9,342 research outputs found

    Waiting times in queueing networks with a single shared server

    Full text link
    We study a queueing network with a single shared server that serves the queues in a cyclic order. External customers arrive at the queues according to independent Poisson processes. After completing service, a customer either leaves the system or is routed to another queue. This model is very generic and finds many applications in computer systems, communication networks, manufacturing systems, and robotics. Special cases of the introduced network include well-known polling models, tandem queues, systems with a waiting room, multi-stage models with parallel queues, and many others. A complicating factor of this model is that the internally rerouted customers do not arrive at the various queues according to a Poisson process, causing standard techniques to find waiting-time distributions to fail. In this paper we develop a new method to obtain exact expressions for the Laplace-Stieltjes transforms of the steady-state waiting-time distributions. This method can be applied to a wide variety of models which lacked an analysis of the waiting-time distribution until now

    Exact Solutions for M/M/c/Setup Queues

    Full text link
    Recently multiserver queues with setup times have been extensively studied because they have applications in power-saving data centers. The most challenging model is the M/M/cc/Setup queue where a server is turned off when it is idle and is turned on if there are some waiting jobs. Recently, Gandhi et al.~(SIGMETRICS 2013, QUESTA 2014) present the recursive renewal reward approach as a new mathematical tool to analyze the model. In this paper, we derive exact solutions for the same model using two alternative methodologies: generating function approach and matrix analytic method. The former yields several theoretical insights into the systems while the latter provides an exact recursive algorithm to calculate the joint stationary distribution and then some performance measures so as to give new application insights.Comment: Submitted for revie

    A polling model with an autonomous server

    Get PDF
    Polling models are used as an analytical performance tool in several application areas. In these models, the focus often is on controlling the operation of the server as to optimize some performance measure. For several applications, controlling the server is not an issue as the server moves independently in the system. We present the analysis for such a polling model with a so-called autonomous server. In this model, the server remains for an exogenous random time at a queue, which also implies that service is preemptive. Moreover, in contrast to most of the previous research on polling models, the server does not immediately switch to a next queue when the current queue becomes empty, but rather remains for an exponentially distributed time at a queue. The analysis is based on considering imbedded Markov chains at specific instants. A system of equations for the queue-length distributions at these instant is given and solved for. Besides, we study to which extent the queues in the polling model are independent and identify parameter settings for which this is indeed the case. These results may be used to approximate performance measures for complex multi-queue models by analyzing a simple single-queue model

    Analysis of exhaustive limited service for token ring networks

    Get PDF
    Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline
    • …
    corecore