
July 1995 UILU-ENG-95-2221
ACT-134

Applied Computation Theory

Complexity Theory

Michael C. Loui

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

Complexity Theory

Michael C. Loui1

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

July 7, 1995

Revised November 4, 1995

Abstract

This manuscript presents the rudiments of computational complexity theory. The manu­
script will appear as a chapter in the forthcoming CRC Handbook of Computer Science and
Engineering, and it refers to other chapters and sections in the Handbook.

K ey words: computational complexity theory, Turing machines, complexity classes,
reducibility, NP-completeness.

1 Supported by the National Science Foundation under grant CCR-9315696.

1 Introduction

Computational complexity is the study of the difficulty of solving computational problems,
in terms of the required computational resources, such as time and space (memory). The
formal theoretical study of computational complexity began with the paper of Hartmanis
and Stearns [1965], who introduced the basic concepts and proved the first results. For their
achievement, Hartmanis and Stearns received the 1993 Turing Award of the ACM.

Whereas the analysis of algorithms focuses on the time or space required by an algorithm
to solve a specific computational problem, such as sorting, complexity theory focuses on the
complexity class, which consists of all problems solvable within the same amount of time
or space. Two important complexity classes are P, the set of problems that can be solved in
polynomial time, and NP, the set of problems whose solutions can be verified in polynomial
time. Complexity theorists have discovered that most common computational problems fall
into a small number of complexity classes.

By quantifying the resources required to solve a problem, complexity theory has pro­
foundly affected our thinking about computation. Computability theory establishes the
existence of undecidable problems, which cannot be solved in principle, regardless of the
amount of time invested. In contrast, complexity theory establishes the existence of decid­
able problems that, although solvable in principle, cannot be solved in practice, because
the time and space required would be larger than the age and size of the known universe
[Stockmeyer and Chandra, 1979]. Thus, complexity theory characterizes the computationally
feasible problems.

The quest for the boundaries of the set of feasible problems has led to the most important
unsolved question in all of computer science: Is P different from NP? Hundreds of fundamen­
tal problems, including many ubiquitous optimization problems of operations research, are
NP-complete— they are the hardest problems in NP. If someone could find a polynomial­
time algorithm for any one NP-complete problem, then there would be polynomial-time
algorithms for all of them. Despite the concerted efforts of many scientists over several
decades, no polynomial-time algorithm has been found for any NP-complete problem. Al­
though we do not yet know whether P is different from NP, showing that a problem is
NP-complete provides strong evidence that the problem is computationally infeasible, and
justifies the use of heuristics for solving the problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use
of diagonalization and padding techniques to prove relationships between classes. Next, we
define NP-completeness, and we show how to prove that a problem is NP-complete. Finally,
we define complexity classes for probabilistic and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce in­
teger values. All logarithms are taken to base 2. In particular, logn means [log2n].

2 Models of Computation

By a theory, I mean the result of removing ambiguity and uncertainty in the
statement of a problem so that precise, rigorous statements about it can be made and
verified. Abstraction, the process of eliminating unnecessary detail, . . . permits the

1

problem to be reduced to a tractable and comprehensible size from which significant
new insights can be obtained.

—M. J. Fischer [1980]

To develop a theory of the difficulty of computational problems, we need to specify
precisely what a problem is, what an algorithm is, and what a measure of difficulty is. For
simplicity, complexity theorists have chosen to represent problems as languages, to model
algorithms by off-line multitape Turing machines, and to measure computational difficulty
by the time and space required by a Turing machine. To justify these choices, some theorems
of complexity theory show how to translate statements about, say, the time complexity of
language recognition by Turing machines into statements about computational problems on
more realistic models of computation. These theorems imply that the principles of complexity
theory are not artifacts of Turing machines, but intrinsic properties of computation.

This section defines different kinds of Turing machines. The deterministic Turing machine
models actual computers. The nondeterministic Turing machine is not a realistic model,
but it helps classify the complexity of important computational problems. The alternating
Turing machine models a form of parallel computation, and it helps elucidate the relationship
between time and space.

2.1 Computational Problems and Languages
Computer scientists have invented many elegant formalisms for representing data and con­
trol structures. Fundamentally, all representations are patterns of symbols. Therefore, we
represent an instance of a computational problem as a sequence of symbols. (See Chapter
4, on formal models and computability.)

Let E be a finite set, called the alphabet. A word over E is a finite sequence of symbols
from E. Sometimes a word is called a “string.” Let E* denote the set of all words over E.
For example, if E = { 0, l } , then

E* = {A ,0, 1, 00, 01, 10, 11, 000, . . . }

is the set of all binary words, including the empty word A. (Binary representations of numbers
and data, such as ASCII, are pervasive in computing.) The length of a word w, denoted
M , is the number of symbols in w. A language over E is a subset of E*.

A decision problem is a computational problem whose answer is simply “yes” or “no.”
For example: “Is the input graph connected?” “Is the input a sorted list of integers?” A
decision problem can be expressed as a membership problem for a language L: for an input
x , does x belong to Ul For a language L that represents connected graphs, the input word
x might represent an input graph G, and x e L if and only if G is connected.

