In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV)
communication system consisting of one UAV and multiple ground base stations
(GBSs). The UAV has a mission of flying from an initial location to a final
location, during which it needs to maintain reliable wireless connection with
the cellular network by associating with one of the GBSs at each time instant.
We aim to minimize the UAV mission completion time by optimizing its
trajectory, subject to a quality of connectivity constraint of the GBS-UAV link
specified by a minimum received signal-to-noise ratio (SNR) target, which needs
to be satisfied throughout the mission. This problem is non-convex and
difficult to be optimally solved. We first propose an effective approach to
check its feasibility based on graph connectivity verification. Then, by
examining the GBS-UAV association sequence during the UAV mission, we obtain
useful insights on the optimal UAV trajectory, based on which an efficient
algorithm is proposed to find an approximate solution to the trajectory
optimization problem by leveraging techniques in convex optimization and graph
theory. Numerical results show that our proposed trajectory design achieves
near-optimal performance.Comment: submitted for possible conference publicatio