
The Complexity of Finding Small Separators in
Temporal Graphs
Philipp Zschoche
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
zschoche@tu-berlin.de

Till Fluschnik1

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
till.fluschnik@tu-berlin.de

Hendrik Molter2

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
h.molter@tu-berlin.de

Rolf Niedermeier
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
Temporal graphs are graphs with time-stamped edges. We study the problem of finding a small
vertex set (the separator) with respect to two designated terminal vertices such that the removal of
the set eliminates all temporal paths connecting one terminal to the other. Herein, we consider
two models of temporal paths: paths that pass through arbitrarily many edges per time step
(non-strict) and paths that pass through at most one edge per time step (strict). Regarding the
number of time steps of a temporal graph, we show a complexity dichotomy (NP-hardness versus
polynomial-time solvability) for both problem variants. Moreover we prove both problem variants
to be NP-complete even on temporal graphs whose underlying graph is planar. We further show
that, on temporal graphs with planar underlying graph, if additionally the number of time steps
is constant, then the problem variant for strict paths is solvable in quasi-linear time. Finally, we
introduce and motivate the notion of a temporal core (vertices whose incident edges change over
time). We prove that the non-strict variant is fixed-parameter tractable when parameterized by
the size of the temporal core, while the strict variant remains NP-complete, even for constant-size
temporal cores.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity prob-
lems, Theory of computation → Fixed parameter tractability, Theory of computation → Prob-
lems, reductions and completeness

Keywords and phrases (non-)strict temporal paths, temporal core, single-source shortest paths,
node multiway cut, length-bounded cuts, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.45

Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
00963.

Acknowledgements We thank anonymous reviewers for their constructive feedback which helped
us to improve the presentation of this work.

1 Supported by the DFG, project DAMM (NI 369/13) and project TORE (NI 369/18).
2 Partially supported by the DFG, project MATE (NI 369/17).

© Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 45; pp. 45:1–45:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zschoche@tu-berlin.de
mailto:till.fluschnik@tu-berlin.de
mailto:h.molter@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.45
https://arxiv.org/abs/1711.00963
https://arxiv.org/abs/1711.00963
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 The Complexity of Finding Small Separators in Temporal Graphs

s z
2,4

1,2
1,2

1

1,3

3

4

2 2

1

(a) A temporal graph G.

G1: G2: G3: G4:

(b) Layers of G.

Figure 1 Subfigure (a) shows a temporal graph G and subfigure (b) shows its four lay-
ers G1, . . . , G4. The gray squared vertex forms a strict temporal (s, z)-separator, but no tem-
poral (s, z)-separator. The two squared vertices form a temporal (s, z)-separator.

1 Introduction

In complex network analysis, it is nowadays very common to have access to and process
graph data where the interactions among the vertices are time-stamped. When using static
graphs as a mathematical model, the dynamics of interactions are not reflected and important
information of the data might not be captured. Temporal graphs address this issue. A
temporal graph is, informally speaking, a graph where the edge set may change over a
discrete time interval, while the vertex set remains unchanged. Having the dynamics of
interactions represented in the model, it is essential to adapt definitions such as connectivity
and paths to respect temporal features. This directly affects the notion of separators in the
temporal setting. Vertex separators are a fundamental primitive in static network analysis
and it is well-known that they can be computed in polynomial time (see, e.g., proof of [1,
Theorem 6.8]). In contrast to the static case, Kempe et al. [25] showed that in temporal
graphs it is NP-hard to compute minimum separators.

Temporal graphs are well-established in the literature and are also referred to as time-
varying [27] and evolving [15] graphs, temporal networks [24, 25, 30], multidimensional
networks [8], link streams [26, 36], and edge-scheduled networks [7]. In this work, we use the
well-established model in which each edge has a time stamp [8, 24, 3, 22, 25, 30]. Assuming
discrete time steps, this is equivalent to a sequence of static graphs over a fixed set of
vertices [31]. Formally, we define a temporal graph as follows.

I Definition 1.1 (Temporal Graph). An (undirected) temporal graph G = (V,E, τ) is an
ordered triple consisting of a set V of vertices, a set E ⊆

(
V
2
)
× {1, . . . , τ} of time-edges, and

a maximal time label τ ∈ N.

See Figure 1 for an example with τ = 4, that is, a temporal graph with four time steps, also
referred to as layers. The static graph obtained from a temporal graph G by removing the
time stamps from all time-edges we call the underlying graph of G.

Many real-world applications have temporal graphs as underlying mathematical model.
For instance, it is natural to model connections in public transportation networks with
temporal graphs. Other examples include information spreading in social networks, commu-
nication in social networks, biological pathways, or spread of diseases [24].

A fundamental question in temporal graphs, addressing issues such as connectivity [5, 30],
survivability [27], and robustness [34], is whether there is a “time-respecting” path from a

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:3

distinguished start vertex s to a distinguished target vertex z.3 We provide a thorough study
of the computational complexity of separating s from z in a given temporal graph.

Moreover, we study two natural restrictions of temporal graphs:
(i) planar temporal graphs and
(ii) temporal graphs with a bounded number of vertices incident to edges that are not

permanently existing – these vertices form the so-called temporal core.
Both restrictions are naturally motivated by settings e.g. occurring in (hierarchical) traffic
networks. We also consider two very similar but still significantly differing temporal path
models (both used in the literature), leading to two corresponding models of temporal
separation.

Two path models. We start with the introduction of the “non-strict” path model [25]. Given
a temporal graph G = (V,E, τ) with two distinct vertices s, z ∈ V , a temporal (s, z)-path
of length ` in G is a sequence P = (({s = v0, v1}, t1), ({v1, v2}, t2), . . . , ({v`−1, v` = z}, t`))
of time-edges in E, where vi 6= vj for all i, j ∈ {0, . . . , `} with i 6= j and ti ≤ ti+1 for
all i ∈ {1, . . . , ` − 1}. A vertex set S with S ∩ {s, z} = ∅ is a temporal (s, z)-separator if
there is no temporal (s, z)-path in G− S := (V \ S, {({v, w}, t) ∈ E | v, w ∈ V \ S}, τ). We
are ready to state the central problem of our paper.

Temporal (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z ∈ V , and k ∈ N.
Question: Does G admit a temporal (s, z)-separator of size at most k?

Our second path model is the “strict” variant. A temporal (s, z)-path P is called strict if
ti < ti+1 for all i ∈ {1, . . . , ` − 1}. In the literature, strict temporal paths are also known
as journeys [3, 2, 31, 30].4 A vertex set S is a strict temporal (s, z)-separator if there is no
strict temporal (s, z)-path in G− S. Thus, our second main problem, Strict Temporal
(s, z)-Separation, is defined in complete analogy to Temporal (s, z)-Separation, just
replacing (non-strict) temporal separators by strict ones.