For every decision problem, the representation should allow for easy parsing, to deter­
mine whether a word represents a legitimate instance of the problem. Furthermore, the
representation should be concise. In particular, it would be unfair to encode the answer
to the problem into the representation of an instance of the problem; for example, for the
problem of deciding whether an input graph is connected, the representation should not have
an extra bit that tells whether the graph is connected. A set of integers S = . . . , £m}
is represented by listing the binary representation of each x{, with the representations of

2

consecutive integers in S separated by a nonbinary symbol. A graph is naturally represented
by giving either its adjacency matrix or a set of adjacency lists, where the list for each vertex
v specifies the vertices adjacent to v.

Whereas the solution to a decision problem is “yes” or “no,” the solution to an optimiza­
tion problem is more complicated—for example, “Determine the shortest path from vertex u
to vertex v in an input graph G.” Nevertheless, for every optimization (minimization) prob­
lem, with objective function g, there is a corresponding decision problem that asks whether
there exists a feasible solution x such that g(x) < k, where A: is a given target value. Clearly,
if there is an algorithm that solves an optimization problem, then that algorithm can be
used to solve the corresponding decision problem. Conversely, if algorithm A solves the
decision problem, then with a binary search on the range of values of g, we can determine
the optimal value. A fortiori, for many optimization problems, with multiple calls to the
decision algorithm A, we can even construct an optimal solution. Therefore, there is little
loss of generality in considering only decision problems, represented as language membership
problems.

2.2 Turing machines
Tape memory as an architectural feature of a modern computer is quaint, at

best.
— W. L. Ruzzo [1981]

This subsection and the next three give precise, formal definitions of Turing machines and
their variants. These subsections are intended for reference. For the rest of this chapter, from
Section 3 on, the reader need not understand these definitions in detail, but may generally
substitute “program” or “computer” for each reference to “Turing machine.”

A fc-tape Turing m achine M consists of the following:

• A finite set of states Q, with special states q0 (initial state), qA (accept state), and qR
(reject state).

• A finite alphabet E, and a special blank symbol □ 0 E.

• k + 1 linear tapes, each divided into cells. Tape 0 is the input tape, and tapes 1, . . . , k
are the worktapes. Each tape is infinite to the left and to the right. Each cell holds
a single symbol from E U {□ } . By convention, the input tape is read-only. Each tape
has an access head, and at every instant, each access head scans one cell. See Figure 1.

• A finite transition table <5, which comprises tuples of the form

(9 , So, Si , • • •, $ki Q , S j , . . . , Sj., ¿ o , ^ i , • • •, dfc)

where q, q’ G Q , each siy s' g EU {□ } , and each d{ € { -1 ,0 , +1}.

A tuple specifies a step of M: if the current state is q, and s0, $i, •.., sk are the symbols
in the cells scanned by the access heads, then M replaces st by s' for i = 1, . . . , k
simultaneously, change state to q', and move the head on tape i one cell to the left

3

tape 0
(input tape)

L □ 1 0 1 0 □ 1

access head

Finite
state

control

Figure 1: A 2-tape Turing machine.

(di = - 1) or right (d{ = +1) or not at all (dt = 0) for i = 0 , . . . , k. Note that M
cannot write on tape 0, that is, M may write only on the worktapes, not on the input
tape.

• In a tuple, no sj can be the blank symbol □. Since M may not write a blank, the
worktape cells that its access heads previously visited are nonblank.

• No tuple contains qA or qR as its first component. Thus, once M enters state qA or
state qR, it stops.

• Initially, M is in state q0, an input word in £* is inscribed on contiguous cells of the
input tape, the access head on the input tape is on the leftmost symbol of the input
word, and all other cells of all tapes contain the blank symbol □.

The Turing machine M that we have defined is nondeterm inistic: 6 may have several
tuples with the same combination of state q and symbols s0, S i,. . . , s* as the first k + 2
components, so that AT may have several possible next steps. A machine AT is determ inistic
if for every combination of state q and symbols s0, S i,. . . , sk, at most one tuple in 5 contains
the combination as its first k + 2 components. A deterministic machine always has at most
one possible next step.

A configuration of a Turing machine M specifies a state, contents of all tapes, and
positions of all access heads.

4

A computation path is a sequence of configurations Co, C\,. . . , Ct, . . . , where Co is
the initial configuration of M , and each Cj+1 follows from Cj in one step according to the
changes specified by a tuple in 5. If no tuple is applicable to Ct, then Ct is terminal, and
the computation path is halting. If M has no infinite computation paths, then M always
halts. Without loss of generality, we may assume that in every terminal configuration, the
state is q,4 or qr.

A halting computation path is accepting if the state in the last configuration Ct is qA,
rejecting if the state in Ct is q&.

M accepts an input word x if there exists an accepting computation path that starts
from the initial configuration in which x is on the input tape. M rejects x if the only
halting computation paths are rejecting; a machine may reject x by failing to halt. If M
is deterministic, then there is at most one halting computation path, hence at most one
accepting path.

