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1 Introduction

Computational complexity is the study of the difficulty of solving computational problems, 
in terms of the required computational resources, such as time and space (memory). The 
formal theoretical study of computational complexity began with the paper of Hartmanis 
and Stearns [1965], who introduced the basic concepts and proved the first results. For their 
achievement, Hartmanis and Stearns received the 1993 Turing Award of the ACM.

Whereas the analysis of algorithms focuses on the time or space required by an algorithm 
to solve a specific computational problem, such as sorting, complexity theory focuses on the 
complexity class, which consists of all problems solvable within the same amount of time 
or space. Two important complexity classes are P, the set of problems that can be solved in 
polynomial time, and NP, the set of problems whose solutions can be verified in polynomial 
time. Complexity theorists have discovered that most common computational problems fall 
into a small number of complexity classes.

By quantifying the resources required to solve a problem, complexity theory has pro­
foundly affected our thinking about computation. Computability theory establishes the 
existence of undecidable problems, which cannot be solved in principle, regardless of the 
amount of time invested. In contrast, complexity theory establishes the existence of decid­
able problems that, although solvable in principle, cannot be solved in practice, because 
the time and space required would be larger than the age and size of the known universe 
[Stockmeyer and Chandra, 1979]. Thus, complexity theory characterizes the computationally 
feasible problems.

The quest for the boundaries of the set of feasible problems has led to the most important 
unsolved question in all of computer science: Is P different from NP? Hundreds of fundamen­
tal problems, including many ubiquitous optimization problems of operations research, are 
NP-complete— they are the hardest problems in NP. If someone could find a polynomial­
time algorithm for any one NP-complete problem, then there would be polynomial-time 
algorithms for all of them. Despite the concerted efforts of many scientists over several 
decades, no polynomial-time algorithm has been found for any NP-complete problem. Al­
though we do not yet know whether P is different from NP, showing that a problem is 
NP-complete provides strong evidence that the problem is computationally infeasible, and 
justifies the use of heuristics for solving the problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use 
of diagonalization and padding techniques to prove relationships between classes. Next, we 
define NP-completeness, and we show how to prove that a problem is NP-complete. Finally, 
we define complexity classes for probabilistic and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce in­
teger values. All logarithms are taken to base 2. In particular, logn means [log2n].

2 Models of Computation

By a theory, I mean the result of removing ambiguity and uncertainty in the 
statement of a problem so that precise, rigorous statements about it can be made and 
verified. Abstraction, the process of eliminating unnecessary detail, . . .  permits the
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problem to be reduced to a tractable and comprehensible size from which significant 
new insights can be obtained.

—M. J. Fischer [1980]

To develop a theory of the difficulty of computational problems, we need to specify 
precisely what a problem is, what an algorithm is, and what a measure of difficulty is. For 
simplicity, complexity theorists have chosen to represent problems as languages, to model 
algorithms by off-line multitape Turing machines, and to measure computational difficulty 
by the time and space required by a Turing machine. To justify these choices, some theorems 
of complexity theory show how to translate statements about, say, the time complexity of 
language recognition by Turing machines into statements about computational problems on 
more realistic models of computation. These theorems imply that the principles of complexity 
theory are not artifacts of Turing machines, but intrinsic properties of computation.

This section defines different kinds of Turing machines. The deterministic Turing machine 
models actual computers. The nondeterministic Turing machine is not a realistic model, 
but it helps classify the complexity of important computational problems. The alternating 
Turing machine models a form of parallel computation, and it helps elucidate the relationship 
between time and space.

2.1 Computational Problems and Languages
Computer scientists have invented many elegant formalisms for representing data and con­
trol structures. Fundamentally, all representations are patterns of symbols. Therefore, we 
represent an instance of a computational problem as a sequence of symbols. (See Chapter 
4, on formal models and computability.)

Let E be a finite set, called the alphabet. A word over E is a finite sequence of symbols 
from E. Sometimes a word is called a “string.” Let E* denote the set of all words over E. 
For example, if E =  { 0, l } ,  then

E* =  {A ,0, 1, 00, 01, 10, 11, 000, . . . }

is the set of all binary words, including the empty word A. (Binary representations of numbers 
and data, such as ASCII, are pervasive in computing.) The length of a word w, denoted 
M , is the number of symbols in w. A language over E is a subset of E*.

A decision problem  is a computational problem whose answer is simply “yes” or “no.” 
For example: “Is the input graph connected?” “Is the input a sorted list of integers?” A 
decision problem can be expressed as a membership problem for a language L: for an input 
x , does x belong to Ul For a language L that represents connected graphs, the input word 
x might represent an input graph G, and x e  L if and only if G is connected.

For every decision problem, the representation should allow for easy parsing, to deter­
mine whether a word represents a legitimate instance of the problem. Furthermore, the 
representation should be concise. In particular, it would be unfair to encode the answer 
to the problem into the representation of an instance of the problem; for example, for the 
problem of deciding whether an input graph is connected, the representation should not have 
an extra bit that tells whether the graph is connected. A set of integers S =  . . . ,  £m}
is represented by listing the binary representation of each x{, with the representations of
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consecutive integers in S separated by a nonbinary symbol. A graph is naturally represented 
by giving either its adjacency matrix or a set of adjacency lists, where the list for each vertex 
v specifies the vertices adjacent to v.

Whereas the solution to a decision problem is “yes” or “no,” the solution to an optimiza­
tion problem is more complicated—for example, “Determine the shortest path from vertex u 
to vertex v in an input graph G.” Nevertheless, for every optimization (minimization) prob­
lem, with objective function g, there is a corresponding decision problem that asks whether 
there exists a feasible solution x such that g(x) < k, where A: is a given target value. Clearly, 
if there is an algorithm that solves an optimization problem, then that algorithm can be 
used to solve the corresponding decision problem. Conversely, if algorithm A solves the 
decision problem, then with a binary search on the range of values of g, we can determine 
the optimal value. A fortiori, for many optimization problems, with multiple calls to the 
decision algorithm A, we can even construct an optimal solution. Therefore, there is little 
loss of generality in considering only decision problems, represented as language membership 
problems.

2.2 Turing machines
Tape memory as an architectural feature of a modern computer is quaint, at 

best.
— W. L. Ruzzo [1981]

This subsection and the next three give precise, formal definitions of Turing machines and 
their variants. These subsections are intended for reference. For the rest of this chapter, from 
Section 3 on, the reader need not understand these definitions in detail, but may generally 
substitute “program” or “computer” for each reference to “Turing machine.”

A fc-tape Turing m achine M  consists of the following:

• A finite set of states Q, with special states q0 (initial state), qA (accept state), and qR 
(reject state).

• A finite alphabet E, and a special blank symbol □ 0 E.

• k +  1 linear tapes, each divided into cells. Tape 0 is the input tape, and tapes 1, . . . ,  k 
are the worktapes. Each tape is infinite to the left and to the right. Each cell holds 
a single symbol from E U {□ } .  By convention, the input tape is read-only. Each tape 
has an access head, and at every instant, each access head scans one cell. See Figure 1.

• A finite transition table <5, which comprises tuples of the form

( 9 ,  So,  Si ,  • • •, $ki Q , S j , . . . ,  Sj., ¿ o ,  ^ i ,  • • •, dfc)

where q, q’ G Q , each siy s' g EU {□ } ,  and each d{ € { -1 ,0 ,  +1}.

A tuple specifies a step of M: if the current state is q, and s0, $i, •.., sk are the symbols 
in the cells scanned by the access heads, then M  replaces st by s' for i =  1, . . . ,  k 
simultaneously, change state to q', and move the head on tape i one cell to the left
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control

Figure 1: A 2-tape Turing machine.

(di =  - 1 )  or right (d{ =  +1) or not at all (dt =  0) for i =  0 , . . . ,  k. Note that M  
cannot write on tape 0, that is, M  may write only on the worktapes, not on the input 
tape.

• In a tuple, no sj can be the blank symbol □. Since M  may not write a blank, the 
worktape cells that its access heads previously visited are nonblank.

• No tuple contains qA or qR as its first component. Thus, once M  enters state qA or 
state qR, it stops.

• Initially, M  is in state q0, an input word in £* is inscribed on contiguous cells of the 
input tape, the access head on the input tape is on the leftmost symbol of the input 
word, and all other cells of all tapes contain the blank symbol □.

The Turing machine M  that we have defined is nondeterm inistic: 6 may have several 
tuples with the same combination of state q and symbols s0, S i,. . . ,  s* as the first k +  2 
components, so that AT may have several possible next steps. A machine AT is determ inistic 
if for every combination of state q and symbols s0, S i,. . . ,  sk, at most one tuple in 5 contains 
the combination as its first k +  2 components. A deterministic machine always has at most 
one possible next step.

A configuration of a Turing machine M  specifies a state, contents of all tapes, and 
positions of all access heads.
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A computation path is a sequence of configurations Co, C\,. . . ,  Ct, . . . ,  where Co is 
the initial configuration of M , and each Cj+1 follows from Cj in one step according to the 
changes specified by a tuple in 5. If no tuple is applicable to Ct, then Ct is terminal, and 
the computation path is halting. If M  has no infinite computation paths, then M  always 
halts. Without loss of generality, we may assume that in every terminal configuration, the 
state is q,4 or qr.

A halting computation path is accepting if the state in the last configuration Ct is qA, 
rejecting if the state in Ct is q&.

M  accepts an input word x if there exists an accepting computation path that starts 
from the initial configuration in which x is on the input tape. M  rejects x if the only 
halting computation paths are rejecting; a machine may reject x by failing to halt. If M  
is deterministic, then there is at most one halting computation path, hence at most one 
accepting path.

