4,979 research outputs found

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    List homomorphism problems for signed graphs

    Full text link
    We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ)(G,\sigma), equipped with lists L(v)V(H),vV(G)L(v) \subseteq V(H), v \in V(G), of allowed images, to a fixed target signed graph (H,π)(H,\pi). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v)=V(H)L(v)=V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when HH is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterize the polynomial cases of list homomorphisms to unsigned graphs).Comment: various changes + rewritten section on path- and cycle-separable graphs based on a new conference submission (split possible in future

    Min orderings and list homomorphism dichotomies for signed and unsigned graphs

    Full text link
    The CSP dichotomy conjecture has been recently established, but a number of other dichotomy questions remain open, including the dichotomy classification of list homomorphism problems for signed graphs. Signed graphs arise naturally in many contexts, including for instance nowhere-zero flows for graphs embedded in non-orientable surfaces. For a fixed signed graph H^\widehat{H}, the list homomorphism problem asks whether an input signed graph G^\widehat{G} with lists L(v)V(H^),vV(G^),L(v) \subseteq V(\widehat{H}), v \in V(\widehat{G}), admits a homomorphism ff to H^\widehat{H} with all f(v)L(v),vV(G^)f(v) \in L(v), v \in V(\widehat{G}). Usually, a dichotomy classification is easier to obtain for list homomorphisms than for homomorphisms, but in the context of signed graphs a structural classification of the complexity of list homomorphism problems has not even been conjectured, even though the classification of the complexity of homomorphism problems is known. Kim and Siggers have conjectured a structural classification in the special case of "weakly balanced" signed graphs. We confirm their conjecture for reflexive and irreflexive signed graphs; this generalizes previous results on weakly balanced signed trees, and weakly balanced separable signed graphs. In the reflexive case, the result was first presented in a paper of Kim and Siggers, where the proof relies on a result in this paper. The irreflexive result is new, and its proof depends on first deriving a theorem on extensions of min orderings of (unsigned) bipartite graphs, which is interesting on its own

    List Homomorphism Problems for Signed Graphs

    Get PDF
    We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,?), equipped with lists L(v) ? V(H), v ? V(G), of allowed images, to a fixed target signed graph (H,?). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to the combinatorial classification for the version without lists completed by Brewster and Siggers. We illustrate the possible complications by classifying the complexity of the list homomorphism problem when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time solvable for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will be useful for classifications of other classes of signed graphs, and we mention some follow-up research of this kind; those classifications are surprisingly complex

    Testing List H-Homomorphisms

    Full text link
    Let HH be an undirected graph. In the List HH-Homomorphism Problem, given an undirected graph GG with a list constraint L(v)V(H)L(v) \subseteq V(H) for each variable vV(G)v \in V(G), the objective is to find a list HH-homomorphism f:V(G)V(H)f:V(G) \to V(H), that is, f(v)L(v)f(v) \in L(v) for every vV(G)v \in V(G) and (f(u),f(v))E(H)(f(u),f(v)) \in E(H) whenever (u,v)E(G)(u,v) \in E(G). We consider the following problem: given a map f:V(G)V(H)f:V(G) \to V(H) as an oracle access, the objective is to decide with high probability whether ff is a list HH-homomorphism or \textit{far} from any list HH-homomorphisms. The efficiency of an algorithm is measured by the number of accesses to ff. In this paper, we classify graphs HH with respect to the query complexity for testing list HH-homomorphisms and show the following trichotomy holds: (i) List HH-homomorphisms are testable with a constant number of queries if and only if HH is a reflexive complete graph or an irreflexive complete bipartite graph. (ii) List HH-homomorphisms are testable with a sublinear number of queries if and only if HH is a bi-arc graph. (iii) Testing list HH-homomorphisms requires a linear number of queries if HH is not a bi-arc graph

    Full Complexity Classification of the List Homomorphism Problem for Bounded-Treewidth Graphs

