959 research outputs found

    Author index volume 82

    Get PDF

    Deterministic Chaos in Digital Cryptography

    Get PDF
    This thesis studies the application of deterministic chaos to digital cryptography. Cryptographic systems such as pseudo-random generators (PRNG), block ciphers and hash functions are regarded as a dynamic system (X, j), where X is a state space (Le. message space) and f : X -+ X is an iterated function. In both chaos theory and cryptography, the object of study is a dynamic system that performs an iterative nonlinear transformation of information in an apparently unpredictable but deterministic manner. In terms of chaos theory, the sensitivity to the initial conditions together with the mixing property ensures cryptographic confusion (statistical independence) and diffusion (uniform propagation of plaintext and key randomness into cihertext). This synergetic relationship between the properties of chaotic and cryptographic systems is considered at both the theoretical and practical levels: The theoretical background upon which this relationship is based, includes discussions on chaos, ergodicity, complexity, randomness, unpredictability and entropy. Two approaches to the finite-state implementation of chaotic systems (Le. pseudo-chaos) are considered: (i) floating-point approximation of continuous-state chaos; (ii) binary pseudo-chaos. An overview is given of chaotic systems underpinning cryptographic algorithms along with their strengths and weaknesses. Though all conventional cryposystems are considered binary pseudo-chaos, neither chaos, nor pseudo-chaos are sufficient to guarantee cryptographic strength and security. A dynamic system is said to have an analytical solution Xn = (xo) if any trajectory point Xn can be computed directly from the initial conditions Xo, without performing n iterations. A chaotic system with an analytical solution may have a unpredictable multi-valued map Xn+l = f(xn). Their floating-point approximation is studied in the context of pseudo-random generators. A cryptographic software system E-Larm ™ implementing a multistream pseudo-chaotic generator is described. Several pseudo-chaotic systems including the logistic map, sine map, tangent- and logarithm feedback maps, sawteeth and tent maps are evaluated by means of floating point computations. Two types of partitioning are used to extract pseudo-random from the floating-point state variable: (i) combining the last significant bits of the floating-point number (for nonlinear maps); and (ii) threshold partitioning (for piecewise linear maps). Multi-round iterations are produced to decrease the bit dependence and increase non-linearity. Relationships between pseudo-chaotic systems are introduced to avoid short cycles (each system influences periodically the states of other systems used in the encryption session). An evaluation of cryptographic properties of E-Larm is given using graphical plots such as state distributions, phase-space portraits, spectral density Fourier transform, approximated entropy (APEN), cycle length histogram, as well as a variety of statistical tests from the National Institute of Standards and Technology (NIST) suite. Though E-Larm passes all tests recommended by NIST, an approach based on the floating-point approximation of chaos is inefficient in terms of the quality/performance ratio (compared with existing PRNG algorithms). Also no solution is known to control short cycles. In conclusion, the role of chaos theory in cryptography is identified; disadvantages of floating-point pseudo-chaos are emphasized although binary pseudo-chaos is considered useful for cryptographic applications.Durand Technology Limite

    Author index volume 108 (1993)

    Get PDF

    Proceedings of JAC 2010. Journées Automates Cellulaires

    Get PDF
    The second Symposium on Cellular Automata “Journ´ees Automates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The conference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four distinguished invited speakers: Michel Coornaert (Universit´e de Strasbourg, France), Bruno Durand (Universit´e de Provence, Marseille, France), Dora Giammarresi (Universit` a di Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨at Gie_en, Germany). I sincerely thank the invited speakers for accepting our invitation to come and give a plenary talk in the conference. The invited talk by Bruno Durand was eventually given by his co-author Alexander Shen, and I thank him for accepting to make the presentation with a short notice. Abstracts or extended abstracts of the invited presentations appear in the first part of this volume. The program also included several informal presentations describing very recent developments and ongoing research projects. I wish to thank all the speakers for their contribution to the success of the symposium. I also would like to thank the sponsors and our collaborators: the Finnish Academy of Science and Letters, the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku Centre for Computer Science, the University of Turku, and Centro Hotel. Finally, I sincerely thank the members of the local organizing committee for making the conference possible. These proceedings are published both in an electronic format and in print. The electronic proceedings are available on the electronic repository HAL, managed by several French research agencies. The printed version is published in the general publications series of TUCS, Turku Centre for Computer Science. We thank both HAL and TUCS for accepting to publish the proceedings.Siirretty Doriast

    Complexity Theory

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / CCR-9315696Originally published July 1995; revision published November 1995 with the same tech report number

    Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator

    Get PDF
    International audienceWe study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically, and for computing the Cartier-Manin operator of hyperelliptic curves
    • …
    corecore