While the strict version of temporal separation immediately appears as natural, the non-
strict variant can be viewed as a more conservative version of the problem. For instance, in a
disease-spreading scenario the spreading speed might be unclear. To ensure containment of the
spreading by separating patient zero (s) from a certain target (z), a temporal (s, z)-separator
might be the safer choice.

Main results. Table 1 provides an overview on our results.5
A central contribution is to prove that both Temporal (s, z)-Separation and Strict

Temporal (s, z)-Separation are NP-complete for all τ ≥ 2 and τ ≥ 5, respectively,
strengthening a result by Kempe et al. [25] (they show NP-hardness of both variants for
all τ ≥ 12). For Temporal (s, z)-Separation, our hardness result is already tight.6 For
the strict variant, we identify a dichotomy in the computational complexity by proving

3 In the literature the sink is usually denoted by t. To be consistent with Michail [31] we use z instead as
we reserve t to refer to points in time.

4 We also refer to Himmel [21] for a thorough discussion and comparison of temporal path concepts.
5 Due to the space constraints, several details and proofs (marked with ?) are deferred to a long version
of this paper, see e.g. https://arxiv.org/abs/1711.00963.

6 Temporal (s, z)-Separation with τ = 1 is equivalent to (s, z)-Separation on static graphs.

MFCS 2018

https://arxiv.org/abs/1711.00963

45:4 The Complexity of Finding Small Separators in Temporal Graphs

Table 1 Overview on our results. Herein, NP-c. abbreviates NP-complete, n and m denote
the number of vertices and time-edges, respectively, G↓ refers to the underlying graph of an input
temporal graph. a (Thm. 3.1; W[1]-hard wrt. k) b (Thm. 3.2) c (Cor. 4.3) d (Prop. 4.4) e (Thm. 5.2)

General Planar G↓ Temporal core
(Section 3) (Section 4) (Section 5)

(s, z)-Separation 2 ≤ τ ≤ 4 5 ≤ τ τ unbounded τ constant constant size

Temporal NP-completea NP-c.c open nO(1) +O(m log m) e

Strict Temporal O(k ·m) b NP-c.a NP-c.c O(m log m) d NP-completea

polynomial-time solvability of Strict Temporal (s, z)-Separation for τ ≤ 4. Moreover,
we prove that both problems remain NP-complete on temporal graphs that have an underlying
graph that is planar.

We introduce the notion of temporal cores in temporal graphs. Informally, the temporal
core of a temporal graph is the set of vertices whose edge-incidences change over time.
We prove that Temporal (s, z)-Separation is fixed-parameter tractable (FPT) when
parameterized by the size of the temporal core, while Strict Temporal (s, z)-Separation
remains NP-complete even if the temporal core is empty.

A particular aspect of our results is that they demonstrate that the choice of the model
(strict versus non-strict) for a problem can have a crucial impact on the computational
complexity of said problem. This contrasts with wide parts of the literature where both
models were used without discussing the subtle but crucial differences in computational
complexity.

Technical contributions. To show the polynomial-time solvability of Strict Temporal
(s, z)-Separation for τ ≤ 4, we prove that a classic separator result of Lovász et al. [28]
translates to the strict temporal setting. This is surprising since many other results about
separators in the static case do not apply in the temporal case. In this context, we also
develop a linear-time algorithm for Single-Source Shortest Strict Temporal Paths,
improving the running time of the best known algorithm due to Wu et al. [37] by a logarithmic
factor.

We settle the complexity of Length-Bounded (s, z)-Separation on planar graphs by
showing its NP-hardness, which was left unanswered by Fluschnik et al. [17] and promises to
be a valuable intermediate problem for proving hardness results. In the hardness reduction
for Length-Bounded (s, z)-Separation we introduce a grid-like, planarity-preserving
vertex gadget that is generally useful to replace “twin” vertices which in many cases are not
planarity-preserving and which are often used to model weights.

While showing that Temporal (s, z)-Separation is fixed-parameter tractable when
parameterized by the size of the temporal core, we employ a case distinction on the size of
the temporal core, and show that in the non-trivial case we can reduce the problem to Node
Multiway Cut. We identify an “above lower bound parameter” for Node Multiway Cut
that is suitable to lower-bound the size of the temporal core, thereby making it possible to
exploit a fixed-parameter tractability result due to Cygan et al. [12].

Related work. Our most important reference is the work of Kempe et al. [25] who proved
that Temporal (s, z)-Separation is NP-hard. In contrast, Berman [7] proved that
computing temporal (s, z)-cuts (edge deletion instead of vertex deletion) is polynomial-time

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:5

solvable. In the context of survivability of temporal graphs, Liang and Modiano [27] studied
cuts where an edge deletion only lasts for δ consecutive time stamps. Moreover, they studied
a temporal maximum flow defined as the maximum number of sets of journeys where each
two journeys in a set do not use a temporal edge within some δ time steps. A different notion
of temporal flows on temporal graphs was introduced by Akrida et al. [2]. They showed how
to compute in polynomial time the maximum amount of flow passing from a source vertex s
to a sink vertex z until a given point in time.

The vertex-variant of Menger’s Theorem [29] states that the maximum number of vertex-
disjoint paths from s to z equals the size of a minimum-cardinality (s, z)-separator. In static
graphs, Menger’s Theorem allows for finding a minimum-cardinality (s, z)-separator via
maximum flow computations. However, Berman [7] proved that the vertex-variant of an
analogue to Menger’s Theorem for temporal graphs, asking for the maximum number of
(strict) temporal paths instead, does not hold. Kempe et al. [25] proved that the vertex-
variant of the former analogue to Menger’s Theorem holds true if the underlying graph
excludes a fixed minor. Mertzios et al. [30] proved another analogue of Menger’s Theorem:
the maximum number of strict temporal (s, z)-path which never leave the same vertex at the
same time equals the minimum number of node departure times needed to separate s from z,
where a node departure time (v, t) is the vertex v at time point t.

Michail and Spirakis [32] introduced the time-analogue of the famous Traveling Sales-
person problem and studied the problem on temporal graphs of dynamic diameter d ∈ N,
that is, informally speaking, on temporal graphs where every two vertices can reach each
other in at most d time steps at any time. Erlebach et al. [14] studied the same problem on
temporal graphs where the underlying graph has bounded degree, bounded treewidth, or
is planar. Additionally, they introduced a class of temporal graphs with regularly present
edges, that is, temporal graphs where each edge is associated with two integers upper- and
lower-bounding consecutive time steps of edge absence. Axiotis and Fotakis [5] studied the
problem of finding the smallest temporal subgraph of a temporal graph such that single-
source temporal connectivity is preserved on temporal graphs where the underlying graph has
bounded treewidth. In companion work, we recently studied the computational complexity
of (non-strict) temporal separation on several other restricted temporal graphs [18].