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is assigned with a list L(v) of vertices of H. We ask whether there exists a homomorphism h from G to H, which respects lists L, i.e., for every v ? V(G) it holds that h(v) ? L(v). The complexity dichotomy for LHom(H) was proven by Feder, Hell, and Huang [JGT 2003]. The authors showed that the problem is polynomial-time solvable if H belongs to the class called bi-arc graphs, and for all other graphs H it is NP-complete. We are interested in the complexity of the LHom(H) problem, parameterized by the treewidth of the input graph. This problem was investigated by Egri, Marx, and Rz??ewski [STACS 2018], who obtained tight complexity bounds for the special case of reflexive graphs H, i.e., if every vertex has a loop. In this paper we extend and generalize their results for all relevant graphs H, i.e., those, for which the LHom(H) problem is NP-hard. For every such H we find a constant k = k(H), such that the LHom(H) problem on instances G with n vertices and treewidth t - can be solved in time k^t ? n^?(1), provided that G is given along with a tree decomposition of width t, - cannot be solved in time (k-?)^t ? n^?(1), for any ? > 0, unless the SETH fails. For some graphs H the value of k(H) is much smaller than the trivial upper bound, i.e., |V(H)|. Obtaining matching upper and lower bounds shows that the set of algorithmic tools that we have discovered cannot be extended in order to obtain faster algorithms for LHom(H) in bounded-treewidth graphs. Furthermore, neither the algorithm, nor the proof of the lower bound, is very specific to treewidth. We believe that they can be used for other variants of the LHom(H) problem, e.g. with different parameterizations

    List Locally Surjective Homomorphisms in Hereditary Graph Classes

    Get PDF
    A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family ? consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ? {P?,C?} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ? ? (unless the ETH fails)

    Fine-Grained Complexity of the List Homomorphism Problem: Feedback Vertex Set and Cutwidth

    Get PDF
    For graphs G,H, a homomorphism from G to H is an edge-preserving mapping from V(G) to V(H). In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is equipped with a list L(v) ? V(H), and we need to determine whether there exists a homomorphism from G to H which additionally respects the lists L. List homomorphisms are a natural generalization of (list) colorings. Very recently Okrasa, Piecyk, and Rz??ewski [ESA 2020] studied the fine-grained complexity of the problem, parameterized by the treewidth of the instance graph G. They defined a new invariant i^*(H), and proved that for every relevant graph H, i.e., such that LHom(H) is NP-hard, this invariant is the correct base of the exponent in the running time of any algorithm solving the LHom(H) problem. In this paper we continue this direction and study the complexity of the problem under different parameterizations. As the first result, we show that i^*(H) is also the right complexity base if the parameter is the size of a minimum feedback vertex set of G, denoted by fvs(G). In particular, for every relevant graph H, the LHom(H) problem - can be solved in time i^*(H)^fvs(G) ? |V(G)|^?(1), if a minimum feedback vertex set of G is given, - cannot be solved in time (i^*(H) - ?)^fvs(G) ? |V(G)|^?(1), for any ? > 0, unless the SETH fails. Then we turn our attention to a parameterization by the cutwidth ctw(G) of G. Jansen and Nederlof [TCS 2019] showed that List k-Coloring (i.e., LHom(K_k)) can be solved in time c^ctw(G) ? |V(G)|^?(1) for an absolute constant c, i.e., the base of the exponential function does not depend on the number of colors. Jansen asked whether this behavior extends to graph homomorphisms. As the main result of the paper, we answer the question in the negative. We define a new graph invariant mim^*(H), closely related to the size of a maximum induced matching in H, and prove that for all relevant graphs H, the LHom(H) problem cannot be solved in time (mim^*(H)-?)^{ctw(G)}? |V(G)|^?(1) for any ? > 0, unless the SETH fails. In particular, this implies that, assuming the SETH, there is no constant c, such that for every odd cycle the non-list version of the problem can be solved in time c^ctw(G) ? |V(G)|^?(1)
    corecore