The language accepted by M, written C(M), is the set of words accepted by M. If
L = C(M), and M always halts, then M decides L.

Generally, in this chapter, we consider only Turing machines that always halt. When
we define complexity classes, we consider only time- and space-constructible functions (see
Section 3.2 below) as bounds, and Turing machines that accept within those time or space
bounds can be converted into machines that always halt.

In addition to deciding languages, deterministic Turing machines can compute functions.
Designate tape 1 to be the output tape. If M halts on input word x, then the nonblank
word on tape 1 in the final configuration is the output of M. A function / is total recursive
if there exists a deterministic Turing machine M that always halts such that for each input
word x, the output of M is the value of f(x).

Almost all results in complexity theory are insensitive to minor variations in the under­
lying computational models. For example, we could have chosen Turing machines whose
tapes are restricted to be only one-way infinite, or whose alphabet is restricted to { 0, l } . It
is straightforward to simulate a Turing machine as defined above by one of these restricted
Turing machines, one step at a time: each step of the original machine can be simulated by
0(1) steps of the restricted machine. The simulation of one Turing machine by a Turing
machine with a different structure is analogous to the implementation of virtual machines in
multilayer computer systems. (See Section IX of this Handbook, on operating systems and
networks.)

2.3 Universal Turing Machines
A k-tape universal Turing machine is a Turing machine U with two input tapes and k
worktapes that interprets the word i on one input tape as an encoding of a Ar-tape Turing
machine M*, and the word x on the other input tape as the input to M*. Machine U simulates
the operation of Mi on x, consulting the transition table encoded in i to determine each next
step. (See Chapter 4, on formal models and computability, for a universal GOTO program.)

Each symbol in the alphabet of Mi is encoded by 0(1) symbols of the alphabet of U.
Thus, to simulate the writing of a cell on a worktape of Mi, machine U writes on 0(1) of its
cells on the corresponding worktape. Overall, provided that the encoding i is reasonable, U
takes 0 (|i|) steps to simulate each step of Mi.

5

We can think of U with a fixed i as a machine Ui, and define £(£/*) = {x : U accepts (z, z)} .
Then C(Ui) = C(M{).

2.4 Alternating Turing Machines
By definition, a nondeterministic Turing machine M accepts its input word x if there exists
an accepting computation path, starting from the initial configuration with x on the input
tape. Let us call a configuration C accepting if there is a computation path of M that
starts in C and ends in a configuration whose state is qA. Equivalently, a configuration C is
accepting if either the state in C is qA, or there exists an accepting configuration C' reachable
from C by one step of M . Then M accepts x if the initial configuration with input word x
is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternat­
ing Turing machine M , each state is labeled either existential or universal. (Do not confuse
the universal state in an alternating Turing machine with the universal Turing machine.) A
nonterminal configuration C is existential (respectively, universal) if the state in C is labeled
existential (universal). A terminal configuration is accepting if its state is qA. A nonter­
minal existential configuration C is accepting if there exists an accepting configuration C'
reachable from C by one step of M. A nonterminal universal configuration C is accepting
if for every configuration C' reachable from C by one step of M , the configuration C' is
accepting. Finally, M accepts x if the initial configuration with input word x is an accepting
configuration.

A nondeterministic Turing machine is a special case of an alternating Turing machine in
which every state is existential.

The computation of an alternating Turing machine M alternates between existential
states and universal states. Intuitively, from an existential configuration, M guesses a step
that leads toward acceptance; from a universal configuration, M checks whether each possible
next step leads toward acceptance— in a sense, M checks all possible choices in parallel. An
alternating computation captures the essence of a two-player game: Player 1 has a winning
strategy if there exists a move for Player 1 such that for every move by Player 2, there exists
a subsequent move by Player 1, etc., such that Player 1 eventually wins.

2.5 Oracle Turing Machines
Some computational problems remain difficult even when solutions to instances of a partic­
ular, different decision problem are available for free. When we study the complexity of a
problem relative to a language L, we assume that answers about membership in L have
been precomputed and stored in a (possibly infinite) table, and that there is no cost to
obtain an answer to a membership query “Is w in LV The language L is called an oracle.
Conceptually, an algorithm queries the oracle whether a word w is in L, and it receives the
correct answer.

An oracle Turing machine is a Turing machine M with a special oracle tape and
special states QUERY, YES, and NO. The computation of the oracle Turing machine M L,
with oracle language L, is the same as that of an ordinary Turing machine, except that when
M enters the QUERY state with a word w on the oracle tape, in one step, M enters either

6

the YES state if w € L, or the NO state if w 0 L. Furthermore, during this step, the oracle
tape is erased, so that the time for setting up each query is accounted separately.

3 Resources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems: time
and space. We introduce complexity classes, which enable us to classify problems according
to the difficulty of their solution.

3.1 Time and Space
PROFESSOR: But how did you know that, if you don’t know the principles of

arithmetical reasoning?
PUPIL: It ’s easy. Not being able to rely on my reasoning, I’ve memorized all the

products of all possible multiplications.
PROFESSOR: That’s pretty good.