2 Preliminaries

Let N denote the natural numbers without zero. For n ∈ N, we use [n] := [1, n] = {1, . . . , n}.

Static graphs. We use basic notations from (static) graph theory [13]. Let G = (V,E)
be an undirected, simple graph. We use V (G) and E(G) to denote the set of vertices
and set of edges of G, respectively. We denote by G − V ′ := (V \ V ′, {{v, w} ∈ E |
v, w ∈ V \ V ′}) the graph G without the vertices in V ′ ⊆ V . For V ′ ⊆ V , G[V ′] :=
G − (V \ V ′) denotes the induced subgraph of G by V ′. A path of length ` is sequence of
edges P = ({v1, v2}, {v2, v3}, . . . , {v`, v`+1}) where vi 6= vj for all i, j ∈ [` + 1] with i 6= j.
We set V (P) = {v1, v2, . . . , v`+1}. Path P is an (s, z)-path if s = v1 and z = v`+1. A
set S ⊆ V \ {s, z} of vertices is an (s, z)-separator if there is no (s, z)-path in G− S.

Temporal graphs. Let G = (V,E, τ) be a temporal graph. The graph Gi(G) = (V,Ei(G))
is called layer i of the temporal graph G = (V,E, τ) where {v, w} ∈ Ei(G)⇔ ({v, w}, i) ∈ E.
The underlying graph G↓(G) of a temporal graph G = (V,E, τ) is defined as G↓(G) :=
(V,E↓(G)), where E↓(G) = {e | (e, t) ∈ E}. (We write Gi, Ei, G↓, and E↓ for short

MFCS 2018

45:6 The Complexity of Finding Small Separators in Temporal Graphs

if G is clear from the context.) For X ⊆ V we define the induced temporal subgraph of X
by G[X] := (X, {({v, w}, t) ∈ E | v, w ∈ X}, τ). We say that G is connected if its underlying
graph G↓ is connected. For surveys concerning temporal graphs we refer to [9, 31, 24, 26, 23].

Strict and non-strict temporal separators. Throughout the paper we assume that the
underlying graph of the temporal input graph G is connected and that there is no time-edge
between s and z. Furthermore, in accordance with Wu et al. [37] we assume that the
time-edge set E is ordered by ascending time stamps. Moreover, we can assume that the
number of layers is at most the number of time-edges:

I Lemma 2.1 (?). Let I = (G = (V,E, τ), s, z, k) be an instance of (Strict) Temporal
(s, z)-Separation. There is an algorithm which computes in O(|E|) time an instance I ′ =
(G′ = (V,E′, τ ′), s, z, k) of (Strict) Temporal (s, z)-Separation which is equivalent
to I, where τ ′ ≤ |E′|.

Regarding our two models, we have the following connection:

I Lemma 2.2 (?). There is a linear-time computable many-one reduction from Strict
Temporal (s, z)-Separation to Temporal (s, z)-Separation that maps any instance
(G = (V,E, τ), s, z, k) to an instance (G′ = (V ′,E′, τ ′), s, z, k′) with k′ = k and τ ′ = 2 · τ .

3 Hardness Dichotomy Regarding the Number of Layers

In this section we settle the complexity dichotomy of both Temporal (s, z)-Separation and
Strict Temporal (s, z)-Separation regarding the number τ of time steps. We observe
that both problems are strongly related to the following NP-complete [10, 35] problem:

Length-Bounded (s, z)-Separation (LBS)
Input: An undirected graph G = (V,E), distinct vertices s, z ∈ V , and k, ` ∈ N.
Question: Is there a subset S ⊆ V \ {s, z} such that |S| ≤ k and there is no (s, z)-path

in G− S of length at most `?

Length-Bounded (s, z)-Separation is NP-complete even if the lower bound ` for the
path length is five [6] and W[1]-hard with respect to the postulated separator size [20]. We
obtain the following, improving a result by Kempe et al. [25] who showed NP-completeness of
Temporal (s, z)-Separation and Strict Temporal (s, z)-Separation for all τ ≥ 12.

I Theorem 3.1 (?). Temporal (s, z)-Separation is NP-complete for every maximum
label τ ≥ 2 and Strict Temporal (s, z)-Separation is NP-complete for every τ ≥ 5.
Moreover, both problems are W[1]-hard when parameterized by the solution size k.

We only present the construction of the NP-hardness reduction for Temporal (s, z)-Sepa-
ration, which is inspired by Baier et al. [6], and postpone the rest to the long version.

Proof (Construction). To show NP-completeness of Temporal (s, z)-Separation for
τ = 2 we present a reduction from the Vertex Cover problem where, given a graph
G = (V,E) and an integer k, the task is to determine whether there exists a set V ′ ⊆ V of
size at most k such that G−V ′ does not contain any edge. Let (G = (V,E), k) be an instance
of Vertex Cover. We say that V ′ ⊆ V is a vertex cover in G of size k if |V ′| = k and V ′
is a solution to (G = (V,E), k). We refine the gadget of Baier et al. [6, Theorem 3.9] and
reduce from Vertex Cover to Temporal (s, z)-Separation. Let I := (G = (V,E), k)
be a Vertex Cover instance and n := |V |. We construct a Temporal (s, z)-Separation

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:7

v

w

x

s z

sv

v

zv1

1 2

2

2 1

sw

w

zw
1

1 2

2

2 1

sx

x

zx

1

1 2

2

2 1

1

1

Figure 2 The Vertex Cover instance (G, 1) (left) and the corresponding Temporal (s, z)-
Separation instance from the reduction of Theorem 3.1 (right). The edge-edges are dashed (red),
the vertex-edges are solid (green), and the vertex gadgets are in dotted boxes.

instance I ′ := (G′ = (V ′,E′, 2), s, z, n+ k), where V ′ := V ∪ {sv, tv | v ∈ V } ∪ {s, z} are the
vertices and the time-edges are defined as

E′ :=
vertex-edges︷ ︸︸ ︷

{({s, sv}, 1), ({sv, v}, 1), ({v, zv}, 2), ({zv, z}, 2), ({s, v}, 2), ({v, z}, 1) | v ∈ V } ∪
{({sv, zw}, 1), ({sw, zv}, 1) | {v, w} ∈ E}︸ ︷︷ ︸

edge-edges

.

Note that |V ′| = 3 ·n+ 2, |E′| = 6 · |V ′|+ 2 · |E|, and I ′ can be computed in polynomial time.
For each vertex v ∈ V there is a vertex gadget which consists of three vertices sv, v, zv and
six vertex-edges. In addition, for each edge {v, w} ∈ E there is an edge gadget which consists
of two edge-edges {sv, zw} and {zv, sw}. See Figure 2 for an example. J

In the remainder of this section we prove that the bound on τ is tight in the strict case
(for the non-strict case the tightness is obvious). This is the first case where we can observe a
significant difference between the strict and the non-strict variant of our separation problem.