The language accepted by M, written C(M), is the set of words accepted by M. If 
L =  C(M), and M  always halts, then M  decides L.

Generally, in this chapter, we consider only Turing machines that always halt. When 
we define complexity classes, we consider only time- and space-constructible functions (see 
Section 3.2 below) as bounds, and Turing machines that accept within those time or space 
bounds can be converted into machines that always halt.

In addition to deciding languages, deterministic Turing machines can compute functions. 
Designate tape 1 to be the output tape. If M  halts on input word x, then the nonblank 
word on tape 1 in the final configuration is the output of M. A function /  is total recursive 
if there exists a deterministic Turing machine M  that always halts such that for each input 
word x, the output of M  is the value of f(x).

Almost all results in complexity theory are insensitive to minor variations in the under­
lying computational models. For example, we could have chosen Turing machines whose 
tapes are restricted to be only one-way infinite, or whose alphabet is restricted to { 0, l } .  It 
is straightforward to simulate a Turing machine as defined above by one of these restricted 
Turing machines, one step at a time: each step of the original machine can be simulated by 
0(1) steps of the restricted machine. The simulation of one Turing machine by a Turing 
machine with a different structure is analogous to the implementation of virtual machines in 
multilayer computer systems. (See Section IX of this Handbook, on operating systems and 
networks.)

2.3 Universal Turing Machines
A k-tape universal Turing machine is a Turing machine U with two input tapes and k 
worktapes that interprets the word i on one input tape as an encoding of a Ar-tape Turing 
machine M*, and the word x on the other input tape as the input to M*. Machine U simulates 
the operation of Mi on x, consulting the transition table encoded in i to determine each next 
step. (See Chapter 4, on formal models and computability, for a universal GOTO program.)

Each symbol in the alphabet of Mi is encoded by 0(1) symbols of the alphabet of U. 
Thus, to simulate the writing of a cell on a worktape of Mi, machine U writes on 0(1) of its 
cells on the corresponding worktape. Overall, provided that the encoding i is reasonable, U 
takes 0 (|i|) steps to simulate each step of Mi.
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We can think of U with a fixed i as a machine Ui, and define £(£/*) =  {x  : U accepts (z, z )} . 
Then C(Ui) =  C(M{).

2.4 Alternating Turing Machines
By definition, a nondeterministic Turing machine M  accepts its input word x if there exists 
an accepting computation path, starting from the initial configuration with x on the input 
tape. Let us call a configuration C accepting if there is a computation path of M  that 
starts in C and ends in a configuration whose state is qA. Equivalently, a configuration C is 
accepting if either the state in C is qA, or there exists an accepting configuration C' reachable 
from C by one step of M . Then M  accepts x if the initial configuration with input word x 
is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternat­
ing Turing machine M , each state is labeled either existential or universal. (Do not confuse 
the universal state in an alternating Turing machine with the universal Turing machine.) A 
nonterminal configuration C is existential (respectively, universal) if the state in C is labeled 
existential (universal). A terminal configuration is accepting if its state is qA. A nonter­
minal existential configuration C is accepting if there exists an accepting configuration C' 
reachable from C by one step of M. A nonterminal universal configuration C is accepting 
if for every configuration C' reachable from C by one step of M , the configuration C' is 
accepting. Finally, M  accepts x if the initial configuration with input word x is an accepting 
configuration.

A nondeterministic Turing machine is a special case of an alternating Turing machine in 
which every state is existential.

The computation of an alternating Turing machine M  alternates between existential 
states and universal states. Intuitively, from an existential configuration, M  guesses a step 
that leads toward acceptance; from a universal configuration, M  checks whether each possible 
next step leads toward acceptance— in a sense, M  checks all possible choices in parallel. An 
alternating computation captures the essence of a two-player game: Player 1 has a winning 
strategy if there exists a move for Player 1 such that for every move by Player 2, there exists 
a subsequent move by Player 1, etc., such that Player 1 eventually wins.

2.5 Oracle Turing Machines
Some computational problems remain difficult even when solutions to instances of a partic­
ular, different decision problem are available for free. When we study the complexity of a 
problem relative to a language L, we assume that answers about membership in L have 
been precomputed and stored in a (possibly infinite) table, and that there is no cost to 
obtain an answer to a membership query “Is w in LV  The language L is called an oracle. 
Conceptually, an algorithm queries the oracle whether a word w is in L, and it receives the 
correct answer.

An oracle Turing machine is a Turing machine M  with a special oracle tape and 
special states QUERY, YES, and NO. The computation of the oracle Turing machine M L, 
with oracle language L, is the same as that of an ordinary Turing machine, except that when 
M  enters the QUERY state with a word w on the oracle tape, in one step, M  enters either
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the YES state if w € L, or the NO state if w 0 L. Furthermore, during this step, the oracle 
tape is erased, so that the time for setting up each query is accounted separately.

3 Resources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems: time 
and space. We introduce complexity classes, which enable us to classify problems according 
to the difficulty of their solution.

3.1 Time and Space
PROFESSOR: But how did you know that, if you don’t know the principles of 

arithmetical reasoning?
PUPIL: It ’s easy. Not being able to rely on my reasoning, I’ve memorized all the 

products of all possible multiplications.
PROFESSOR: That’s pretty good.

— Eugene Ionesco, “The Lesson”

We measure the difficulty of a computational problem by the running time and the space 
(memory) requirements of an algorithm that solves the problem. Clearly, in general, a finite 
algorithm cannot have a table of all answers to infinitely many instances of the problem, 
although an algorithm could look up precomputed answers to a finite number of instances; 
in terms of Turing machines, the finite answer table is built into the set of states and the 
transition table. For these instances, the running time is negligible—just the time needed 
to read the input word. Consequently, our complexity measure should consider a whole 
problem, not only specific instances.

We express the complexity of a problem in terms of the growth of the required time or 
space, as a function of the length n of the input word that encodes a problem instance. As 
in Chapter 5, on algorithm analysis, we consider the worst case complexity, that is, for each 
n, the maximum time or space required among all inputs of length n.

The time taken by a Turing machine M  on input word x, denoted TimeM(x), is defined 
as follows:

• If M  accepts x, then T im e r s )  is the number of steps in the shortest accepting com­
putation path for x.

• If M  rejects x, then Time a/ (x) is the number of steps in the longest computation path 
for x, or +oo if M  has an infinite computation path for x.

For a deterministic machine M , for every input x, there is at most one halting computation 
path, and T im e^ x ) is unambiguous. For a nondeterministic machine M, if x € C(M), then 
M  can “guess” the correct steps to take toward an accepting configuration, and TimeM(z) 
measures the length of the path on which M  always makes the best guess.

The space used by a Turing machine M  on input x, denoted SpaceM(z), is defined as 
follows. The space used by a halting computation path is the number of nonblank worktape 
cells in the last configuration; this is the number of different cells ever written by the worktape
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heads of M  during the computation path, since M  never writes the blank symbol. Because 
the space occupied by the input word is not counted, a machine can use a sublinear (o(n)) 
amount of space.

• If M  accepts x, then SpaceM(x) is the minimum space used among all accepting com­
putation paths for x.

• If M  rejects x, then SpaceM(x) is the maximum space used among all computation 
paths for x, possibly +oo.

The time complexity of a machine M  is the function

t(n) =  max{TimeM(x) : |x| =  n}

We assume that M  reads all of its input word, and the blank symbol after the right end of 
the input word, so t(n) >  n +  1. The space complexity of M  is the function

s(n) =  max{SpaceM(x) : |x| =  n}

Because few interesting languages can be decided by machines of sublogarithmic space com­
plexity, we henceforth assume that s(n) >  logn.

A function f (x )  is computable in polynomial time if there exists a deterministic 
Turing machine M  of polynomial time complexity such that for each input word x, the 
output of M  is /(x ) .

3.2 Constructibility
A function t(n) is time-constructible if there exists a deterministic Turing machine that 
halts after exactly t(n) steps for every input of length n. A function s(n) is space- 
const ructible if there exists a 1-tape deterministic Turing machine that uses exactly s(n) 
worktape cells for every input of length n.

For example, t(n) =  n +  1 is time-constructible. Furthermore, if ti(n) and t2(n) are 
time-constructible, then so are the functions t\ + t2, tit2, tff , and ch for every integer c >  1. 
Consequently, if p(n) is a polynomial, then p(n) = B(t(n)) for some time-constructible poly­
nomial function t(n). Similarly, s(n) =  logn is space-constructible, and if si(n) and s2(n) 
are space-constructible, then so are the functions si +  s2, sis2, s f , and c*1 for every integer 
c >  1. Many common functions are space-constructible: e.g., nlogn, n3,2n, n\. Essentially 
every natural function is 0 (s) for a space-constructible s.

The following theorem characterizes the time- and space-constructible functions.

Theorem 1 Lett(n) be a function such that for some constante > 0, t(n) > (l-f-e)n for all 
n sufficiently large. Then t(n) is time-constructible if and only if there exists a deterministic 
Turing machine Mt of time complexity 0(t(n)) such that on every input word of length n, 
machine Mt computes the unary representation of t(n), i.e., the word consisting of t(n) 
occurrences of the symbol 1. [Kobayashi, 1985].

