126,352 research outputs found

    Multi-hop Byzantine reliable broadcast with honest dealer made practical

    Get PDF
    We revisit Byzantine tolerant reliable broadcast with honest dealer algorithms in multi-hop networks. To tolerate Byzantine faulty nodes arbitrarily spread over the network, previous solutions require a factorial number of messages to be sent over the network if the messages are not authenticated (e.g., digital signatures are not available). We propose modifications that preserve the safety and liveness properties of the original unauthenticated protocols, while highly decreasing their observed message complexity when simulated on several classes of graph topologies, potentially opening to their employment

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure

    Parameterizable Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network, despite the presence of Byzantine failures: some nodes are malicious and behave arbitrarly. We focus on non-cryptographic solutions. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the good information), but require a highly connected network. A probabilistic approach was recently proposed for loosely connected networks: the Byzantine failures are randomly distributed, and the correct nodes deliver the good information with high probability. A first solution require the nodes to initially know their position on the network, which may be difficult or impossible in self-organizing or dynamic networks. A second solution relaxed this hypothesis but has much weaker Byzantine tolerance guarantees. In this paper, we propose a parameterizable broadcast protocol that does not require nodes to have any knowledge about the network. We give a deterministic technique to compute a set of nodes that always deliver authentic information, for a given set of Byzantine failures. Then, we use this technique to experimentally evaluate our protocol, and show that it significantely outperforms previous solutions with the same hypotheses. Important disclaimer: these results have NOT yet been published in an international conference or journal. This is just a technical report presenting intermediary and incomplete results. A generalized version of these results may be under submission

    Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint

    Full text link
    In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which it needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.Comment: submitted for possible conference publicatio

    Robust streaming in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service
    corecore