I Theorem 3.2. Strict Temporal (s, z)-Separation for maximum label τ ≤ 4 can be
solved in O(k · |E|) time, where k is the solution size.

As a subroutine hidden in several of our algorithms, we need to solve the Single-Source
Shortest Strict Temporal Paths problem on temporal graphs: find shortest strict
paths from a source vertex s to all other vertices in the temporal graph. Herein, we say that a
strict temporal (s, z)-path is shortest if there is no strict temporal (s, z)-path of length `′ < `.
Indeed, we provide a linear-time algorithm for this. We believe this to be of independent
interest; it improves (with few adaptations to the model; for details we refer to the long
version) previous results by Wu et al. [37], but in contrast to the algorithm of Wu et al. [37]
our subroutine cannot be adjusted to the non-strict case.

I Proposition 3.3 (?). Single-Source Shortest Strict Temporal Paths is solvable
in Θ(|E|) time.

Our algorithm behind Theorem 3.2 executes the following steps:
1. As a preprocessing step, remove unnecessary time-edges and vertices from the graph.
2. Compute an auxiliary graph called directed path cover graph of the temporal graph.
3. Compute a separator for the directed path cover graph.

MFCS 2018

45:8 The Complexity of Finding Small Separators in Temporal Graphs

s z

2 2

2 1

t

s

V(1,3) V(2,2) V(3,1)

z

V(1,2) V(2,1)

Figure 3 The left side depicts an excerpt of a reduced temporal graph with maximum time-edge
label τ = 4. Dashed arcs labeled with a number x indicate a shortest strict temporal path of
length x. The right side depicts the directed path cover graph D from s to z of the reduced temporal
graph. A gray arc from vertex set V(i,j) to vertex set V(i′,j′) denotes that for two vertices v ∈ V(i,j)
and w ∈ V(i′,j′) there can be an arc from v to w in D. Take as an example the square-shaped vertex
in V(2,2) and the diamond-shaped vertex in V(2,1).

In the following, we explain each of the steps in more detail.
The preprocessing reduces the temporal graph such that it has the following properties.

A temporal graph G = (V,E, τ) with two distinct vertices s, z ∈ V is reduced if
(i) the underlying graph G↓ is connected,
(ii) for each time-edge e ∈ E there is a strict temporal (s, z)-path which contains e, and
(iii) there is no strict temporal (s, z)-path of length at most two in G.
This preprocessing step can be performed in polynomial time:

I Lemma 3.4 (?). Let I = (G = (V,E, τ), s, z, k) be an instance of Strict Temporal
(s, z)-Separation. In O(k · |E|) time, one can either decide I or construct an instance I ′ =
(G′ = (V ′,E′, τ), s, z, k′) of Strict Temporal (s, z)-Separation such that I ′ is equivalent
to I, G′ is reduced, |V ′| ≤ |V |, |E′| ≤ |E|, and k′ ≤ k.

Lovász et al. [28] showed that the minimum size of an (s, z)-separator for paths of length
at most four in a graph is equal to the number of vertex-disjoint (s, z)-paths of length at
most four in a graph. We adjust their idea to strict temporal paths on temporal graphs.
The proof of Lovász et al. [28] implicitly relies on the transitivity of connectivity in static
graphs. This does not hold for temporal graphs; hence, we have to extend their result to the
temporal case. To this end, we define a directed auxiliary graph.

I Definition 3.5 (Directed Path Cover Graph). Let G = (V,E, τ = 4) be a reduced temporal
graph with s, z ∈ V . The directed path cover graph from s to z of G is a directed graph D =
(V, ~E) such that (v, w) ∈ ~E if and only if
(i) v, w ∈ V ,
(ii) ({v, w}, t) ∈ E for some t ∈ [τ], and
(iii) v ∈ V(i,j) and w ∈ V(i′,j′) such that i < i′, v ∈ V(2,2) and w ∈ V(2,1), v = s

and w ∈ V(1,j), or w = z and v ∈ V(i,1) for some i, j ∈ {2, 3}.
Herein, a vertex x ∈ V is in the set V(i,j) if the shortest strict temporal (s, x)-path is of
length i and the shortest strict temporal (x, z)-path is of length j.

Figure 3 depicts a generic directed path cover graph of a reduced temporal graph with τ = 4.
Note that due to the definition of reduced temporal graphs, one can prove that the set V(1,1)
is always empty, and hence not depicted in Figure 3. This is a crucial property that allows
us to prove the following.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:9

s

x

v

V(1,1) y

z

1 2

33

4 5

Figure 4 A reduced temporal graph with maximum label τ = 5 where the vertex set V(1,1) of the
directed path cover graph is not empty. The solid (red) and dashed (green) edges are strict temporal
paths and show that edges ({s, v}, 3) and ({v, z}, 3) are not removed when the graph is reduced.
Furthermore, v is not removed since (({s, v}, 3), ({v, z}, 3)) is not a strict temporal path.

I Lemma 3.6 (?). Let G = (V,E, τ = 4) be a reduced temporal graph with s, z ∈ V . Then the
directed path cover graph D from s to z of G can be computed in O(|E|) time and S ⊆ V \{s, z}
is a strict temporal (s, z)-separator in G if and only if S is an (s, z)-separator in D.

Figure 4 shows that if τ = 5, then we can construct a reduced temporal graph where the set
V(1,1) is not empty. This indicates why our algorithm fails for τ = 5.

Finally, with Lemmata 3.4 and 3.6 we can prove Theorem 3.2.

Proof of Theorem 3.2. Let I := (G = (V,E, τ = 4), s, z, k) be an instance of Strict
Temporal (s, z)-Separation. First, apply Lemma 3.4 in O(k · |E|) time to either decide I
or to obtain an instance I ′ = (G′ = (V ′,E′, τ), s, z, k′) of Strict Temporal (s, z)-Sepa-
ration. In the second case, compute the directed path cover graph D of G′ from s to z
in O(|E′|) time (by Lemma 3.6). Next, check whether D has an (s, z)-separator of size at
most k′ in O(k′ · |E′|) time by a folklore result [19]. By Lemma 3.6, D has an (s, z)-separator
of size k′ if and only if G′ has a strict temporal (s, z)-separator of size k′. Since by Lemma 3.4
we have that G′ is reduced, |V ′| ≤ |V |, |E′| ≤ |E|, and k′ ≤ k, the overall running time
is O(k · |E|). J

4 On Temporal Graphs with Planar Underlying Graph

In this section, we study our problems on planar temporal graphs, that is, temporal graphs
that have a planar underlying graph. We show that both Temporal (s, z)-Separation
and Strict Temporal (s, z)-Separation remain NP-complete on planar temporal graphs.
On the positive side, we show that on planar temporal graphs with a constant number of
layers, Strict Temporal (s, z)-Separation can be solved in O(|E| · log |E|) time.

