1,355 research outputs found

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page

    Quantum logic is undecidable

    Full text link
    We investigate the first-order theory of closed subspaces of complex Hilbert spaces in the signature (,,0,1)(\lor,\perp,0,1), where `\perp' is the orthogonality relation. Our main result is that already its quasi-identities are undecidable: there is no algorithm to decide whether an implication between equations and orthogonality relations implies another equation. This is a corollary of a recent result of Slofstra in combinatorial group theory. It follows upon reinterpreting that result in terms of the hypergraph approach to quantum contextuality, for which it constitutes a proof of the inverse sandwich conjecture. It can also be interpreted as stating that a certain quantum satisfiability problem is undecidable.Comment: 11 pages. v3: improved exposition. v4: minor clarification

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Geometrical organization of solutions to random linear Boolean equations

    Full text link
    The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular, the distribution of distances between these clusters is computed by the cavity method. This allows to study the `x-satisfiability' threshold, the critical density of equations where there exist two solutions at a given distance.Comment: 20 page

    Percolation of satisfiability in finite dimensions

    Get PDF
    The satisfiability and optimization of finite-dimensional Boolean formulas are studied using percolation theory, rare region arguments, and boundary effects. In contrast with mean-field results, there is no satisfiability transition, though there is a logical connectivity transition. In part of the disconnected phase, rare regions lead to a divergent running time for optimization algorithms. The thermodynamic ground state for the NP-hard two-dimensional maximum-satisfiability problem is typically unique. These results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig
    corecore