A function s(n) is space-constructible if and only if there exists a deterministic Turing 
machine Ms of space complexity 0(s(n )) such that on every input word of length n, machine 
M3 computes the unary representation of s(n).
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Suppose t(n) is time-constructible by a deterministic Turing machine Mt. For every 
Turing machine M  that may have infinite computation paths, we can convert M  into a 
machine M' of time complexity 0(t(n)) that always halts, as follows: first, make a copy 
of the input word on a separate worktape; then concurrently run M  with Mu and halt 
as soon as Mt halts. The total time taken is 2n +  t(n) +  0 (1 ), which is 0 (f(n )), because 
t(n) >  n +  1. In particular, for a deterministic (respectively, nondeterministic) Turing 
machine M  that accepts each word in C(M) in t(n) time, but may reject words by not 
halting, this construction produces a deterministic (nondeterministic) Turing machine M' 
of time complexity 0(t(n)) that accepts the same language— i.e., C(M') = £ (M )— but M' 
always halts.

Analogously, though by a different argument, if s(n) is space-constructible and s(n) >  
log n, then for every deterministic (respectively, nondeterministic) Turing machine M  that 
accepts each word in C(M) in s(n) space, there is a deterministic (nondeterministic) Turing 
machine M' of space complexity 0 (s(n )) that accepts the same language, but M' always 
halts. On input word x of length n, machine M' simulates one step of M  at a time, counting 
the number of steps and the number of worktape cells used by M. If M  accepts x, then 
M  has an accepting computation path whose number of steps is at most the total number 
of distinct configurations of M  that use s(n) space, which is 0 (n cs(n)) for some constant c. 
Thus, if the number of steps taken by M  exceeds this bound, then this computation path is 
not accepting—machine M  might be in an infinite loop— and M' halts in its rejecting state. 
If the number of worktape cells used by M  exceeds s(n), then M' rejects and halts. The 
space used by M' is s(n) to simulate M , plus

log(ncs(u)) =  0 (logn +  s(n)) =  0(s(n)) 

tape cells for its step counter, and log s(n) cells for its cell counter.

3.3 Complexity Classes
Having defined the time complexity and space complexity of individual Turing machines, we 
now define classes of languages with particular complexity bounds. These definitions will 
lead to definitions of P and NP.

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function. 
Define the following classes of languages:

• DTIME(t(n)) is the class of languages decided by deterministic Turing machines of time 
complexity 0(t(n)).

• NTIME(i(n)) is the class of languages decided by nondeterministic Turing machines of 
time complexity 0(t(n)).

• DSPACE(s(n)) is the class of languages decided by deterministic Turing machines of 
space complexity 0(s(n)).

• NSPACE(s(n)) is the class of languages decided by nondeterministic Turing machines 
of space complexity 0 (s(n)).
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Defining each class asymptotically (with the big-O) has several advantages. First, the 
definition of each complexity class is insensitive to the alphabet used by the Turing machines; 
without loss of generality, we may assume that every Turing machine uses alphabet E0 =  
{ 0, 1}, because every step of a Turing machine with a larger alphabet can be simulated 
by 0(1) steps of a Turing machine whose alphabet is S0. Second, the big-0 allows us to 
concentrate on the high order term of the complexity function, ignoring smaller order terms, 
such as terms that arise from the time-constructibility maneuver above. Third, because the 
big-0 bound holds for all n sufficiently large, languages L and V  that differ by a finite 
number of words belong to the same class: a machine M  that decides L can be converted 
into a machine that decides L' by adding to M  a table of answers for inputs up to a certain 
length.

The following are the canonical complexity classes:

• DLOG =  DSPACE(logn) (deterministic log space)

• NLOG =  NSPACE(logn) (nondeterministic log space)

• P =  DTIME(n0^ )̂ =  Ufc>i DTIME(nfc) (polynomial time)

• NP =  NTIME(n°^1)) =  Ujt>i NTIME(nfc) (nondeterministic polynomial time)

• PSPACE =  DSPACE(n°(b) =  [Jk>i DSPACE(nfc) (polynomial space)

• E =  DTIM E(0(l)n) =  U*>i DTIME(/cn)

• NE =  NTIME(0(l)n) =  U > i NTIME(P)

• EXP =  DTIME(2n° (1)) =  (Jfc>i DTIME(2n*) (deterministic exponential time)

• NEXP =  NTIME(2n° (1)) =  Ufc>i NTIME(2nfc) (nondeterministic exponential time)

• EXPSPACE =  DSPACE(2n° (1)) =  Ujb>i DSPACE(2n*) (exponential space)

The classes DLOG and NLOG are often denoted by L and NL, respectively. The space 
classes PSPACE and EXPSPACE are defined in terms of DSPACE; by Savitch’s Theorem (see 
Theorem 2 in Section 4.1), PSPACE and EXPSPACE could also be defined by NSPACE classes.

Each of these classes contains important computational problems, some of which are 
listed here and in Sections 5.3 and 5.4.

The class P contains many familiar problems that can be solved efficiently, such as finding 
shortest paths in networks, parsing for context-free languages, sorting, matrix multiplication, 
and linear programming. Consequently, P has become accepted as representing the set of 
computationally feasible problems. Although one could legitimately argue that a problem 
whose best algorithm has time complexity 0 (n " ) is really infeasible, in practice, the time 
complexities of the vast majority of known polynomial-time algorithms have low degrees— 
they run in 0 (n 4) time or less. Moreover, P is a robust class: though defined by Turing 
machines, P remains the same when defined by other models of sequential computation. For 
example, random access machines (RAMs) (a more realistic model of computation defined in 
Chapter 4, on models and computability) can be used to define P, because Turing machines
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and RAMs can simulate each other with polynomial-time overhead [Cook and Reckhow, 
1973].

The class NP also enjoys alternative characterizations. In one characterization, NP com­
prises the problems whose solutions can be verified quickly, by a deterministic Turing machine 
in polynomial time; equivalently, NP comprises the languages whose membership proofs can 
be checked quickly. For example, one language in NP is the set of composite numbers, writ­
ten in binary. A proof that a number 2 is composite would consist of two factors Z\ >  2 and 
z2 > 2 whose product z\z2 — z. A nondeterministic Turing machine for composite numbers 
takes a computation path on which it guesses Z\ and z2, and then deterministically computes 
the product to check whether 2122 =  2. The machine accepts 2 if there exists a computa­
tion path on which 2i22 =  2. Another important language in NP is the set of satisfiable 
boolean formulas, SAT. A boolean formula 4> is satisfiable if there exists a truth assignment 
of true or fa ls e  to each of its variables such that under this truth assignment, the value of 
4> is true. For example, x A (x V y) is satisfiable, but x A y A (x V y) is not satisfiable. A 
nondeterministic Turing machine takes a computation path that guesses a truth assignment, 
and then deterministically evaluates </> for this truth assignment, to check whether this truth 
assignment proves that <f> is satisfiable. The machine accepts (f> if and only if there exists a 
computation path that finds a satisfying truth assignment.

The characterization of NP as the set of problems with easily verified solutions is formal­
ized as follows: L € NP if and only if there exist a language L' € P and a polynomial p such 
that for every x, x 6 L if and only if there exists a y such that \y\ <  p(|z|) and (x,y) € L' . 
Here, y is interpreted as the solution to the problem represented by x, or equivalently, as a 
proof that x belongs to L.

The difference between P and NP is the difference between finding a proof of a mathemat­
ical theorem and checking that a proof is correct. In essence, P comprises the theorems that 
can be proved quickly from scratch (in polynomial time), and NP comprises the theorems 
whose proofs are short (of polynomial length).

4 Relationships Between Complexity Classes

The P vs. NP question asks about the relationship between these complexity classes: Is 
P a proper subset of NP, or does P =  NP? Much of complexity theory focuses on the 
relationships between complexity classes, because these relationships have implications for 
the difficulty of solving computational problems. In this section, we summarize important 
known relationships. We demonstrate two techniques for proving relationships between 
classes: diagonalization and padding.

4.1 Basic Relationships
Clearly, for every t(n) and s(n), DTIME(i) C NTIME(i) and DSPACE(s) C NSPACE(s), be­
cause a deterministic machine is a special case of a nondeterministic machine. Furthermore 
DTIME(t) C DSPACE(i) and NTIME(t) C NSPACE(t), because at each step, a ¿-tape Tur­
ing machine can write on at most k =  0(1) previously unwritten cells. The next theorem 
presents additional important relationships between classes.
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Figure 2: Inclusion relationships between the canonical complexity classes.

Theorem 2 Let t(n) be a time-constructible function, and let s(n) be a space-constructible 
function, s(n) >  logn.

1. NTIME(t) Ç DTIME(0(1)‘ ).

2. NSPACE(s) Ç DTIME(n +  0(1)*).

3. DTIME(t) Ç DSPACE(t/log£). [Hopcroft et al., 1977].

4- NTIME(t) Ç DSPACE(t).

5. (Savitch’s Theorem) NSPACE(s) Ç DSPACE(s2). [Savitch, 1970].

As a consequence of the first part of this theorem, NP Ç EXP. No better general upper 
bound on deterministic time is known for languages in NP, however. See Figure 2 for other 
known inclusion relationships between the canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class 
of languages decided in polynomial time, Savitch’s Theorem says that for space classes, non­
determinism does not help by more than a polynomial amount. Savitch’s Theorem implies 
that both PSPACE and EXPSPACE can be defined by either deterministic or nondeterministic 
Turing machines.
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4.2 Complementation
For a language L over an alphabet £, define L to be the complement of L in the set of words 
over S: L =  £* — L. For a class of languages C, define co-C =  {L : L € C}. If C =  co-C, 
then C is closed under complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. 
For the language SAT of satisfiable boolean formulas, SAT is the set of unsatisfiable formulas, 
whose value is fa ls e  for every truth assignment, together with the syntactically incorrect 
formulas. A closely related language in co-NP is the set of boolean tautologies, formulas 
whose value is true for every truth assignment. Most complexity theorists believe that 
NP #  co-NP: it is unclear how to check that a formula on m variables is a tautology without 
checking all 2m possible truth assignments, which would take exponential time.

