62,111 research outputs found

    Locating-total dominating sets in twin-free graphs: a conjecture

    Full text link
    A total dominating set of a graph GG is a set DD of vertices of GG such that every vertex of GG has a neighbor in DD. A locating-total dominating set of GG is a total dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-total domination number of GG, denoted LT(G)LT(G), is the minimum cardinality of a locating-total dominating set in GG. It is well-known that every connected graph of order n≥3n \geq 3 has a total dominating set of size at most 23n\frac{2}{3}n. We conjecture that if GG is a twin-free graph of order nn with no isolated vertex, then LT(G)≤23nLT(G) \leq \frac{2}{3}n. We prove the conjecture for graphs without 44-cycles as a subgraph. We also prove that if GG is a twin-free graph of order nn, then LT(G)≤34nLT(G) \le \frac{3}{4}n.Comment: 18 pages, 1 figur

    Gamma-Set Domination Graphs. I: Complete Biorientations of \u3cem\u3eq-\u3c/em\u3eExtended Stars and Wounded Spider Graphs

    Get PDF
    The domination number of a graph G, γ(G), and the domination graph of a digraph D, dom(D) are integrated in this paper. The γ-set domination graph of the complete biorientation of a graph G, domγ(G) is created. All γ-sets of specific trees T are found, and dom-γ(T) is characterized for those classes
    • …
    corecore