— Eugene Ionesco, “The Lesson”

We measure the difficulty of a computational problem by the running time and the space
(memory) requirements of an algorithm that solves the problem. Clearly, in general, a finite
algorithm cannot have a table of all answers to infinitely many instances of the problem,
although an algorithm could look up precomputed answers to a finite number of instances;
in terms of Turing machines, the finite answer table is built into the set of states and the
transition table. For these instances, the running time is negligible—just the time needed
to read the input word. Consequently, our complexity measure should consider a whole
problem, not only specific instances.

We express the complexity of a problem in terms of the growth of the required time or
space, as a function of the length n of the input word that encodes a problem instance. As
in Chapter 5, on algorithm analysis, we consider the worst case complexity, that is, for each
n, the maximum time or space required among all inputs of length n.

The time taken by a Turing machine M on input word x, denoted TimeM(x), is defined
as follows:

• If M accepts x, then T im e r s) is the number of steps in the shortest accepting com­
putation path for x.

• If M rejects x, then Time a/ (x) is the number of steps in the longest computation path
for x, or +oo if M has an infinite computation path for x.

For a deterministic machine M , for every input x, there is at most one halting computation
path, and T im e^ x) is unambiguous. For a nondeterministic machine M, if x € C(M), then
M can “guess” the correct steps to take toward an accepting configuration, and TimeM(z)
measures the length of the path on which M always makes the best guess.

The space used by a Turing machine M on input x, denoted SpaceM(z), is defined as
follows. The space used by a halting computation path is the number of nonblank worktape
cells in the last configuration; this is the number of different cells ever written by the worktape

7

heads of M during the computation path, since M never writes the blank symbol. Because
the space occupied by the input word is not counted, a machine can use a sublinear (o(n))
amount of space.

• If M accepts x, then SpaceM(x) is the minimum space used among all accepting com­
putation paths for x.

• If M rejects x, then SpaceM(x) is the maximum space used among all computation
paths for x, possibly +oo.

The time complexity of a machine M is the function

t(n) = max{TimeM(x) : |x| = n}

We assume that M reads all of its input word, and the blank symbol after the right end of
the input word, so t(n) > n + 1. The space complexity of M is the function

s(n) = max{SpaceM(x) : |x| = n}

Because few interesting languages can be decided by machines of sublogarithmic space com­
plexity, we henceforth assume that s(n) > logn.

A function f (x) is computable in polynomial time if there exists a deterministic
Turing machine M of polynomial time complexity such that for each input word x, the
output of M is /(x) .

3.2 Constructibility
A function t(n) is time-constructible if there exists a deterministic Turing machine that
halts after exactly t(n) steps for every input of length n. A function s(n) is space-
const ructible if there exists a 1-tape deterministic Turing machine that uses exactly s(n)
worktape cells for every input of length n.

For example, t(n) = n + 1 is time-constructible. Furthermore, if ti(n) and t2(n) are
time-constructible, then so are the functions t\ + t2, tit2, tff , and ch for every integer c > 1.
Consequently, if p(n) is a polynomial, then p(n) = B(t(n)) for some time-constructible poly­
nomial function t(n). Similarly, s(n) = logn is space-constructible, and if si(n) and s2(n)
are space-constructible, then so are the functions si + s2, sis2, s f , and c*1 for every integer
c > 1. Many common functions are space-constructible: e.g., nlogn, n3,2n, n\. Essentially
every natural function is 0 (s) for a space-constructible s.

The following theorem characterizes the time- and space-constructible functions.

Theorem 1 Lett(n) be a function such that for some constante > 0, t(n) > (l-f-e)n for all
n sufficiently large. Then t(n) is time-constructible if and only if there exists a deterministic
Turing machine Mt of time complexity 0(t(n)) such that on every input word of length n,
machine Mt computes the unary representation of t(n), i.e., the word consisting of t(n)
occurrences of the symbol 1. [Kobayashi, 1985].

A function s(n) is space-constructible if and only if there exists a deterministic Turing
machine Ms of space complexity 0(s(n)) such that on every input word of length n, machine
M3 computes the unary representation of s(n).

8

Suppose t(n) is time-constructible by a deterministic Turing machine Mt. For every
Turing machine M that may have infinite computation paths, we can convert M into a
machine M' of time complexity 0(t(n)) that always halts, as follows: first, make a copy
of the input word on a separate worktape; then concurrently run M with Mu and halt
as soon as Mt halts. The total time taken is 2n + t(n) + 0 (1), which is 0 (f(n)), because
t(n) > n + 1. In particular, for a deterministic (respectively, nondeterministic) Turing
machine M that accepts each word in C(M) in t(n) time, but may reject words by not
halting, this construction produces a deterministic (nondeterministic) Turing machine M'
of time complexity 0(t(n)) that accepts the same language— i.e., C(M') = £ (M)— but M'
always halts.

