73,658 research outputs found

    Path Checking for MTL and TPTL over Data Words

    Full text link
    Metric temporal logic (MTL) and timed propositional temporal logic (TPTL) are quantitative extensions of linear temporal logic, which are prominent and widely used in the verification of real-timed systems. It was recently shown that the path checking problem for MTL, when evaluated over finite timed words, is in the parallel complexity class NC. In this paper, we derive precise complexity results for the path-checking problem for MTL and TPTL when evaluated over infinite data words over the non-negative integers. Such words may be seen as the behaviours of one-counter machines. For this setting, we give a complete analysis of the complexity of the path-checking problem depending on the number of register variables and the encoding of constraint numbers (unary or binary). As the two main results, we prove that the path-checking problem for MTL is P-complete, whereas the path-checking problem for TPTL is PSPACE-complete. The results yield the precise complexity of model checking deterministic one-counter machines against formulae of MTL and TPTL

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    How hard is it to verify flat affine counter systems with the finite monoid property ?

    Full text link
    We study several decision problems for counter systems with guards defined by convex polyhedra and updates defined by affine transformations. In general, the reachability problem is undecidable for such systems. Decidability can be achieved by imposing two restrictions: (i) the control structure of the counter system is flat, meaning that nested loops are forbidden, and (ii) the set of matrix powers is finite, for any affine update matrix in the system. We provide tight complexity bounds for several decision problems of such systems, by proving that reachability and model checking for Past Linear Temporal Logic are complete for the second level of the polynomial hierarchy ÎŁ2P\Sigma^P_2, while model checking for First Order Logic is PSPACE-complete

    Symbolic model-checking for resource-bounded ATL

    Get PDF
    In this paper we present a symbolic implementation of a model checking algorithm for the verification of properties expressed in Resource-Bounded Alternating Time Temporal Logic (RB-ATL). The implementation is based on the model checker MCMAS. We evaluate the performance of our implementation using simple multi- agent model checking problems of increasing complexity

    Linear Temporal Logic and Propositional Schemata, Back and Forth (extended version)

    Full text link
    This paper relates the well-known Linear Temporal Logic with the logic of propositional schemata introduced by the authors. We prove that LTL is equivalent to a class of schemata in the sense that polynomial-time reductions exist from one logic to the other. Some consequences about complexity are given. We report about first experiments and the consequences about possible improvements in existing implementations are analyzed.Comment: Extended version of a paper submitted at TIME 2011: contains proofs, additional examples & figures, additional comparison between classical LTL/schemata algorithms up to the provided translations, and an example of how to do model checking with schemata; 36 pages, 8 figure

    Counting LTL

    Get PDF
    The original publication is available at ieeexplore.ieee.org.International audienceThis paper presents a quantitative extension for the linear-time temporal logic LTL allowing to specify the number of states satisfying certain sub-formulas along paths. We give decision procedures for the satisfiability and model checking of this new temporal logic and study the complexity of the corresponding problems. Furthermore we show that the problems become undecidable when more expressive constraints are considered
    • …
    corecore