In order to prove our hardness results, we first prove NP-hardness for Length-Bounded
(s, z)-Separation on planar graphs – a result which we consider to be of independent
interest; note that NP-completeness on planar graphs was only known for the edge-deletion
variant of Length-Bounded (s, z)-Separation on undirected graphs [17] and weighted
directed graphs [33].

I Theorem 4.1. Length-Bounded (s, z)-Separation on planar graphs is NP-hard.

Proof. We give a many-one reduction from the NP-complete [17] edge-weighted variant of
Length-Bounded (s, z)-Cut, referred to as Planar Length-Bounded (s, z)-Cut, where
the input graph G = (V,E) is planar, has edge costs c : E → {1, k + 1}, has maximum
degree ∆ = 6, the degree of s and z is three, and s and z are incident to the outer face. Since
the maximum degree is constant, one can replace a vertex with a planar grid-like gadget.

MFCS 2018

45:10 The Complexity of Finding Small Separators in Temporal Graphs

s v z

1 k + 1

C4
s C3

s

· · · · · ·

C6
s C1

s

· · · · · ·

Gs

. . .
. . .

. . .
. . .

C5
s

...

...

...

C2
s

...

...

...

us
1,1

· · · · · ·

C1
v

· · · · · ·

Gv

. . .
. . .

. . .
. . .

...

...

...

C2
v

...

...

...

· · · · · ·

C1
z

· · · · · ·

Gz

. . .
. . .

. . .
. . .

...

...

...

...

...

...

Figure 5 A simple planar graph G (left) with edge costs (above edges) and the obtained graph G′

in the reduction from Theorem 4.1. The connector sets are highlighted in gray. The edge-gadgets
are indicated by dash-dotted lines.

Let I := (G = (V,E, c), s, z, `, k) be an instance of Planar Length-Bounded (s, z)-
Cut, and we assume k to be even7. We construct an instance I ′ := (G′, s′, z′, `′, k) of
Length-Bounded (s, z)-Separation as follows (refer to Figure 5 for an illustration).
Construction. For each vertex v ∈ V , we introduce a vertex-gadget Gv which is a grid of
size (2k + 2) × (2k + 2), that is, a graph with vertex set {uvi,j | i, j ∈ [2k + 2]} and edge
set {{uvi,j , uvi′,j′} | |i− i′|+ |j− j′| = 1}. There are six pairwise disjoint subsets C1

v , . . . , C
6
v ⊆

V (Gv) of size k + 1 that we refer to as connector sets. As we fix an orientation of Gv
such that uv1,1 is in the top-left, there are two connector sets on the top of Gv, two on
the bottom of Gv, one on the left of Gv, and one on the right of Gv. Formally, C1

v =
{uv1,k+2, . . . , u

v
1,2k+2}, C2

v = {uvk/2,2k+2, . . . , u
v
3k/2,2k+2}, C3

v = {uv2k+2,k+2, . . . , u
v
2k+2,2k+2},

C4
v = {uv2k+2,1, . . . , u

v
2k+2,k+1}, C5

v = {uvk/2,1, . . . , u
v
3k/2,1}, and C6

v = {uv1,1, . . . , uv1,k+1}.
Note that all (x, y)-paths are of length at most k′ := (2k + 2)2 − 1, for all x, y ∈ V (Gv),

because there are only (2k + 2)2 vertices in V (Gv).
Let φ(G) be a plane embedding of G. We say that an edge e incident with vertex v ∈ V

is at position i on v if e is the ith edge incident with v when counted clockwise with respect
to φ(G).

For each edge e = {v, w}, we introduce an edge-gadget Ge that differs on the weight of e,
as follows. Let e be at position i ∈ {1, . . . , 6} on v and at position j ∈ {1, . . . , 6} on w.

If c(e) = 1, then Ge is constructed as follows. Add a path consisting of (`+ 1) · k′ − 1
vertices and connect one endpoint with each vertex in Civ by an edge and connect the other
endpoint with each vertex in Cjw by an edge.

If c(e) = k + 1, then Ge is constructed as follows. We introduce a planar matching
between the vertices in Civ and Cjw. That is, for instance, we connect vertex uv1,k+2+p with
vertex uw1,2k+2−p for each p ∈ {0, . . . , k}, if i = j = 1, or we connect vertex uv1,1+p with
vertex uw2k+2,3k/2−p for each p ∈ {0, . . . , k}, if i = 6 and j = 2 (we omit the remaining cases).
Then, replace each edge by a path of length at least (`+ 1) · k′ + 1 where its endpoints are
identified with the endpoints of the replaced edge. Hence, a path between two vertex-gadgets
has length at least (`+ 1) · k′ + 1.

Next, we choose connector sets Ci′s and Cj′

z such that no vertex v ∈ Ci′s ∪ Cj
′

z is adjacent
to a vertex from an edge-gadget. Such i′ and j′ always exist because the degrees of s and z
are both three. Now, we add two special vertices s′ and z′ and edges between s′ and each
vertex in Ci′s , as well as between z′ and each vertex in Cj′

z .

7 If k is odd, since s and z are incident to the outer face, then we can add a path of length `− 1 with
endpoints s and z and set the budget for edge deletions to k + 1.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:11

Finally, we set `′ := 2 + (`+ 1) · k′ + ` ((`+ 1) · k′ + 1) . Note that G′ can be computed
in polynomial time. Moreover, one can observe that G′ is planar by obtaining an embedding
from φ. This concludes the description of the construction.
Correctness. We claim that I is a yes-instance if and only if I ′ is a yes-instance.
⇒: Let I be a yes-instance. Thus, there is a solution C ⊂ E with c(C) ≤ k such that there is
no (s, z)-path of length at most ` in G− C. We construct a set S ⊂ V (G′) of size at most k
by taking for each {v, w} ∈ C one arbitrary vertex from the edge-gadget G{v,w} into S. Note
that since c(C) ≤ k, each edge in C is of cost one.

Assume towards a contradiction that there is a shortest (s′, z′)-path P ′ of length at
most `′ in G′−S. Since a path between two vertex-gadgets has length at least (`+ 1) · k′+ 1,
we know that P ′ goes through at most ` edge-gadgets. Otherwise P ′ would be of length at
least 2 + (`+ 1) · [(`+ 1) · k′ + 1] = 2 + (`+ 1) · k′ + ` · [(`+ 1) · k′ + 1] + 1 = `′ + 1. Now, we
reconstruct an (s, z)-path P in G corresponding to P ′ by taking an edge e ∈ E into P if P ′
goes through the edge-gadget Ge. Hence, the length of P is at most `. This contradicts that
there is no (s, z)-path of length at most ` in G−C. Consequently, there is no (s′, z′)-path of
length at most `′ in G′ − S and I ′ is a yes-instance.
⇐: Let I ′ be a yes-instance. Thus, there is a solution S ⊆ V (G′) of minimum size (at most k)
such that there is no (s′, z′)-path of length at most `′ in G′ − S. Since S is of minimum size,
it follows from the following claim that V (Gv) ∩ S = ∅ for all v ∈ V .