Questions about complementation bear directly on the P vs. NP question. It is easy 
to show that P is closed under complementation (see the next theorem). Consequently, if 
NP ^  co-NP, then P ^  NP.

Theorem 3 (Complementation Theorems) Let t(n) be a time-constructible function, 
and let s(n) be a space-constructible function, s(n) >  logn.

1. DTIME(i) is closed under complementation.

2. DSPACE(s) is closed under complementation.

3. NSPACE(s) is closed under complementation. [Immerman, 1988; Szelepcsényi, 1988].

The Complementation Theorems are used to prove the Hierarchy Theorems in the next 
section.

4.3 Hierarchy Theorems and Diagonalization
Intuitively, with more time (or more space), we should be able to solve more problems. More 
precisely, the class of languages decided by Turing machines with a large time complexity 
should strictly include the class decided by machines with a small time complexity. The next 
theorem confirms this intuition. In following, C denotes strict inclusion between complexity 
classes.

Theorem 4 (Hierarchy Theorems) Let t\(n) and t2(n) be time-constructible functions, 
and let Si(n) and s2{n) be space-constructible functions, with si(n),s2(n) >  log n.

1. If hin) logt^n) =  o(t2(n)), then DTIME(ti) C DTIME(t2).

2. Ifti(n-\- 1) =  o(t2(n)), then NTIME(tx) C NTIME(t2)- [Seiferas et al., 1978].

3. If si(n) =  o(s2{n)), then DSPACE(si) C DSPACE(s2).

I  If s\(n) = o(s2(n)), then NSPACE(si) C NSPACE(s2).

13



As a corollary of the Hierarchy Theorem for DTI ME,

P C DTIME(nlogn) C DTIME(2n) C E

hence we have the strict inclusion P C E. Although we don’t know whether P C NP, there 
exists a problem in E that cannot be solved in polynomial time. Other consequences of the 
Hierarchy Theorems are NE C NEXP; and DLOG C PSPACE.

In combination with the relationship between DTI ME and DSPACE in Theorem 2, the 
Hierarchy Theorem for DSPACE implies

DTIME(t) C DSPACE(t/logi) c  DSPACE(t)

In other words, space is more valuable than time. Intuitively, Turing machines can decide 
more languages with t units of space than with t units of time, because tape cells can be 
reused.

In the Hierarchy Theorem for DTIME, the hypothesis on t\ and t2 is ¿i(n) logii(n ) =  
o(t2(̂ 1)), instead of ti(n) = o(t2(n)), for technical reasons related to the simulation of ma­
chines with multiple worktapes by a single universal machine with a fixed number of work- 
tapes. Other computational models, such as random access machines, enjoy tighter time 
hierarchy theorems [Cook and Reckhow, 1973].

The Gap Theorem [Borodin, 1972] shows that the constructibility hypotheses are nec­
essary. The Gap Theorem implies, for example, that there exists a function t(n) such that 
DTIME(t) =  DTIME(2i); if t(n) were time-constructible, then this would be a contradiction 
of the Hierarchy Theorem for DTIME.

The proofs of the Hierarchy Theorems use the diagonalization technique. The proof 
for DTIME constructs a Turing machine M  of time complexity t2 that considers all machines 
Mi, M2, . . .  whose time complexity is for each i, the proof finds a word xt that is accepted 
by M  if and only if x{ g  £(M ,). Consequently, C(M) differs from each £(M*), hence 
C(M) £  DTIME(ti). The diagonalization technique resembles the classic method used to 
prove that the real numbers are uncountable, by constructing a number whose j th digit differs 
from the j th digit of the j th number on the list. To illustrate the diagonalization technique, 
we outline a proof of the Hierarchy Theorem for DSPACE.

P roof: We construct a deterministic Turing machine M  that decides a language L such
that L € DSPACE(s2) — DSPACE(si). Let U be a deterministic universal Turing machine. 
On input x of length n, machine M  performs the following:

1. Lay out s2(n) cells on a worktape.

2. On another worktape, copy the first min{n, s2(n)} symbols of x, and let i be this word.

3. Simulate U on input (z, x). Accept x if U tries to use more than s2 worktape cells. 
(We omit some technical details, such as interleaving multiple worktapes onto the fixed 
number of worktapes of M, and the using the constructibility of s2 to ensure that this 
process halts.)

4. If Ui accepts x, then reject; if Ui rejects x, then accept.

14



Clearly, M  always halts and uses space O(52(71)). Let L =  C(M).
Suppose L € DSPACE(si(n)). By carefully constructing U, we can ensure that there 

exists a word y such that Uy decides L, and for every word 2, Uyz also decides L in space 
csi(n), where the constant c depends only on L; in essence, y is a complete description of a 
machine that decides L, and Uyz ignores symbols beyond the end of y.

Since si(n) =  o(s2(n)), there is an n0 such that csi(n) <  s2(n) for all n >  n0. Choose 2 
so that |y| <  s2(\yz\) and \yz\ >  n0, so that csi(\yz\) < s2(\yz\). On input yz, machine M  
has enough space to simulate Uy on input yz. By construction, M  accepts yz if and only if 
Uy rejects yz. Contradiction! ■

Although the diagonalization technique successfully separates some pairs of complexity 
classes, diagonalization does not seem strong enough to separate P from NP. (See Theorem 9 
in Section 6.)

4.4 Padding Arguments
A useful technique for establishing relationships between complexity classes is the padding 
argum ent. Let L be a language over alphabet £ , and let #  be a symbol not in E. Let /  
be a numeric function. The /-p a d d ed  version o f  L is the language

l !  =  : x G L and n — |x|}

That is, each word of V  is a word in L concatenated with f(n)  consecutive #  symbols. The 
padded version L' has the same information content as L, but because each word is longer, 
the computational complexity of L' is smaller!

The proof of the next theorem illustrates the use of a padding argument.

T heorem  5 7/P  =  NP, then E =  NE. [Book, 1974].

P roof: Since E C NE, we prove that NE C E.
Let L e  NE be decided by a nondeterministic Turing machine M  in at most t(n) =  kn 

time for some constant integer k. Let V  be the t(n)-padded version of L. From M , we 
construct a nondeterministic Turing machine M' that decides L' in linear time: M' checks 
that its input has the correct format, using the time-constructibility of t\ then M' runs M  
on the prefix of the input preceding the first #  symbol. Thus, L' e  NP.

If P =  NP, then there is a deterministic Turing machine D' that decides L' in at most 
p'{n) time for some polynomial p'. From D\ we construct a deterministic Turing machine D 
that decides L, as follows. On input x of length n, since t(n) is time-constructible, machine 
D constructs z # i(n), whose length is n +  t(n), in 0(t(n)) time. Then D runs D' on this 
input word. The time complexity of D is at most 0(t(n)) +pf(n +  t(n)) = 0 ( l ) n. Therefore 
NECE. h

5 Reducibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces 
to another problem, then in a sense, the second problem is harder than the first. The hardest
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problems in NP are the NP-complete problems. We define NP-completeness precisely, and 
we show how to prove that a problem is NP-complete. Finally, we list some problems that 
are complete for NP and other complexity classes.

5.1 Resource-Bounded Reducibilities
In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to 
a previously solved problem. Frequently, an instance of the new problem is expressed com­
pletely in terms of an instance of the previous problem, and the solution is then interpreted 
in the terms of the new problem. For example, the maximum weighted matching problem 
for bipartite graphs reduces to the network flow problem. (See Chapter 10, on graph and 
network problems.) This kind of reduction is called m any-one reducibility, and is defined 
below.

A different way to solve the new problem is to use a subroutine that solves the previous 
problem. For example, we can solve an optimization problem whose solution is feasible and 
maximizes the value of an objective function g by repeatedly calling a subroutine that solves 
the corresponding decision problem of whether there exists a feasible solution x whose value 
g(x) satisfies g(x) > k. This kind of reduction is called Turing reducibility, and is defined 
below.

Let Li and L2 be languages. Lx is m any-one reducible to L2, written Lx < m L2, if 
there exists a total recursive function /  such that for all x, x € L\ if and only if f(x)  € L2. 
The function /  is called the transform ation function. Lx is Turing reducible to L2, 
written L\ < T L2, if Lx can be decided by a deterministic oracle Turing machine M  using 
L2 as its oracle, i.e., Lx =  C(ML2).

A reduction between problems may not be helpful if it takes too much time. To study 
complexity classes defined by bounds on time and space resources, it is natural to consider 
resource-bounded reducibilities.

Let Li and L2 be languages. Lx is Karp reducible to L2, written Lx < £  L2, if Lx is 
many-one reducible to L2 via a transformation function that is computable deterministically 
in polynomial time. Karp reducibility is also called “polynomial-time reducibility.”

Lx is log-space reducible to L2, written Lx <J°g L2, if Lx is many-one reducible to 
L2 via a transformation function that is computable by a deterministic Turing machine in 
O(logra) space.

Lx is C ook  reducible to L2, written Lx L2, if Lx is Turing reducible to L2 via a 
deterministic oracle Turing machine of polynomial time complexity.

