1,262 research outputs found

    The Complexity of Finding Small Separators in Temporal Graphs

    Get PDF
    Temporal graphs are graphs with time-stamped edges. We study the problem of finding a small vertex set (the separator) with respect to two designated terminal vertices such that the removal of the set eliminates all temporal paths connecting one terminal to the other. Herein, we consider two models of temporal paths: paths that pass through arbitrarily many edges per time step (non-strict) and paths that pass through at most one edge per time step (strict). Regarding the number of time steps of a temporal graph, we show a complexity dichotomy (NP-hardness versus polynomial-time solvability) for both problem variants. Moreover we prove both problem variants to be NP-complete even on temporal graphs whose underlying graph is planar. We further show that, on temporal graphs with planar underlying graph, if additionally the number of time steps is constant, then the problem variant for strict paths is solvable in quasi-linear time. Finally, we introduce and motivate the notion of a temporal core (vertices whose incident edges change over time). We prove that the non-strict variant is fixed-parameter tractable when parameterized by the size of the temporal core, while the strict variant remains NP-complete, even for constant-size temporal cores

    Finding Temporal Paths Under Waiting Time Constraints

    Get PDF
    Computing a (short) path between two vertices is one of the most fundamental primitives in graph algorithmics. In recent years, the study of paths in temporal graphs, that is, graphs where the vertex set is fixed but the edge set changes over time, gained more and more attention. A path is time-respecting, or temporal, if it uses edges with non-decreasing time stamps. We investigate a basic constraint for temporal paths, where the time spent at each vertex must not exceed a given duration ?, referred to as ?-restless temporal paths. This constraint arises naturally in the modeling of real-world processes like packet routing in communication networks and infection transmission routes of diseases where recovery confers lasting resistance. While finding temporal paths without waiting time restrictions is known to be doable in polynomial time, we show that the "restless variant" of this problem becomes computationally hard even in very restrictive settings. For example, it is W[1]-hard when parameterized by the feedback vertex number or the pathwidth of the underlying graph. The main question thus is whether the problem becomes tractable in some natural settings. We explore several natural parameterizations, presenting FPT algorithms for three kinds of parameters: (1) output-related parameters (here, the maximum length of the path), (2) classical parameters applied to the underlying graph (e.g., feedback edge number), and (3) a new parameter called timed feedback vertex number, which captures finer-grained temporal features of the input temporal graph, and which may be of interest beyond this work

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Delay-Robust Routes in Temporal Graphs

    Get PDF
    Most transportation networks are inherently temporal: Connections (e.g. flights, train runs) are only available at certain, scheduled times. When transporting passengers or commodities, this fact must be considered for the the planning of itineraries. This has already led to several well-studied algorithmic problems on temporal graphs. The difficulty of the described task is increased by the fact that connections are often unreliable - in particular, many modes of transportation suffer from occasional delays. If these delays cause subsequent connections to be missed, the consequences can be severe. Thus, it is a vital problem to design itineraries that are robust to (small) delays. We initiate the study of this problem from a parameterized complexity perspective by proving its NP-completeness as well as several hardness and tractability results for natural parameterizations
    • …
    corecore