I Claim 4.2. Let Gv be a vertex-gadget and i, j ∈ {1, . . . , 6} with i 6= j. Then, for each
vertex set S ⊆ V (Gv) of size at most k it holds that there are v1 ∈ Civ \ S and v2 ∈ Cjv \ S
such that there is a (v1, v2)-path of length at most k′ in Gv − S.

Proof of Claim 4.2. Let Civ, Cjv two connector sets of a vertex-gadget Gv, where i, j ∈
{1, . . . , 6} and i 6= j. We add vertices a and b and edges {a, a′} and {b, b′} toGv, where a′ ∈ Civ
and b′ ∈ Cjv . There are

(6
2
)
different cases in which i 6= j. It is not difficult to see that in

each case there are k + 1 vertex-disjoint (a, b)-paths. The claim then follows by Menger’s
Theorem [29]. J

Note that by minimality of S, it holds that V (Ge)∩S = ∅ for all e ∈ E with c(e) = k+ 1.
We construct an edge set C ⊆ E of cost at most k by taking {v, w} ∈ E into C if there is
a y ∈ V (G{v,w}) ∩ S.

Assume towards a contradiction that there is a shortest (s, z)-path P of length at most `
in G − C. We reconstruct an (s′, z′)-path P ′ in G′ which corresponds to P as follows.
First, we take an edge {s′, v} ∈ E(G′) such that v ∈ Ci

′

s \ S. Such a v always exists,
because |Ci′s | = k + 1 and |S| ≤ k. Let {s, w} ∈ E be the first edge of P and at position i
on w. Then we add a (v, v′)-path Ps in Gs − S, such that v′ ∈ Cis \ S. Due to Claim 4.2,
such a (v, v′)-path Ps always exists in Gs − S and is of length at most k′.

We take an edge-gadget Ge into P ′ if e is in P . Recall, that an edge-gadget is a path of
length (`+ 1) ·k′+ 1. Due to Claim 4.2, we can connect the edge-gadgets G{v1,v2}, G{v2,v3} of
two consecutive edges {v1, v2}, {v2, v3} in P by a path of length at most k′ in Gv2 . Let {vp, z}
be the last edge in P , be at position j on z, v ∈ Cjz , and v′ ∈ Cj

′

z . We add a (v, v′)-path of
length k′ in Gz − S (Claim 4.2). Note that P ′ visits at most `+ 1 vertex-gadgets and ` edge-
gadgets. The length of P ′ is at most 2 + (`+ 1) · k′ + ` [(`+ 1) · k′ + 1] = `. This contradicts
that S forms a solution for I ′.

It follows that there is no (s, z)-path of length at most ` inG−C and I is a yes-instance. J

From the proofs of Theorem 3.1 and Lemma 2.2 (planarity-preserving reductions for the
underlying graph), together with Theorem 4.1 we get the following:

MFCS 2018

45:12 The Complexity of Finding Small Separators in Temporal Graphs

I Corollary 4.3. Both Temporal (s, z)-Separation and Strict Temporal (s, z)-Sepa-
ration on planar temporal graphs are NP-complete.

In contrast to the case of general temporal graphs, Strict Temporal (s, z)-Separation
on planar temporal graphs is efficiently solvable if the maximum label τ is any constant. To
this end, we employ the optimization variant of Courcelle’s Theorem [4, 11].

I Proposition 4.4 (?). Strict Temporal (s, z)-Separation on planar temporal graphs
can be solved in O(|E| · log |E|) time, if the maximum label τ is constant.

Due to space constrains, we only sketch how one can develop MSO formulas over temporal
graphs and postpone the full proof to the long version.

Proof (Sketch). Let I = (G = (V,E, τ), s, z, k) be an instance of Strict Temporal
(s, z)-Separation, where the underlying graph G↓ of G is planar. We define the edge-
labeled graph L(G) to be G↓ with the edge-labeling ω : E(G↓)→ [2τ − 1] with ω({v, w}) =∑τ
i=1 1{v,w}∈Ei · 2i−1, where 1{v,w}∈Ei = 1 if and only if ({v, w}, i) ∈ E, and 0 otherwise.

Observe that in binary representation, the i-th bit of ω({v, w}) is 1 if and only if {v, w}
exists at time point i.

We define the optimization variant of Strict Temporal (s, z)-Separation in MSO
on L(G). First, the MSO formula layer(e, t) :=

∨τ
i=1
∨
j∈σ(i,2τ−1)

(
t = i ∧ ω(e) = j

)
checks

whether an edge e is present in the layer t, where σ(i, j) := {x ∈ [j] | i-th bit of x is 1}.
Second, we can write an MSO formula tempadj(v, w, t) := ∃e∈E

(
inc(e, v) ∧ inc(e, w) ∧

layer(e, t)
)
to determine whether two vertices v and w are adjacent at time point t. Third,

there is an MSO formula

path(S) := ∃x1,...,xτ+1∈V \S

(
x1 = s ∧ xτ+1 = z ∧

∧τ
i=1
(
xi = xi+1 ∨ tempadj(xi, xi+1, i)

))
to check whether there is a strict temporal (s, z)-path which does not visit any vertex in S.
Note that the length of layer(e, t), and hence the length of path(S), is upper-bounded by
some function in 2O(τ). The facts that the length of a strict temporal (s, z)-path is at most τ
and the treewidth of a planar graph can be bounded in its diameter (see Flum and Grohe
[16]), together with an application of Courcelle’s Theorem (optimization variant, see long
version) on the MSO formula φ(S) := S ⊆ (V \ {s, z}) ∧ ¬path(S) complete the proof. J

5 On Temporal Graphs with Small Temporal Cores

In this section, we investigate the complexity of deciding (Strict) Temporal (s, z)-Sepa-
ration on temporal graphs where the number of vertices whose incident edges change over
time is small. We call the set of such vertices the temporal core of the temporal graph.

I Definition 5.1 (Temporal core). For a temporal graph G = (V,E, τ), the vertex set W =
{v ∈ V | ∃{v, w} ∈ (

⋃τ
i=1 Ei) \ (

⋂τ
i=1 Ei)} ⊆ V is called the temporal core.

A temporal graph is often composed of a public transport system and an ordinary street
network. Here, the temporal core consists of vertices involved in the public transport system.

