17,970 research outputs found

    The Complexity of the Approximate Multiple Pattern Matching Problem for Random Strings

    Get PDF
    We describe a multiple string pattern matching algorithm which is well-suited for approximate search and dictionaries composed of words of different lengths. We prove that this algorithm has optimal complexity rate up to a multiplicative constant, for arbitrary dictionaries. This extends to arbitrary dictionaries the classical results of Yao [SIAM J. Comput. 8, 1979], and Chang and Marr [Proc. CPM94, 1994]

    Average-Case Optimal Approximate Circular String Matching

    Full text link
    Approximate string matching is the problem of finding all factors of a text t of length n that are at a distance at most k from a pattern x of length m. Approximate circular string matching is the problem of finding all factors of t that are at a distance at most k from x or from any of its rotations. In this article, we present a new algorithm for approximate circular string matching under the edit distance model with optimal average-case search time O(n(k + log m)/m). Optimal average-case search time can also be achieved by the algorithms for multiple approximate string matching (Fredriksson and Navarro, 2004) using x and its rotations as the set of multiple patterns. Here we reduce the preprocessing time and space requirements compared to that approach

    Quantum pattern matching fast on average

    Full text link
    The dd-dimensional pattern matching problem is to find an occurrence of a pattern of length m××mm \times \dots \times m within a text of length n××nn \times \dots \times n, with nmn \ge m. This task models various problems in text and image processing, among other application areas. This work describes a quantum algorithm which solves the pattern matching problem for random patterns and texts in time O~((n/m)d/22O(d3/2logm))\widetilde{O}((n/m)^{d/2} 2^{O(d^{3/2}\sqrt{\log m})}). For large mm this is super-polynomially faster than the best possible classical algorithm, which requires time Ω~((n/m)d+nd/2)\widetilde{\Omega}( (n/m)^d + n^{d/2} ). The algorithm is based on the use of a quantum subroutine for finding hidden shifts in dd dimensions, which is a variant of algorithms proposed by Kuperberg.Comment: 22 pages, 2 figures; v3: further minor changes, essentially published versio

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem
    corecore