Analogously, though by a different argument, if s(n) is space-constructible and s(n) >
log n, then for every deterministic (respectively, nondeterministic) Turing machine M that
accepts each word in C(M) in s(n) space, there is a deterministic (nondeterministic) Turing
machine M' of space complexity 0 (s(n)) that accepts the same language, but M' always
halts. On input word x of length n, machine M' simulates one step of M at a time, counting
the number of steps and the number of worktape cells used by M. If M accepts x, then
M has an accepting computation path whose number of steps is at most the total number
of distinct configurations of M that use s(n) space, which is 0 (n cs(n)) for some constant c.
Thus, if the number of steps taken by M exceeds this bound, then this computation path is
not accepting—machine M might be in an infinite loop— and M' halts in its rejecting state.
If the number of worktape cells used by M exceeds s(n), then M' rejects and halts. The
space used by M' is s(n) to simulate M , plus

log(ncs(u)) = 0 (logn + s(n)) = 0(s(n))

tape cells for its step counter, and log s(n) cells for its cell counter.

3.3 Complexity Classes
Having defined the time complexity and space complexity of individual Turing machines, we
now define classes of languages with particular complexity bounds. These definitions will
lead to definitions of P and NP.

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function.
Define the following classes of languages:

• DTIME(t(n)) is the class of languages decided by deterministic Turing machines of time
complexity 0(t(n)).

• NTIME(i(n)) is the class of languages decided by nondeterministic Turing machines of
time complexity 0(t(n)).

• DSPACE(s(n)) is the class of languages decided by deterministic Turing machines of
space complexity 0(s(n)).

• NSPACE(s(n)) is the class of languages decided by nondeterministic Turing machines
of space complexity 0 (s(n)).

9

Defining each class asymptotically (with the big-O) has several advantages. First, the
definition of each complexity class is insensitive to the alphabet used by the Turing machines;
without loss of generality, we may assume that every Turing machine uses alphabet E0 =
{ 0, 1}, because every step of a Turing machine with a larger alphabet can be simulated
by 0(1) steps of a Turing machine whose alphabet is S0. Second, the big-0 allows us to
concentrate on the high order term of the complexity function, ignoring smaller order terms,
such as terms that arise from the time-constructibility maneuver above. Third, because the
big-0 bound holds for all n sufficiently large, languages L and V that differ by a finite
number of words belong to the same class: a machine M that decides L can be converted
into a machine that decides L' by adding to M a table of answers for inputs up to a certain
length.

The following are the canonical complexity classes:

• DLOG = DSPACE(logn) (deterministic log space)

• NLOG = NSPACE(logn) (nondeterministic log space)

• P = DTIME(n0^)̂ = Ufc>i DTIME(nfc) (polynomial time)

• NP = NTIME(n°^1)) = Ujt>i NTIME(nfc) (nondeterministic polynomial time)

• PSPACE = DSPACE(n°(b) = [Jk>i DSPACE(nfc) (polynomial space)

• E = DTIM E(0(l)n) = U*>i DTIME(/cn)

• NE = NTIME(0(l)n) = U > i NTIME(P)

• EXP = DTIME(2n° (1)) = (Jfc>i DTIME(2n*) (deterministic exponential time)

• NEXP = NTIME(2n° (1)) = Ufc>i NTIME(2nfc) (nondeterministic exponential time)

• EXPSPACE = DSPACE(2n° (1)) = Ujb>i DSPACE(2n*) (exponential space)

The classes DLOG and NLOG are often denoted by L and NL, respectively. The space
classes PSPACE and EXPSPACE are defined in terms of DSPACE; by Savitch’s Theorem (see
Theorem 2 in Section 4.1), PSPACE and EXPSPACE could also be defined by NSPACE classes.

Each of these classes contains important computational problems, some of which are
listed here and in Sections 5.3 and 5.4.

The class P contains many familiar problems that can be solved efficiently, such as finding
shortest paths in networks, parsing for context-free languages, sorting, matrix multiplication,
and linear programming. Consequently, P has become accepted as representing the set of
computationally feasible problems. Although one could legitimately argue that a problem
whose best algorithm has time complexity 0 (n ") is really infeasible, in practice, the time
complexities of the vast majority of known polynomial-time algorithms have low degrees—
they run in 0 (n 4) time or less. Moreover, P is a robust class: though defined by Turing
machines, P remains the same when defined by other models of sequential computation. For
example, random access machines (RAMs) (a more realistic model of computation defined in
Chapter 4, on models and computability) can be used to define P, because Turing machines

10

and RAMs can simulate each other with polynomial-time overhead [Cook and Reckhow,
1973].

The class NP also enjoys alternative characterizations. In one characterization, NP com­
prises the problems whose solutions can be verified quickly, by a deterministic Turing machine
in polynomial time; equivalently, NP comprises the languages whose membership proofs can
be checked quickly. For example, one language in NP is the set of composite numbers, writ­
ten in binary. A proof that a number 2 is composite would consist of two factors Z\ > 2 and
z2 > 2 whose product z\z2 — z. A nondeterministic Turing machine for composite numbers
takes a computation path on which it guesses Z\ and z2, and then deterministically computes
the product to check whether 2122 = 2. The machine accepts 2 if there exists a computa­
tion path on which 2i22 = 2. Another important language in NP is the set of satisfiable
boolean formulas, SAT. A boolean formula 4> is satisfiable if there exists a truth assignment
of true or fa ls e to each of its variables such that under this truth assignment, the value of
4> is true. For example, x A (x V y) is satisfiable, but x A y A (x V y) is not satisfiable. A
nondeterministic Turing machine takes a computation path that guesses a truth assignment,
and then deterministically evaluates </> for this truth assignment, to check whether this truth
assignment proves that <f> is satisfiable. The machine accepts (f> if and only if there exists a
computation path that finds a satisfying truth assignment.