For Strict Temporal (s, z)-Separation, we can observe that the hardness reduction
described in the proof of Theorem 3.1 produces an instance with an empty temporal core. In
stark contrast, we show that Temporal (s, z)-Separation is fixed-parameter tractable
when parameterized by the size of the temporal core8. We reduce an instance to Node

8 Note that we can compute the temporal core in O(|E| log |E|) time.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:13

W2

W1
s

W1

W3

zW3

W2

S

w2

w1

w3

SW

Figure 6 Illustration of the idea behind the proof of Theorem 5.2. Left-hand side: Sketch of
a temporal graph G (enclosed by the ellipse) with temporal (s, z) separator S (red hatched) and
induced partition {SW ,W1,W2,W3} of the temporal core W , where SW = W ∩ S. The outer rings
of W1,W2,W3 contain the open neighborhood of the sets. Right-hand side: Sketch of the constructed
graph G′ (enclosed by the ellipse). The partition {SW ,W1,W2,W3} is guessed in steps (1) and (2).
The vertices w1, w2, w3 with edges to the neighborhood of W1,W2,W3, respectively, are created in
step (3).

Multiway Cut (NWC) in such a way that we can use an above lower bound FPT-algorithm
due to Cygan et al. [12] for NWC as a subprocedure in our algorithm for Temporal
(s, z)-Separation. Note that the above lower bound parameterization is crucial to obtain
the desired FPT-running time bound. Recall the definition of NWC:

Node Multiway Cut (NWC)
Input: An undirected graph G = (V,E), a set of terminals T ⊆ V , and an integer k.
Question: Is there a set S ⊆ (V \ T) of size at most k such there is no (t1, t2)-path for

every distinct t1, t2 ∈ T?

We remark that Cygan et al.’s algorithm can be modified to obtain a solution S. Formally,
we show the following.

I Theorem 5.2. Temporal (s, z)-Separation can be solved in 2|W |·(log |W |+2) · |V |O(1) +
O(|E| log |E|) time, where W denotes the temporal core of the input graph.

Proof. Let instance I = (G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation with
temporal core W ⊆ V be given. Without loss of generality, we can assume that s, z ∈W , as
otherwise we add two vertices one being incident only with s and the other being incident
only with z, both only in layer one. Furthermore, we need the notion of a maximal static
subgraph Ĝ of a temporal graph G = (V,E): It contains all edges that appear in every layer,
more specifically Ĝ = (V, Ê) with Ê =

⋂
i∈[τ] Ei. Our algorithm works as follows.

(1) Guess a set SW ⊆ (W \ {s, z}) of size at most k.
(2) Guess a number r and a partition {W1, . . . ,Wr} of W \ SW such that s and z are not in

the same Wi, for some i ∈ [r].
(3) Construct the graph G′ by copying Ĝ −W and adding a vertex wi for each part Wi.

Add edge sets {{v, wi} | v ∈ NĜ(Wi) \W} for all i ∈ [r] and for all i, j ∈ [r] add an
edge {wi, wj} if NĜ(Wi) ∩Wj 6= ∅.

(4) Solve the NWC instance I ′ = (G′, {w1, . . . , wr}, k − |SW |).
(5) If a solution S′ is found for I ′ and S′ ∪ SW is a solution for I, then output yes.
(6) If all possible guesses in (1) and (2) are considered without finding a solution for I, then

output no.
See Figure 6 for a visualization of the constructed graph G′. Since we do a sanity check in
step (5) it suffices to show that if G has a temporal (s, z)-separator of size at most k, then
there is a partition {SW ,W1, . . . ,Wr} of W where s and z are in different parts such that

MFCS 2018

45:14 The Complexity of Finding Small Separators in Temporal Graphs

(i) the NWC instance I ′ has a solution of size at most k − |SW |, and
(ii) if S′ is a solution to I ′, then SW ∪ S′ is a temporal (s, z)-separator in G.

Let S be a temporal (s, z)-separator of size at most k in G. First, we set SW = S ∩W .
Let C1, . . . , Cr be the connected components of Ĝ− S with Ci ∩W 6= ∅ for all i ∈ [r]. Now
we construct a partition {SW ,W1, . . . ,Wr} of W such that Wi = W ∩Ci for all i ∈ [r]. It is
easy to see that s and z are in different parts of this partition. Observe that for i, j ∈ [r]
with i 6= j the vertices v ∈Wi and u ∈Wj are in different connected components of Ĝ− S.
Hence, w1, . . . , wr are in different connected components of G′ − (S \ SW). Thus S \ SW is
a solution of size at most k − |SW | of the NWC instance I ′ = (G′, {w1, . . . , wr}, k − |SW |),
proving (i).

For the correctness, it remains to prove (ii). Let S′ be a solution of size at most k−|SW | of
the NWC instance I ′. We need to prove that S′∪SW forms a temporal (s, z)-separator in G.
Clearly, if S′ = S \ SW , we are done by the arguments before. Thus, assume S′ 6= S \ SW .
Since S′ is a solution to I ′, we know that w1, . . . , wr are in different connected components
of G′ − S′. Hence, for i, j ∈ [r] with i 6= j the vertices v ∈ Wi, u ∈ Wj are in different
connected components of Ĝ− (S′ ∪ SW).

Now assume towards a contradiction that there is a temporal (s, z)-path P in G−(S′∪SW).
Observe that {s, z} ⊆ V (P) ∩W . Hence, we have two different vertices u1, u2 ∈ V (P) ∩W
such that there is no temporal (u1, u2)-path in G − S and all vertices that are visited by
P between u1 and u2 are contained in V \W : Take the furthest vertex in P that is also
contained in W and is reachable by a temporal path from s in G−S as u1, and take the next
vertex (after u1) in P that is also contained inW as u2. Note that u1 and u2 are disconnected
in Ĝ− S, and hence there are i, j ∈ [r] with i 6= j such that u1 ∈Wi and u2 ∈Wj . Since P
does not visit any vertices in (S′ ∪ SW) we can conclude that u1 and u2 are connected
in Ĝ− (S′ ∪ SW), and hence wi and wj are connected in G′ − S′. This contradicts the fact
that S′ is a solution for I ′.
Running time: It remains to show that the our algorithm runs in the proposed time. For
the guess in step (1) there are at most 2|W | many possibilities. For the guess in step (2)
there are at most B|W | ≤ 2|W |·log(|W |) many possibilities, where Bn is the n-th Bell number.
Step (3) and the sanity check in step (5) can clearly be done in polynomial time.