A reduction from a language Lx to a language L2, together with a method for deciding 
membership in L2, yields a method for deciding Lx. Suppose Lx is Karp reducible to L2 
via the transformation / .  If machine M2 decides L2, and machine Mf computes / ,  then to 
decide whether an input word x is in Lx, first use Mf to compute /(x ) , then run M2 on input 
f{x). A fortiori, if the time complexity of M2 is a polynomial t2, and the time complexity 
of Mf is a polynomial tf , then on inputs x of length |rc| = n, the time taken by this method 
for deciding membership in Lx is at most tf (n) +  t2{tf (n)), which is also a polynomial in 
n. In summary, if L2 is feasible, and there is an efficient reduction from Lx to L2, then Lx 
is feasible. We formally state this property of Karp reducibility for P in Theorem 8 after 
stating other properties of these reducibilities.
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Log-space reducibility is useful for complexity classes within P, such as NLOG, for which 
Karp reducibility allows too many reductions. By definition, for every nontrivial language Lq, 
(i.e., L0 #  0 and Lq #  £*), and for every L in P, necessarily L < £  Lq via a transformation 
that simply runs a deterministic Turing machine that decides L in polynomial time. It is 
not known whether log-space reducibility is different from Karp reducibility, however: all 
transformations for known Karp reductions can be computed in O(logn) space. Even for 
decision problems, DLOG is not known to be a proper subset of P.

T heorem  6 Log-space reducibility implies Karp reducibility, which implies Cook reducibility: 

1- If Li < %  L2, then L\ < pm L2.

2. If Li < £  L2, then L\ <£  L2.

T heorem  7 Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:

1- U Lx < £ g L2 and L2 < £ g L3, then Lx < £g L3. [Jones, 1975].

2. If Lx < £  L2 and L2 < £  Lz, then Lx < £  L3.

3. If Lx < p L2 and L2 < p L3, then Lx < p L3.

A class of languages C is closed under a reducibility <  if for all languages Lx and L2, 
whenever Lx < L2 and L2 € C, necessarily Lx G C.

T heorem  8

1. P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.

NP is closed under log-space reducibility and Karp reducibility.

3. DLOG and NLOG are closed under log-space reducibility.

We shall see the importance of closure under a reducibility in conjunction with the concept 
of completeness, which we define in the next section.

5.2 Complete Languages
Let C be a class of languages that represent computational problems. A language L0 is 
C-hard under a reducibility <  if for all L in C, L < L0. A language L0 is C-com plete under 
— ^  Lq is C-hard, and Lq E C. Informally, if Lq is C-hard, then Lq represents a problem that 
is at least as difficult to solve as any problem in C. If Lq is C-complete, then in a sense, Lq 
is one of the most difficult problems in C.

Unless stated otherwise, Karp reducibility is generally assumed. Thus, a language Lq 
is N P -hard  if Lq is NP-hard under Karp reducibility. Lq is N P -com plete if Lq is NP- 
complete under Karp reducibility.

Let Lq be NP-complete. If there exists a deterministic Turing machine that decides Lq 
in polynomial time—that is, if Lq € P—then because P is closed under Karp reducibility
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(Theorem 8 in Section 5.1), it would follow that NP C P, hence P =  NP. In essence, the 
question of whether P is the same as NP reduces to whether any particular NP-complete 
language is in P.

A common misconception is that this property of NP-complete languages is actually 
their definition: that is, if L e  NP, and L e  P implies P = NP, then L is NP-complete. This 
“definition” is wrong. It is known that P #  NP if and only if there exists a language L* 
in NP -  P such that L* is not NP-complete [Ladner, 1975]. Thus, if P ^ NP, then L* is a 
counterexample to the “definition.”

We have noted that an NP-complete language Lq is unlikely to belong to P. It is also 
unlikely to belong to co-NP, because, by an elementary argument, if Lq G co-NP, then 
NP =  co-NP.

5.3 Proving NP-Completeness
Proving NP-completeness is an important ingredient of our methodology for 

studying computational problems. It is also something of an art form.
— C. H. Papadimitriou [1994]

After one language has been proved complete for a class, others can be proved complete 
by constructing transformations. For NP, if L0 is NP-complete, then to prove that another 
language Lx is NP-complete, it suffices to prove that Li G NP, and to construct a polynomial­
time transformation that establishes Lq L\. Since Lq is NP-complete, for every language 
L in NP, L < £  Lq, hence by transitivity (Theorem 7 in Section 5.1), L < £  Lx.

Cook [1971] defined NP-completeness and proved that SAT, the language of satisfiable 
boolean formulas defined in Section 3.3, is NP-complete. Consequently, if deciding sat is 
easy (in polynomial time), then factoring integers is easy— a surprising connection between 
ostensibly unrelated problems.

Beginning with Cook [1971] and Karp [1972], hundreds of computational problems in 
many fields of science and engineering have been proved to be NP-complete, almost always 
by reduction from a problem that was previously known to be NP-complete. The follow­
ing NP-complete decision problems are frequently used in these reductions. (The language 
corresponding to each problem is the set of instances whose answers are “yes.” )

3 -Satisfiability (3SAT)
Instance: A boolean expression 0 in conjunctive normal form with three literals per clause 
(e.g., (w V x V y) A (x V y V z)).
Question: Is (f> satisfiable?

V ertex Cover
Instance: A graph G and an integer k.
Question: Does G have a set W  of k vertices such that every edge in G is incident on a 
vertex of W?

Clique
Instance: A graph G and an integer k.

18



Question: Does G have a set K  of k vertices such that every two vertices in K  are adjacent 
in G?

Hamiltonian Circuit 
Instance: A graph G.
Question: Does G have a circuit that includes every vertex exactly once?

3-Dimensional Matching
Instance: Sets W ,X ,Y  with \W\ =  \X\ =  \Y\ =  q and a subset S C W  x X  x Y.
Question: Is there a subset S' C S of size q such that no two triples in S' agree in any 
coordinate?

Partition
Instance: A set S of positive integers.
Question: Is there a subset S' C S such that the sum of the elements of S' equals the sum 
of the elements of S — S'?

Here is an example of an NP-completeness proof, for the following decision problem: 

T raveling Salesman Problem (TSP)
Instance: A set of m cities C i ,. . . ,  Cm, with a distance d(i,j) between every pair of cities C{ 
and Cj, and an integer D.
Question: Is there a tour of the cities whose total length is at most D , i.e., a permutation 
ci> • • • 5 cm of { 1 , . . . ,  m}, such that

d(ci, C2) + * * ■ + d(cm_i, cm) + d(cm, Ci) ^ D?

First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply 
guesses a tour and checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction 
goes from the known NP-complete problem, Hamiltonian Circuit, to the new problem, 
TSP, not vice versa!)

From a graph G on m vertices Vi,. . . ,  vm, define the distance function d as follows:

Mi i \ - i  1 if (vi,Vj) is an edge in G 
’ ( m +  1 otherwise

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of 
G corresponds to a city in the constructed instance of TSP.

If G has a hamiltonian circuit, then the length of the tour that corresponds to this circuit 
is exactly m. Conversely, if there is a tour whose length is at most m, then each step of the 
tour must have distance 1, not m +  1. Thus, each step corresponds to an edge of G, and the 
corresponding sequence of vertices in G is a hamiltonian circuit.
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5.4 Complete Problems for Other Classes
Besides NP, the following canonical complexity classes have natural complete problems. 
The three problems listed below are complete for their respective classes under log-space 
reducibility.

NLOG: G r a p h  A c c e s s ib il it y  P r o b l e m  
Instance: A directed graph G with nodes 1 , . . . ,  N.
Question: Does G have a directed path from node 1 to node N ?

P: C ir c u it  V a l u e  P r o b l e m

Instance: A boolean circuit (see Section 9) with output node u, and an assignment I  of 
{0 ,1 }  to each input node.
Question: Is 1 the value of u under /?

PSPACE: Q u a n t if ie d  B o o l e a n  F o r m u l a s  
Instance: A boolean expression with all variables quantified with either V or 3 (e.g., 
VxVy3z(x A (y V z))).
Question: Is the expression true?

The theory of P-completeness, analogous to the theory of NP-completeness, is explained 
in Chapter 14, on parallel algorithms.

Stockmeyer and Meyer [1973] defined a natural decision problem that they proved to 
be complete for NE. If this problem were in P, then by closure under Karp reducibility 
(Theorem 8 in Section 5.1), we would have NE C P, a contradiction of the Hierarchy The­
orems (Theorem 4 in Section 4.3). Therefore, this decision problem is infeasible: it has 
no polynomial-time algorithm. In contrast, decision problems in NE -  P constructed by 
diagonalization are unnatural.

6 Relativization of the P vs. NP Problem

Let L be a language. Define PL (respectively, NPL) to be the class of languages decided in 
polynomial time by deterministic (nondeterministic) oracle Turing machines with oracle L.

Theorem  9 There exist languages A and B such that PA =  NPA, and PB ^  NPS . [Baker 
et al., 1975].

This theorem suggests that resolving the P vs. NP question demands techniques that do 
not relativize, i.e., that do not apply to oracle Turing machines too. Proofs that use the 
diagonalization technique on Turing machines without oracles generally relativize to oracle 
Turing machines; thus, diagonalization is unlikely to succeed in separating P from NP. The 
only major nonrelativizing proof technique in complexity theory appears to be the technique 
used to prove that IP =  PSPACE (see Section 11.1).
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Figure 3: The polynomial hierarchy.

7 The Polynomial Hierarchy

The oracle B in Theorem 9 is an ad hoc language. Let us explore what classes we can define 
with oracle languages from known complexity classes.

Let C be a class of languages. Define

NPC =  |J NPl

Define

For k >  0, define

Lee

So =  n0p = p

y p^ k +1 =  NP]
nf+i — co-Sf+1 

PObserve that E f =  NP =  NP, because each of polynomially many queries to an oracle 
language in P can be answered directly by a (nondeterministic) Turing machine in polynomial 
time. Consequently, I lf  =  co- NP. For each fc, E f C Ef+1, and n f  C Ef+1, but these 
inclusions are not known to be strict. See Figure 3.

