41,335 research outputs found

    Linear Datalog and Bounded Path Duality of Relational Structures

    Full text link
    In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem \csp(\best) with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL

    The computational complexity of PEPS

    Get PDF
    We determine the computational power of preparing Projected Entangled Pair States (PEPS), as well as the complexity of classically simulating them, and generally the complexity of contracting tensor networks. While creating PEPS allows to solve PP problems, the latter two tasks are both proven to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped Hamiltonians, and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is a duality between PEPS and postselection which allows to use existing results from quantum compexity.Comment: 5 pages, 1 figure. Published version, plus a few extra
    • …
    corecore