Let L be a minimum (s, z)-separator in Ĝ − (W \ {s, z}). If k ≥ |W \ {s, z}| + |L|,
then (W \ {s, z}) ∪ L is a temporal (s, z)-separator of size at most k for G. Otherwise, we
have that k− |L| < |W |. Cygan et al. [12] showed that NWC can be solved in 2k−b · |V |O(1)

time , where b := maxx∈T min{|S| | S ⊆ V is an (x, T \ {x})-separator}. Since s and z are
not in the same Wi for any i ∈ [r], we know that |L| ≤ b. Hence, k − b ≤ k − |L| < |W |
and step (4) can be done in 2|W | · |V |O(1) time. Thus we have an overall running time
of 2|W |·(log |W |+2) · |V |O(1) +O(|E| log |E|). J

We conclude that the strict and the non-strict variant of Temporal (s, z)-Separation
behave very differently on temporal graphs with a constant-size temporal core. While the
strict version stays NP-complete, the non-strict version becomes polynomial-time solvable.

6 Conclusion

The temporal path model strongly matters when assessing the computational complexity of
finding small separators in temporal graphs. This phenomenon has so far been neglected
in the literature. We settled the complexity dichotomy of Temporal (s, z)-Separation
and Strict Temporal (s, z)-Separation by proving NP-hardness on temporal graphs

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:15

with τ ≥ 2 and τ ≥ 5, respectively, and polynomial-time solvability if the number of layers is
below the respective constant. The mentioned hardness results also imply that both problem
variants are W[1]-hard when parameterized by the solution size k. When considering the
parameter combination k+ τ , it is easy to see that Strict Temporal (s, z)-Separation is
fixed-parameter tractable [38]: There is a straightforward search-tree algorithm that branches
on all vertices of a strict temporal (s, z)-path which has length at most τ . Whether the
non-strict variant is fixed-parameter tractable regarding the same parameter combination
remains open.

We showed that (Strict) Temporal (s, z)-Separation on temporal graphs with planar
underlying graphs remains NP-complete. However, for the planar case we proved that if
additionally the number τ of layers is a constant, then Strict Temporal (s, z)-Separation
is solvable in O(|E| · log |E|) time. We leave open whether Temporal (s, z)-Separation
admits a similar result. Finally, we introduced the notion of a temporal core as a temporal
graph parameter. We proved that on temporal graphs with constant-size temporal core, while
Strict Temporal (s, z)-Separation remains NP-hard, Temporal (s, z)-Separation is
solvable in polynomial time.

References

1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

2 Eleni C Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G Spirakis.
Temporal flows in temporal networks. In Proceedings of the 10th International Conference
on Algorithms and Complexity (CIAC ’17), pages 43–54. Springer, 2017.

3 Eleni C Akrida, Leszek Gąsieniec, George B Mertzios, and Paul G Spirakis. On temporally
connected graphs of small cost. In Proceedings of the 13th International Workshop on
Approximation and Online Algorithms (WAOA ’15), pages 84–96. Springer, 2015.

4 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

5 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming (ICALP ’16), pages 149:1–149:14. Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik, 2016.

6 Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej
Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM
Transactions on Algorithms, 7(1):4:1–4:27, 2010.

7 Kenneth A Berman. Vulnerability of scheduled networks and a generalization of Menger’s
Theorem. Networks, 28(3):125–134, 1996.

8 Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez-
Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin.
The structure and dynamics of multilayer networks. Physics Reports, 544(1):1–122, 2014.

9 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems, 27(5):387–408, 2012.

10 H.W Corley and David Y Sha. Most vital links and nodes in weighted networks. Operations
Research Letters, 1(4):157–160, 1982.

11 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-order Logic:
a Language-theoretic Approach. Cambridge University Press, 2012.

MFCS 2018

45:16 The Complexity of Finding Small Separators in Temporal Graphs

12 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Transactions on Computation The-
ory, 5(1):3:1–3:11, 2013.

13 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2016.

14 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph explora-
tion. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP ’15), pages 444–455. Springer, 2015.

15 Afonso Ferreira. Building a reference combinatorial model for MANETs. IEEE Network,
18(5):24–29, 2004.

16 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin,
2006.

17 Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for
kernelization lower bounds. SIAM Journal on Discrete Mathematics, 32(1):656–681, 2018.

18 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Temporal graph
classes: A view through temporal separators. arXiv preprint arXiv:1803.00882, 2018. To
appear in Proceedings 44th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG ’18).

19 Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8(3):399–404, 1956.

20 Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optimization, 8(1):72–86, 2011.

21 Anne-Sophie Himmel. Algorithmic investigations into temporal paths. Masterthesis,
TU Berlin, April 2018. URL: http://fpt.akt.tu-berlin.de/publications/theses/
MA-anne-sophie-himmel.pdf.

22 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting
the Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social
Network Analysis and Mining, 7(1):35:1–35:16, 2017.

23 Petter Holme. Modern temporal network theory: a colloquium. European Physical Journal
B, 88(9):234, 2015.

24 Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97–125,
2012.

25 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

26 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams
for the modeling of interactions over time. arXiv preprint arXiv:1710.04073, 2017.

27 Qingkai Liang and Eytan Modiano. Survivability in time-varying networks. IEEE Trans-
actions on Mobile Computing, 16(9):2668–2681, 2017.

28 László Lovász, Víctor Neumann-Lara, and Michael Plummer. Mengerian theorems for
paths of bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

29 Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96–115,
1927.

30 George B Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Tem-
poral network optimization subject to connectivity constraints. In Proceedings of the 40th
International Colloquium on Automata, Languages, and Programming (ICALP ’13), pages
657–668. Springer, 2013.

31 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016.

32 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

http://fpt.akt.tu-berlin.de/publications/theses/MA-anne- sophie-himmel.pdf
http://fpt.akt.tu-berlin.de/publications/theses/MA-anne- sophie-himmel.pdf

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:17

33 Feng Pan and Aaron Schild. Interdiction problems on planar graphs. Discrete Applied
Mathematics, 198:215–231, 2016.

34 Salvatore Scellato, Ilias Leontiadis, Cecilia Mascolo, Prithwish Basu, and Murtaza Zafer.
Evaluating temporal robustness of mobile networks. IEEE Transactions on Mobile Com-
puting, 12(1):105–117, 2013.

35 Baruch Schieber, Amotz Bar-Noy, and Samir Khuller. The complexity of finding most vital
arcs and nodes. Technical report, University of Maryland at College Park, College Park,
MD, USA, 1995.

36 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

37 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu.
Efficient algorithms for temporal path computation. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2927–2942, 2016.

38 Philipp Zschoche. On finding separators in temporal graphs. Masterthesis, TU
Berlin, August 2017. URL: http://fpt.akt.tu-berlin.de/publications/theses/
MA-philipp-zschoche.pdf.

MFCS 2018

http://fpt.akt.tu-berlin.de/publications/theses/MA-philipp- zschoche.pdf
http://fpt.akt.tu-berlin.de/publications/theses/MA-philipp- zschoche.pdf

	Introduction
	Preliminaries
	Hardness Dichotomy Regarding the Number of Layers
	On Temporal Graphs with Planar Underlying Graph
	On Temporal Graphs with Small Temporal Cores
	Conclusion