The classes E f and I lf  constitute the polynom ial hierarchy. Define

PH = U S f
k>0

It is straightforward to prove that PH C PSPACE, but it is not known whether the inclusion 
is strict. In fact, if PH =  PSPACE, then the polynomial hierarchy collapses to some level,
i.e., PH =  E f  for some m.

In the next section, we define the polynomial hierarchy in two other ways, one in terms 
of alternating Turing machines.
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8 Alternating Complexity Classes

The possible computations of an alternating Turing machine M  on an input word x can be 
represented by a tree Tx in which the root is the initial configuration, and the children of a 
nonterminal node C are the configurations reachable from C by one step of M . For a word 
x in C(M), define an accepting subtree S of Tx as follows:

• S is finite.

• The root of S is the initial configuration with input word x.

• If S has an existential configuration C, then S has exactly one child of C in Tx; if S 
has a universal configuration C , then S has all children of C in Tx.

• Every leaf is a configuration whose state is the accepting state qA.

See Figure 4. Observe that each node in S is an accepting configuration (see Section 2.4).
We consider only alternating Turing machines that always halt. For x € C(M), define 

the time taken by M  to be the height of the shortest accepting tree for x, and the space to 
be the maximum number of nonblank worktape cells among configurations in the accepting 
tree that minimizes this number. For x & £ (M ), define the time to be the height of Tx, and 
the space to be the maximum number of nonblank worktape cells among configurations in 
T-LX'

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function. 
Define the following complexity classes:

• ATIME(i(n)) is the class of languages decided by alternating Turing machines of time 
complexity 0(t(n)).

• ASPACE(s(n)) is the class of languages decided by alternating Turing machines of space 
complexity 0(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing 
machine, for every t(n) and s(n), NTIME(i) C ATIME(t) and NSPACE(s) Ç ASPACE(s). 
The next theorem states further relationships between computational resources used by al­
ternating Turing machines, and resources used by deterministic and nondeterministic Turing 
machines.

Theorem 10 [Chandra et al., 1981]. Lett(n) be a time-constructible function, and let s(n) 
be a space-constructible function, s(n) >  log n.

1. NSPACE(s) Ç ATIME(n +  s2)

2. ATIME(f) Ç DSPACE(t)

3. ASPACE(s) Ç DTIME(n +  0(1)*) 
l  DTIME(t) Ç ASPACE(logt)
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Figure 4: A computation tree of an alternating Turing machine. Each 3 marks an existential 
configuration; each V marks a universal configuration. The edges of one accepting subtree 
are drawn with dashed lines.
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In other words, space on deterministic and nondeterministic Turing machines is polyno­
mial^ related to time on alternating Turing machines. Space on alternating Turing machines 
is exponentially related to time on deterministic Turing machines. In particular, logarithmic 
space on alternating Turing machines corresponds to P. Polynomial time on alternating 
Turing machines corresponds to PSPACE. Polynomial space on alternating Turing machines 
corresponds to EXP.

In Section 7, we defined the classes of the polynomial hierarchy in terms of oracles, but 
we can also define them in terms of alternating Turing machines with restrictions on the 
number of alternations between existential and universal states. Define a ^-alternating 
Turing m achine to be a machine such that on every computation path, the number of 
changes from an existential state to universal state, or from a universal state to an existential 
state, is at most k -  1. Thus, a nondeterministic Turing machine, which stays in existential 
states, is a 1-alternating Turing machine.

Theorem  11 [Stockmeyer, 1976; Wrathall, 1976]. The following are equivalent:

1. L e  E f .

2. L is decided in polynomial time by a k-altemating Turing machine that starts in an 
existential state.

3. There exists a language L' in P and a polynomial p such that x G L if and only if

(3j/i : li/il <p(M ))(V jft : \y2\<  p(|z|)) • • • : |»| <  p(|x|))[(z, €

where the quantifier Q is 3 if k is odd, V if k is even.

Alternating Turing machines are closely related to boolean circuits, which are defined in 
the next section.

9 Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into 
combinational networks. (See Chapter 17, on architecture components.) Here, we specify a 
model of computation that formalizes the (bounded fan-in) combinational network.

A boolean  circuit on n input variables X i , . . . ,x n is a directed acyclic graph with 
exactly n input nodes of indegree 0 labeled X\,... ,xn, and other nodes of indegree 1 or 2, 
called gates, labeled with the boolean operators in {A, V, -.}. One node is designated as the 
output of the circuit. See Figure 5. Without loss of generality, we assume that there are no 
extraneous nodes: there is a directed path from each node to the output node.

An input assignment I is a function that maps each variable Xi to either 0 or 1. The 
value of each gate g under I is obtained by applying the boolean operation that labels g to 
the values of the immediate predecessors of g. The function computed by the circuit is the 
value of the output node for each input assignment.

A boolean circuit computes a finite function: a function of only n binary input variables. 
To decide membership in a language, we need a circuit for each input length n.
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A circuit family is an infinite set of circuits C =  {c i ,c 2, . . . }  in which each cn is a 
boolean circuit on n inputs. C decides a language L C {0, l}*  if for every n and every 
assignment au . . . ,  an of {0 ,1 } to the n inputs, the value of the output node of cn is 1 if and 
only if the word ax • • • an £ L. The size com plexity of C is the function z(n) that specifies 
the number of nodes in each cn. The depth com plexity of C is the function d(n) that 
specifies the length of the longest directed path in cn. Clearly, since the fan-in of each gate 
at most 2, d(n) >  log z(n) >  logn.

With a different circuit for each input length, a circuit family could solve an undecidable 
problem such as the Halting Problem (see Chapter 4, on models and computability)! For 
each input length, a table of all answers for machine descriptions of that length could be 
encoded into the circuit. Thus, we need to restrict our circuit families. The most natural 
restriction is that all circuits in a family should have a concise, uniform description, to 
disallow a different answer table for each input length. Several uniformity conditions have 
been studied, and the following is the most convenient.

A circuit family {ci, c2, . . . }  of size complexity z(n) is log-space uniform  if there exists 
a deterministic Turing machine M  such that on each input of length n, machine M  produces 
a description of cn, using space 0(log z(n)).

Now we define complexity classes for uniform circuit families and relate these classes to 
previously defined classes. Define the following complexity classes:

• SIZE(z(n)) is the class of languages decided by log-space uniform circuit families of 
size complexity 0(z(n)).

• DEPTH(d(n)) is the class of languages decided by log-space uniform circuit families of 
depth complexity 0(d(n)).

Theorem  12

1. If t(n) is a time-constructible function, then DTIME(t) C SIZE(tlogt). [Pippenger and 
Fischer, 1979].

2. SIZE(z) C DTIME(z0(1)).
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3. If s(n) is a space-constructible function and s(n) >  log n, then NSPACE(s) C 
DEPTH(s2). [Borodin, 1977].

4. DEPTH(d) C DSPACE(d). [Borodin, 1977].

The next theorem shows that size and depth on boolean circuits are closely related to 
space and time on alternating Turing machines, provided that we permit sublinear running 
times for alternating Turing machines, as follows. We augment alternating Turing machines 
with a random-access input capability. To access the cell at position j  on the input tape, M  
writes the binary representation of j  on a special tape, in logy steps, and enters a special 
reading state to obtain the symbol in cell j.

Theorem  13 Lett(n) >  logn and s(n) >  logn.

1. Every language decided by an alternating Turing machine of simultaneous space com­
plexity s(n) and time complexity t(n) can be decided by a uniform circuit family of 
simultaneous size complexity 0 ( l ) 5<n) and depth complexity 0(t(n)). [Ruzzo, 1981].

2. If d(n) >  (log z(n))2, then every language decided by a uniform circuit family of simul­
taneous size complexity z(n) and depth complexity d(n) can be decided by an alternat­
ing Turing machine of simultaneous space complexity 0(log2(n)) and time complexity 
0(d(n)). [Ruzzo, 1981].

In a sense, the boolean circuit family is a model of parallel computation, because all gates 
compute independently, in parallel. A fortiori, boolean circuits (or equivalently, alternating 
Turing machines) can be used to define the parallel complexity classes NCfc. (See Chapter 
14, on parallel algorithms.)

10 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems 
(see Chapter 8, on randomized algorithms), complexity theorists have placed randomized 
algorithms on a firm intellectual foundation. Several definitions of randomness have been 
compared, and various kinds of errors distinguished. In this section, we outline some basic 
concepts in this area.

A probabilistic Turing machine M  is a nondeterministic Turing machine with exactly 
two choices at each step. During a computation, M  chooses each possible next step with 
independent probability 1/2. Intuitively, at each step, M  flips a fair coin to decide what 
to do next. The probability of a computation path of t steps is 1/2*. The probability that 
M  accepts an input word x, denoted pM{x), is the sum of the probabilities of the accepting 
computation paths.

Throughout this section, we consider only machines whose time complexity t(n) is time- 
constructible. Without loss of generality, we may assume that every halting computation 
path of the machine has exactly t steps, and terminates in either the accepting state or 
the rejecting state qr.

Let L be a language. A probabilistic Turing machine M  decides L with

26



__________________________________ for all x g L______ for all x £ L
two-sided error if pM(x) > 1/2 Pm (x) <  1/2
bounded two-sided error if pu(x) >  1/2 +  e Pm (x) <  1/2 — €

for some constant e
one-sided error if pM(x) > 1/2 Pm {x) =  0

For example, the Solovay-Strassen primality testing algorithm of Chapter 8 (on random­
ized algorithms) makes one-sided errors: when the input x is a prime number, the algorithm 
always says “prime” ; when x is composite, the algorithm usually says “composite,” but 
may occasionally say “prime.” (Actually, the Solovay-Strassen algorithm is a compositeness 
testing algorithm, because it errs only for inputs that are composite numbers.)