The characterization of NP as the set of problems with easily verified solutions is formal­
ized as follows: L € NP if and only if there exist a language L' € P and a polynomial p such
that for every x, x 6 L if and only if there exists a y such that \y\ < p(|z|) and (x,y) € L' .
Here, y is interpreted as the solution to the problem represented by x, or equivalently, as a
proof that x belongs to L.

The difference between P and NP is the difference between finding a proof of a mathemat­
ical theorem and checking that a proof is correct. In essence, P comprises the theorems that
can be proved quickly from scratch (in polynomial time), and NP comprises the theorems
whose proofs are short (of polynomial length).

4 Relationships Between Complexity Classes

The P vs. NP question asks about the relationship between these complexity classes: Is
P a proper subset of NP, or does P = NP? Much of complexity theory focuses on the
relationships between complexity classes, because these relationships have implications for
the difficulty of solving computational problems. In this section, we summarize important
known relationships. We demonstrate two techniques for proving relationships between
classes: diagonalization and padding.

4.1 Basic Relationships
Clearly, for every t(n) and s(n), DTIME(i) C NTIME(i) and DSPACE(s) C NSPACE(s), be­
cause a deterministic machine is a special case of a nondeterministic machine. Furthermore
DTIME(t) C DSPACE(i) and NTIME(t) C NSPACE(t), because at each step, a ¿-tape Tur­
ing machine can write on at most k = 0(1) previously unwritten cells. The next theorem
presents additional important relationships between classes.

11

EXPSPACE

N EXP

NLOG

DLOG

Figure 2: Inclusion relationships between the canonical complexity classes.

Theorem 2 Let t(n) be a time-constructible function, and let s(n) be a space-constructible
function, s(n) > logn.

1. NTIME(t) Ç DTIME(0(1)‘).

2. NSPACE(s) Ç DTIME(n + 0(1)*).

3. DTIME(t) Ç DSPACE(t/log£). [Hopcroft et al., 1977].

4- NTIME(t) Ç DSPACE(t).

5. (Savitch’s Theorem) NSPACE(s) Ç DSPACE(s2). [Savitch, 1970].

As a consequence of the first part of this theorem, NP Ç EXP. No better general upper
bound on deterministic time is known for languages in NP, however. See Figure 2 for other
known inclusion relationships between the canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class
of languages decided in polynomial time, Savitch’s Theorem says that for space classes, non­
determinism does not help by more than a polynomial amount. Savitch’s Theorem implies
that both PSPACE and EXPSPACE can be defined by either deterministic or nondeterministic
Turing machines.

12

4.2 Complementation
For a language L over an alphabet £, define L to be the complement of L in the set of words
over S: L = £* — L. For a class of languages C, define co-C = {L : L € C}. If C = co-C,
then C is closed under complementation.

In particular, co-NP is the class of languages that are complements of languages in NP.
For the language SAT of satisfiable boolean formulas, SAT is the set of unsatisfiable formulas,
whose value is fa ls e for every truth assignment, together with the syntactically incorrect
formulas. A closely related language in co-NP is the set of boolean tautologies, formulas
whose value is true for every truth assignment. Most complexity theorists believe that
NP # co-NP: it is unclear how to check that a formula on m variables is a tautology without
checking all 2m possible truth assignments, which would take exponential time.

Questions about complementation bear directly on the P vs. NP question. It is easy
to show that P is closed under complementation (see the next theorem). Consequently, if
NP ^ co-NP, then P ^ NP.

Theorem 3 (Complementation Theorems) Let t(n) be a time-constructible function,
and let s(n) be a space-constructible function, s(n) > logn.

1. DTIME(i) is closed under complementation.

2. DSPACE(s) is closed under complementation.

3. NSPACE(s) is closed under complementation. [Immerman, 1988; Szelepcsényi, 1988].

The Complementation Theorems are used to prove the Hierarchy Theorems in the next
section.

4.3 Hierarchy Theorems and Diagonalization
Intuitively, with more time (or more space), we should be able to solve more problems. More
precisely, the class of languages decided by Turing machines with a large time complexity
should strictly include the class decided by machines with a small time complexity. The next
theorem confirms this intuition. In following, C denotes strict inclusion between complexity
classes.

Theorem 4 (Hierarchy Theorems) Let t\(n) and t2(n) be time-constructible functions,
and let Si(n) and s2{n) be space-constructible functions, with si(n),s2(n) > log n.

