturus.su/mimir/autolininf.pdf

14:18

New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

A Further proofs and examples

Proof sketch of Proposition 2. Write ~~ for the rewriting relation obtained by orienting
every pair of (3) left-to-right. Clearly ~~ is terminating since each step decreases formula
size. For confluence, note that every critical pair must reduce to the same constant:

1lvl~l1l 1LVT~T TVL~T TVT~T
IAL~w~L LAT~»~L TAL~L TAT~T

A.1 Recovering an 8 variable inference

The reason for writing the variation (6) in Section 3.1 instead of the one originally presented
in [11] is that it allows us to recover one of the new 8-variable inferences, by a particular
reduction first noticed in a blog post [13].

By setting 2’ = «/ = —w in (6) and simplifying, we obtain the linear inference:

VAW AYyVY)A((zA2")V2)
= (GA@Vy) V@A)V ((wVy)AZ)

Again, the inference above is not {s, m}-minimal, since there are two possible applications of
switch to the LHS that nonetheless imply the RHS:

(AWVY)NVwAW)A(zAZ)VZ) or (VwAW)A(zAz)V((yVy)AZ))

Furthermore, are two switch applications leading to the RHS that are nonetheless implied by
their respective formulae above:!3

(V@ AZNA@VY))V((wVy)AZ) or (zA(zVy)V(wVy)A((w Az)v)

The two resulting linear inferences are, in fact, isomorphic and indeed {s, m}-minimal, as
we shall explain in the next subsection. As we have already mentioned, the fact that this is
a logically minimal linear inference is shown by means of the implementation presented in
Section 5.

A.2 \Validity of Equation 7

We consider each assignment that satisfies the LHS and argue that it also satisfies the RHS:
{z, 2,2’} satisfies z A (z V y).
{z,y, 7'} satisfies z A (z V y).
{z,vy, 2’} satisfies (w Vy') A (W' Az") Vv 2').
{w,w',z,2'} satisfies (w VvV y') A (' Ax’)V 2').
{w,w',y,z'} and {w,w’,y', 2’} satisty (w Vv y') A (W' Az')V 2).

A.3 \Validity of Equation 8

We consider each assignment that satisfies the LHS and argue that it also satisfies the RHS:
{w,w',y,y'} satisfies w A y.
{w,w’, z, 2’} satisfies w’ A 2’ and z.
{z,2,y,y'} satisfies x and =’ Ay’
{z,2', z,2'} satisfies z and z.

13 Note that these switch applications were overlooked in the blog post (13].

A. Das and A. A. Rice

A.4 {s,m}-independence and {s, m}-minimality of Equation 7

There are two possible medial applications to the subformula (x Az")V ((y Vy') A2’) resulting
in the following new LHSs:
(zV(wAW)A(xVyVy)A (2 VZ2). In this case {z,3/,2'} is a countermodel.
(zV(wAW))A(xVZ)A (2" VyVy'). In this case {z, 2/, 2’} is a countermodel.

There are two possible switch applications to the subformula (y V y') A 2’ resulting in the
following new LHSs:

(V(wAW)A(zA2)VyV (Y AZ')). In this case {w,w’,y} is a countermodel.

V(wAW)A (A2) VY V(yAZ)). In this case {z,y'} is a countermodel.

Finally any other switch application is on the top-level conjunction, resulting in a formula
of the form zV X, (wAw')VX, (xAz')VX or ((yVy')Az')V X, which admits a countermodel

{z}, {w,w'}, {z, 2’} or {y, 2'}, respectively.

A.5 {s,m}-independence and {s, m}-minimality of Equation 8

Let us first consider rules applicable to the LHS. There are four possible medial applications,
resulting in the following new LHSs:
(wvVa)AN(Ww VE)AN((yAy')V(zAZ)). In this case {w,z',y,y’} is a countermodel.
(wva)N V) A((yAyY')V(zAZ)). In this case {2/, w’,y,y'} is a countermodel.
(wAW)YV(xAZ)A(yVz)A Y VZ). Inthis case {z,2',y, 2’} is a countermodel.
(wAW)YV(zAZ)A(yV2Z)A (Y Vz). In this case {w,w’,z',y'} is a countermodel.
Any switch application to the LHS must be on the top-level conjunction, and will have the
form (aAad')V X, for a € {w,z,y, z}. However, {w,w'}, {z,2'}, {y,v'} and {z, 2’} are each
countermodels for the RHS.
Now let us consider the possible rule applications leading to the RHS. There are two
possible medial instances, coming from the following new RHSs:
(wAy) V(@A ANy)V (w A2 Az). In this case {z,2’, z,2'} is a countermodel.
(wAy)V(@eAz)V (W Az ANz’ Ay'). In this case {w,w’, z, 2’} is a countermodel.
Now let us consider the switch instances:
If the contractum of the switch is z V (w’ A 27), then {z,2’,y,y'} is a countermodel.
If the contractum of the switch is (' Ay') V 2z, then {w,w’, 2,2’} is a countermodel.

If the redex of the switch has the form wA X or y A X, then {z,2’, z, 2’} is a countermodel.

If the redex of the switch has the form X A (z V (w' A 2")) or X A ((' Ay') V 2), then
{w,w',y,y'} is a countermodel.

14:19

FSCD 2021

	1 Introduction
	2 Preliminaries
	2.1 Linear inferences
	2.2 Trivial inferences
	2.3 Minimality of inferences

	3 New 8-variable {{s},{m}}-independent linear inferences
	3.1 Previous linear inferences
	3.2 The two minimal 8 variable s,m-independent linear inferences
	3.2.1 A refinement of the 3-2-pigeonhole-principle
	3.2.2 A counterexample to a conjecture of Das and Strassburger

	4 A graph-theoretic presentation of linear inferences
	5 Implementation
	5.1 Library
	5.2 Search algorithm

	6 Conclusions
	A Further proofs and examples
	A.1 Recovering an 8 variable inference
	A.2 Validity of Equation 7
	A.3 Validity of Equation 8
	A.4 s,m-independence and s,m-minimality of Equation 7
	A.5 s,m-independence and s,m-minimality of Equation 8