Define the following complexity classes:

• PP is the classes of languages decided by probabilistic Turing machines of polynomial 
time complexity with two-sided error.

• BPP is the classes of languages decided by probabilistic Turing machines of polynomial 
time complexity with bounded two-sided error.

• RP is the classes of languages decided by probabilistic Turing machines of polynomial 
time complexity with one-sided error.

In the literature, RP is also called R.
A probabilistic Turing machine M  is a PP-machine (respectively, a BPP-machine, an 

RP-machine) if M  has polynomial time complexity, and M  decides with two-sided error 
(bounded two-sided error, one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines 
and RP-machines arbitrarily small:

Theorem 14 If L € BPP, then for every polynomial q(n), there exists a BPP-machine M  
such that pM{x) >  1 -  l/2q(n) for every x € L, and pM(x) < l/2q{n) for every x g  L.

if L e  RP, then for every polynomial q(n), there exists an RP-machine M such that 
Pm {x) >  1 —  l/2q̂  for every x in L.

Next, we define a class of problems that have probabilistic algorithms that make no 
errors. Define

ZPP =  RP n co-RP

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose L € ZPP. 
Here is an algorithm that checks membership in L. Let M  be an RP-machine that decides 
L, and let M' be an RP-machine that decides L. For an input word x, alternately run M  
and M' on z, repeatedly, until a computation path of one machine accepts x. If M  accepts 
x, then accept x; if M' accepts x, then reject x. This algorithm works correctly because 
when an RP-machine accepts its input, it does not make a mistake. This algorithm might 
not terminate, but with high probability, the algorithm terminates after a few iterations.

The next theorem expresses some known relationships between probabilistic complex­
ity classes and other complexity classes, such as classes in the polynomial hierarchy (see 
Section 7).
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Figure 6: Probabilistic complexity classes.

T heorem  15 P C  ZPP C RP C BPP C PP C PSPACE. [Gill, 1977].
RP C NP C PP. [Gill, 1977].
BPP C S 2p n I lf . [Sipser, 1983; Lautemann, 1983].
PH C PPP. [Toda, 1991].

See Figure 6.

11 Interactive Models and Complexity Classes

11.1 Interactive Proofs
In Section 3.3, we characterized NP as the set of languages whose membership proofs can 
be checked quickly, by a deterministic Turing machine M  of polynomial time complexity. A 
different notion of proof involves interaction between two parties, a prover P  and a verifier 
V, who exchange messages. In an interactive p roo f system [Goldwasser et al., 1989], the 
prover is an all-powerful machine, with unlimited computational resources, analogous to a 
teacher. The verifier is a computationally limited machine, analogous to a student. One 
of the original papers on interactive proof systems [Babai and Moran, 1988] called them 
“Arthur-Merlin games” : the wizard Merlin corresponds to P, and the dim-witted Arthur 
corresponds to V.

Formally, an interactive p roo f system comprises the following:

• A read-only input tape on which an input word x is written.

• A prover P, whose behavior is not restricted.
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• A verifier V, which is a probabilistic Turing machine augmented with the capability 
to send and receive messages. The running time of V is bounded by a polynomial in
M*

• A tape on which V  writes messages to send to P, and a tape on which P  writes 
messages to send to V. The length of every message is bounded by a polynomial in
W-

A computation of an interactive proof system (P, V") proceeds in rounds, as follows. For 
j  =  1 ,2 ,..., in round j ,  V performs some steps, writes a message rrij, and temporarily stops. 
Then P  reads rrij and responds with a message m'-, which V reads in round j  +  1. An 
interactive proof system (P, V) accepts an input word x if the probability of acceptance by 
V  satisfies pv{x) >  1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a 
statement without exhibiting an entire proof. For example, consider the graph isomorphism 
problem: the input consists of two graphs G and H , and the decision is “yes” if and only if 
G is isomorphic to H. Here is an interactive proof system (P, V) for this problem. On the 
first round, V  asks P whether the input graphs are isomorphic, but V  does not immediately 
believe the response. If P says “yes” on the first round, then V repeatedly presents queries 
to P to try to construct an isomorphism. If P says “no” on the first round, then V challenges 
P by repeatedly asking further queries, as follows. In each round, V randomly chooses either 
G or H with equal probability; if V chooses G, then V computes a random permutation G' 
of G, presents G' to P, and asks P whether G' came from G or from H (and similarly if V 
chooses H). If P gave an erroneous answer on the first round, and G is isomorphic to H, 
then after k subsequent rounds, the probability that P answers all the subsequent queries 
correctly is l/2k. Thus, in polynomial time, with high probability, V can check whether the 
original answer of P was correct.

The complexity class IP comprises the languages L for which there exists a verifier V  and 
an e such that

• there exists a prover P  such that for all x in L, the interactive proof system (P, V) 
accepts x with probability greater than 1/2 +  e; and

• for every prover P and every x £ L, the interactive proof system (P, V) rejects x with 
probability greater than 1/2 +  e.

By substituting random choices for existential choices in the proof that ATIME(i) C 
DSPACE(i) (Theorem 10 in Section 8), it is straightforward to show that IP C PS PACE. 
As evidence of strict inclusion, Fortnow and Sipser [1988] constructed an oracle language 
A for which co-NPA -  \PA ±  0, and hence IPA is strictly included in PSPACEa Using a 
proof technique that does not relativize, however, Shamir [1992] proved that in fact, IP and 
PS PACE are the same class.

Theorem  16 IP =  PS PACE. [Shamir, 1992].

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 16 says that 
interactive proof systems can decide a larger class of languages than NP.
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11.2 Probabilistically Checkable Proofs
In an interactive proof system, the verifier does not need a complete conventional proof to 
become convinced about the membership of a word in a language, but uses random choices to 
query parts of a proof that the prover may know. A new notion of proof explicitly quantifies 
how much of the proof needs to be inspected.

A language L has a probabilistically checkable proof if there exists an oracle BPP- 
machine M  such that

• for all x € L, there exists an oracle language Bx such that M Bx accepts x.

• for all x qL L, and for every language B , machine M B rejects x.

Intuitively, the oracle language Bx represents a proof of membership of x in L. Notice 
that Bx can be finite since the length of each possible query during a computation of M Bx 
on x is bounded by the running time of M. The oracle language takes the role of the prover 
in an interactive proof system. The next theorem makes this role precise.

Theorem IT L has a probabilistically checkable proof if and only if L is decided by an 
interactive proof system with multiple provers. [Fortnow et al., 1988].

Let PCP(r(n), q(n)) denote the class of languages with probabilistically checkable proofs 
in which the probabilistic oracle Turing machine M  makes 0(r(n)) random binary choices, 
and queries its oracle 0(q(n)) times. (For this definition, we assume that M  has either one 
or two choices for each step.) By definition, BPP =  PCP(n0(1), 0), and NP =  PCP(0, n0(1)).

Theorem 18 NP =  PCP(logn, 1). [Arora et al., 1992].

Theorem 18 asserts that for every language L in NP, a proof that x G L can be encoded 
so that the verifier can be convinced of the correctness of the proof (or detect an incorrect 
proof) by using only 0(log  n) random choices, and inspecting only a constant number of bits 
of the proof!

11.3 Computational Learning Theory
When we defined interactive proof systems, we compared the prover to a teacher, and the 
verifier to a student. In this section, we define formal models of learning, with a reliable 
teacher, and a computationally limited student (the learner).

Let X  be a set, called the domain; an element of X  is an example. A concept class C 
is a collection of subsets of X,  i.e., C C 2X. For a concept c in C, an example x is positive 
if x € c, negative if x £ c. The learner’s task is to learn an initially unknown concept c in 
C.

For instance, the learner may be required to learn a boolean formula <j> on n variables 
from a class of boolean formulas $. In this case, the domain is the set of binary n-tuples, 
{0, l } n, and a concept is the set of n-tuples (aq, . . . ,  xn) on which <£(aq, . . . ,  xn) =  1. Each 
n-tuple example represents a truth assignment, with 0 =  fa lse  and 1 =  true. An example 
(aq,. . . ,  xn) is positive if <j>(xu . . . ,  xn) =  1, negative if <f>(xu . . . ,  xu) =  0. The task of the
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learner is to output a boolean formula in $  that is equivalent to 0, and hence specifies the 
same concept. Each boolean formula is a particular representation of an underlying concept, 
which formally is a subset of {0, l } n; learnability results often depend on the representation 
of concept classes.

In computational learning theory, there are two basic models. In the Exact Learning 
Model, the learner (student) presents queries to an oracle (teacher), which provides the 
correct answers. In the PAC Model, the learner receives positive and negative examples, but 
has no choice about the examples.

Exact Learning Model. [Angluin, 1988]. In each round, the learning algorithm pro­
poses a hypothesis d . If d =  c, then the oracle responds “yes.” If not, then the oracle 
provides a counterexample: an example on which c and d differ. A concept class C is learn- 
able if there is a learning algorithm that eventually outputs a correct hypothesis for each 
possible c in C, such that the total running time of the algorithm is a polynomial in the size 
|c| of (the representation of) c.

PAC (Probably Approximately Correct) Model. [Valiant, 1984]. The learning 
algorithm receives a sequence of examples, generated according to an arbitrary probability 
distribution D on the domain. Each example is labeled correctly as positive or negative. A 
concept class C is learnable if for every c in C, for all e and 5 such that 0 < 6,5 <  1, and 
for all probability distributions D , there is a learning algorithm with the following behavior: 
the algorithm runs in polynomial time t(|c|, 1/e, 1/5) with probability at least 1 - 5 ,  and the 
algorithm outputs (the representation of) a concept d such that the probability measure of 
the examples on which c and d differ, D(c 0  d), satisfies D(c 0  d) <  e.