1. If hin) logt^n) = o(t2(n)), then DTIME(ti) C DTIME(t2).

2. Ifti(n-\- 1) = o(t2(n)), then NTIME(tx) C NTIME(t2)- [Seiferas et al., 1978].

3. If si(n) = o(s2{n)), then DSPACE(si) C DSPACE(s2).

I If s\(n) = o(s2(n)), then NSPACE(si) C NSPACE(s2).

13

As a corollary of the Hierarchy Theorem for DTI ME,

P C DTIME(nlogn) C DTIME(2n) C E

hence we have the strict inclusion P C E. Although we don’t know whether P C NP, there
exists a problem in E that cannot be solved in polynomial time. Other consequences of the
Hierarchy Theorems are NE C NEXP; and DLOG C PSPACE.

In combination with the relationship between DTI ME and DSPACE in Theorem 2, the
Hierarchy Theorem for DSPACE implies

DTIME(t) C DSPACE(t/logi) c DSPACE(t)

In other words, space is more valuable than time. Intuitively, Turing machines can decide
more languages with t units of space than with t units of time, because tape cells can be
reused.

In the Hierarchy Theorem for DTIME, the hypothesis on t\ and t2 is ¿i(n) logii(n) =
o(t2(̂ 1)), instead of ti(n) = o(t2(n)), for technical reasons related to the simulation of ma­
chines with multiple worktapes by a single universal machine with a fixed number of work-
tapes. Other computational models, such as random access machines, enjoy tighter time
hierarchy theorems [Cook and Reckhow, 1973].

The Gap Theorem [Borodin, 1972] shows that the constructibility hypotheses are nec­
essary. The Gap Theorem implies, for example, that there exists a function t(n) such that
DTIME(t) = DTIME(2i); if t(n) were time-constructible, then this would be a contradiction
of the Hierarchy Theorem for DTIME.

The proofs of the Hierarchy Theorems use the diagonalization technique. The proof
for DTIME constructs a Turing machine M of time complexity t2 that considers all machines
Mi, M2, . . . whose time complexity is for each i, the proof finds a word xt that is accepted
by M if and only if x{ g £(M ,). Consequently, C(M) differs from each £(M*), hence
C(M) £ DTIME(ti). The diagonalization technique resembles the classic method used to
prove that the real numbers are uncountable, by constructing a number whose j th digit differs
from the j th digit of the j th number on the list. To illustrate the diagonalization technique,
we outline a proof of the Hierarchy Theorem for DSPACE.

P roof: We construct a deterministic Turing machine M that decides a language L such
that L € DSPACE(s2) — DSPACE(si). Let U be a deterministic universal Turing machine.
On input x of length n, machine M performs the following:

1. Lay out s2(n) cells on a worktape.

2. On another worktape, copy the first min{n, s2(n)} symbols of x, and let i be this word.

3. Simulate U on input (z, x). Accept x if U tries to use more than s2 worktape cells.
(We omit some technical details, such as interleaving multiple worktapes onto the fixed
number of worktapes of M, and the using the constructibility of s2 to ensure that this
process halts.)

4. If Ui accepts x, then reject; if Ui rejects x, then accept.

14

Clearly, M always halts and uses space O(52(71)). Let L = C(M).
Suppose L € DSPACE(si(n)). By carefully constructing U, we can ensure that there

exists a word y such that Uy decides L, and for every word 2, Uyz also decides L in space
csi(n), where the constant c depends only on L; in essence, y is a complete description of a
machine that decides L, and Uyz ignores symbols beyond the end of y.

Since si(n) = o(s2(n)), there is an n0 such that csi(n) < s2(n) for all n > n0. Choose 2
so that |y| < s2(\yz\) and \yz\ > n0, so that csi(\yz\) < s2(\yz\). On input yz, machine M
has enough space to simulate Uy on input yz. By construction, M accepts yz if and only if
Uy rejects yz. Contradiction! ■

Although the diagonalization technique successfully separates some pairs of complexity
classes, diagonalization does not seem strong enough to separate P from NP. (See Theorem 9
in Section 6.)

4.4 Padding Arguments
A useful technique for establishing relationships between complexity classes is the padding
argum ent. Let L be a language over alphabet £ , and let # be a symbol not in E. Let /
be a numeric function. The /-p a d d ed version o f L is the language

l ! = : x G L and n — |x|}

That is, each word of V is a word in L concatenated with f(n) consecutive # symbols. The
padded version L' has the same information content as L, but because each word is longer,
the computational complexity of L' is smaller!

The proof of the next theorem illustrates the use of a padding argument.

T heorem 5 7/P = NP, then E = NE. [Book, 1974].

P roof: Since E C NE, we prove that NE C E.
Let L e NE be decided by a nondeterministic Turing machine M in at most t(n) = kn

time for some constant integer k. Let V be the t(n)-padded version of L. From M , we
construct a nondeterministic Turing machine M' that decides L' in linear time: M' checks
that its input has the correct format, using the time-constructibility of t\ then M' runs M
on the prefix of the input preceding the first # symbol. Thus, L' e NP.