The two models differ primarily in their criteria for success. The Exact Learning Model 
requires logical equivalence, whereas the PAC Model requires only approximate distribution- 
weighted equivalence.

Theorem 19 Every concept class learnable under the Exact Learning Model is also learnable 
under the PAC Model. [Angluin, 1987].

In both models, to learn a concept, a learning algorithm finds a hypothesis that is consis­
tent with the examples that it has received. The “Occam’s razor” principle of Blumer et al. 
[1987] asserts that if a sufficiently short hypothesis (not necessarily the shortest) consistent 
with sufficiently many examples can be computed in polynomial time, then the concept is 
PAC-learnable.

Many results on learnability and non-learnability (under complexity theoretic assump­
tions) have been proved for classes of boolean formulas. Here are two examples.

Theorem 20 The following classes of boolean formulas are PAC-learnable:

1• Monomials: conjunctions of literals (e.g., (w A x A y A z)). [Valiant, 1984].

2. k-DNF: formulas in disjunctive normal form with at most k literals per (monomial) 
term.

3. k-CNF: formulas in conjunctive normal form with at most k literals per clause (e.g., 
3SAT). [Valiant, 1984].
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T heorem  21 [Pitt and Valiant, 1988]. If RP ^  NP, then the following classes of boolean 
formulas are not PAC-leamable for k > 2 :

1. k-term-DNF: formulas in disjunctive normal form with at most k terms.

2. k-clause-CNF: formulas in conjunctive normal form with at most k clauses.

Results such as Theorem 21 indicate that only simple kinds of concepts are learnable in 
the two basic models. Thus, to expand the classes of learnable concepts, learning theorists 
have devised numerous enhancements to the models. Both models can be augmented by 
allowing the learning algorithm to ask additional queries, such as requests for positive or 
negative examples. For a m em bership query, the learning algorithm presents an example 
x to the oracle, which tells whether x is a positive or negative example.

See Section IV of this Handbook, on artificial intelligence, for other work on models and 
algorithms for machine learning and concept acquisition.

12 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and 
space used by running Turing machines. Kolmogorov complexity is a static complexity 
measure that captures the difficulty of describing a word. For example, the word consisting 
of three million zeroes can be described with fewer than three million symbols (as in this 
sentence). In contrast, for a word consisting of three million randomly generated bits, there 
is probably no shorter description than the word itself.

Let U be a universal Turing machine. Let A denote the empty word. The K olm ogorov  
com plexity  of a binary word y with respect to U, denoted Kjj(y), is the length of the 
shortest binary word i such that on input (i, A), machine U outputs y. In essence, i is a 
description of y , for it tells U how to generate y.

The next theorem states that different choices for the universal Turing machine affect 
the definition of Kolmogorov complexity in only a small way.

Theorem  22 (Invariance Theorem ) There exists a universal Turing machine U such 
that for every universal Turing machine U', there is a constant c such that for all y,

Ku{y) < Kv>(y) +  c

Henceforth, let K  be defined by the universal Turing machine of Theorem 22. For every 
integer n and every binary word y of length n, because y can be described by giving itself 
explicitly, K(y) <  n +  d for a constant d. Call y incompressible if K(y) >  n. Since there 
are 2 binary words of length n, and only 2n — 1 possible shorter descriptions, there exists 
an incompressible word for every length n.

Kolmogorov complexity has been used to prove many lower bounds on computational 
complexity. For example, Maass et al. [1987] constructed a language Lsmt (sparse matrix 
transposition) that can be decided by a 2-tape deterministic Turing machine of time complex­
ify 0 {n ), but every 1-tape Turing machine that decides Lsmt requires L!(7ilog?7./loglogn) 
time.
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13 Research Issues and Summary

The core research questions in complexity theory are expressed in terms of separating com­
plexity classes:

• Is DLOG different from NLOG?

• Is P different from RP or BPP?

• Is P different from NP?

• Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the 
power of nondeterminism, randomization, and interaction. In these studies, researchers have 
gone well beyond the theory presented in this chapter:

• beyond Turing machines and boolean circuits, to restricted and specialized models in 
which nontrivial lower bounds on complexity can be proved;

• beyond Karp reducibility and Cook reducibility, to other kinds of reducibilities;

• beyond worst case complexity, to average case complexity;

• beyond decision problems, to enumeration problems and optimization problems.

Recent research in complexity theory has had direct applications to other areas of com­
puter science and mathematics. Results on the existence of probabilistically checkable proofs 
imply that obtaining approximate solutions to NP-complete problems can be as difficult as 
solving them exactly. Complexity theory provides new tools for studying questions in finite 
model theory, a branch of mathematical logic. Some questions about logical expressibility 
are equivalent to open questions about relationships between complexity classes. Fundamen­
tal questions in complexity theory are intimately linked to practical questions about the use 
of cryptography for computer security, such as the existence of one-way functions and the 
strength of public key cryptosystems.

With precisely defined models and mathematically rigorous proofs, research in complexity 
theory will continue to provide sound insights into the difficulty of solving real computational 
problems.

14 Defining Terms

Complexity class: A set of languages that are decided within a particular resource bound. 
For example, NTIME(n2 logn) is the set of languages decided by nondeterministic Turing 
machines within 0 (n 2 log n) time. (See Section 3.3.)

Constructibility: A function / (n) is time- (respectively, space-) constructible if there exists 
a deterministic Turing machine that halts after exactly f(n)  steps (after using exactly f(n)  
worktape cells) for every input of length n. (See Section 3.2.)
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Diagonalization: A technique for constructing a language L that differs from every £(M¿) 
for a list of machines Mi, M 2,___(See Section 4.3.)

N P -com plete: A language L0 is NP-complete if L0 € NP and L < £  L0 for every L in NP; 
that is, for every L in NP, there exists a function /  computable in polynomial time such that 
for every x, x e  L if and only if f (x)  € Lq. (See Sections 5.1 and 5.2.)

Oracle: An oracle is a language L to which a machine presents queries of the form “Is w in 
Ln and receives the correct answers at no cost. (See Sections 2.5, 6, and 7.)

Padding: A technique for establishing relationships between complexity classes that uses 
padded versions of languages, in which each word is padded out with multiple occurrences 
of a new symbol— the word x is replaced by the word — in order to artificially reduce
the complexity of the language. (See Section 4.4.)

R eduction : A language L\ reduces to a language L2 if a machine that decides L2 can be 
used to decide L\ efficiently. (See Section 5.1.)

T im e and space com plexity: The time (respectively, space) complexity of a deterministic 
Turing machine M  is the maximum number of steps taken (nonblank cells used) by M  among 
all input words of length n. (See Section 3.1.)

Turing machine: A Turing machine M  is a model of computation with a read-only input 
tape and multiple worktapes. At each step, M  reads the tape cells on which its access heads 
are located, and depending on its current state and the symbols in those cells, M  changes 
state, writes new symbols on the worktape cells, and moves each access head one cell left or 
right or not at all. (See Section 2.2.)

15 Further Information

Three contemporary textbooks on complexity theory are by Balcázar et al. [1998, 1990], 
by Bovet and Crescenzi [1994], and by Papadimitriou [1994]. The exhaustive survey of 
complexity theory by Wagner and Wechsung [1986] covers work published before 1986.

A good general reference is the Handbook of Theoretical Computer Science [van Leeuwen, 
1990]. The following chapters in the Handbook are particularly relevant: Machine models and 
simulations, by P. van Emde Boas, pp. 1-66; A catalog of complexity classes, by D. S. John­
son, pp. 67-161; Machine-independent complexity theory, by J. I. Seiferas, pp. 163-186; 
Kolmogorov complexity and its applications, by M. Li and P. M. B. Vitányi, pp. 187-254; 
and The complexity of finite functions, by R. B. Boppana and M. Sipser, pp. 757-804, which 
covers circuit complexity.

A collection of articles edited by Hartmanis [1989] includes an overview of complexity 
theory, and chapters on sparse complete languages, on relativizations, on interactive proof 
systems, and on applications of complexity theory to cryptography.

For specific topics in complexity theory, the following references are helpful. Garey 
and Johnson [1979] explain NP-completeness thoroughly, with examples of NP-completeness 
proofs, and a collection of hundreds of NP-complete problems. Li and Vitányi [1993] provide 
a comprehensive scholarly treatment of Kolmogorov complexity, with many applications.
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Angluin [1992] and Kearns and Vazirani [1994] give up-to-date introductions to computa­
tional learning theory.

For historical perspectives on complexity theory, see Hartmanis [1994], Sipser [1992], and 
Stearns [1990].

Research papers on complexity theory are presented at several annual conferences, includ­
ing the annual ACM Symposium on Theory of Computing; the annual International Collo­
quium on Automata, Languages, and Programming, sponsored by the European Association 
for Theoretical Computer Science (EATCS); and the annual Symposium on Foundations of 
Computer Science, sponsored by the IEEE. The annual Conference on Computational Com­
plexity (formerly Structure in Complexity Theory), also sponsored by the IEEE, is entirely 
devoted to complexity theory. Research articles on complexity theory regularly appear in 
the following journals, among others: Computational Complexity, Information and Com­
putation, Journal of the ACM, Journal of Computer and System Sciences, Mathematical 
Systems Theory, SIAM Journal on Computing, and Theoretical Computer Science. Each 
issue of ACM SIGACT News and Bulletin of the EATCS contains a column on complexity 
theory.
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