If P = NP, then there is a deterministic Turing machine D' that decides L' in at most
p'{n) time for some polynomial p'. From D\ we construct a deterministic Turing machine D
that decides L, as follows. On input x of length n, since t(n) is time-constructible, machine
D constructs z # i(n), whose length is n + t(n), in 0(t(n)) time. Then D runs D' on this
input word. The time complexity of D is at most 0(t(n)) +pf(n + t(n)) = 0 (l) n. Therefore
NECE. h

5 Reducibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces
to another problem, then in a sense, the second problem is harder than the first. The hardest

15

problems in NP are the NP-complete problems. We define NP-completeness precisely, and
we show how to prove that a problem is NP-complete. Finally, we list some problems that
are complete for NP and other complexity classes.

5.1 Resource-Bounded Reducibilities
In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to
a previously solved problem. Frequently, an instance of the new problem is expressed com­
pletely in terms of an instance of the previous problem, and the solution is then interpreted
in the terms of the new problem. For example, the maximum weighted matching problem
for bipartite graphs reduces to the network flow problem. (See Chapter 10, on graph and
network problems.) This kind of reduction is called m any-one reducibility, and is defined
below.

A different way to solve the new problem is to use a subroutine that solves the previous
problem. For example, we can solve an optimization problem whose solution is feasible and
maximizes the value of an objective function g by repeatedly calling a subroutine that solves
the corresponding decision problem of whether there exists a feasible solution x whose value
g(x) satisfies g(x) > k. This kind of reduction is called Turing reducibility, and is defined
below.

Let Li and L2 be languages. Lx is m any-one reducible to L2, written Lx < m L2, if
there exists a total recursive function / such that for all x, x € L\ if and only if f(x) € L2.
The function / is called the transform ation function. Lx is Turing reducible to L2,
written L\ < T L2, if Lx can be decided by a deterministic oracle Turing machine M using
L2 as its oracle, i.e., Lx = C(ML2).

A reduction between problems may not be helpful if it takes too much time. To study
complexity classes defined by bounds on time and space resources, it is natural to consider
resource-bounded reducibilities.

Let Li and L2 be languages. Lx is Karp reducible to L2, written Lx < £ L2, if Lx is
many-one reducible to L2 via a transformation function that is computable deterministically
in polynomial time. Karp reducibility is also called “polynomial-time reducibility.”

Lx is log-space reducible to L2, written Lx <J°g L2, if Lx is many-one reducible to
L2 via a transformation function that is computable by a deterministic Turing machine in
O(logra) space.

Lx is C ook reducible to L2, written Lx L2, if Lx is Turing reducible to L2 via a
deterministic oracle Turing machine of polynomial time complexity.

A reduction from a language Lx to a language L2, together with a method for deciding
membership in L2, yields a method for deciding Lx. Suppose Lx is Karp reducible to L2
via the transformation / . If machine M2 decides L2, and machine Mf computes / , then to
decide whether an input word x is in Lx, first use Mf to compute /(x) , then run M2 on input
f{x). A fortiori, if the time complexity of M2 is a polynomial t2, and the time complexity
of Mf is a polynomial tf , then on inputs x of length |rc| = n, the time taken by this method
for deciding membership in Lx is at most tf (n) + t2{tf (n)), which is also a polynomial in
n. In summary, if L2 is feasible, and there is an efficient reduction from Lx to L2, then Lx
is feasible. We formally state this property of Karp reducibility for P in Theorem 8 after
stating other properties of these reducibilities.

16

Log-space reducibility is useful for complexity classes within P, such as NLOG, for which
Karp reducibility allows too many reductions. By definition, for every nontrivial language Lq,
(i.e., L0 # 0 and Lq # £*), and for every L in P, necessarily L < £ Lq via a transformation
that simply runs a deterministic Turing machine that decides L in polynomial time. It is
not known whether log-space reducibility is different from Karp reducibility, however: all
transformations for known Karp reductions can be computed in O(logn) space. Even for
decision problems, DLOG is not known to be a proper subset of P.

T heorem 6 Log-space reducibility implies Karp reducibility, which implies Cook reducibility:

1- If Li < % L2, then L\ < pm L2.

2. If Li < £ L2, then L\ <£ L2.

T heorem 7 Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:

1- U Lx < £ g L2 and L2 < £ g L3, then Lx < £g L3. [Jones, 1975].

2. If Lx < £ L2 and L2 < £ Lz, then Lx < £ L3.

3. If Lx < p L2 and L2 < p L3, then Lx < p L3.

A class of languages C is closed under a reducibility < if for all languages Lx and L2,
whenever Lx < L2 and L2 € C, necessarily Lx G C.

T heorem 8

1. P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.

NP is closed under log-space reducibility and Karp reducibility.

3. DLOG and NLOG are closed under log-space reducibility.

We shall see the importance of closure under a reducibility in conjunction with the concept
of completeness, which we define in the next section.

5.2 Complete Languages
Let C be a class of languages that represent computational problems. A language L0 is
C-hard under a reducibility < if for all L in C, L < L0. A language L0 is C-com plete under
— ^ Lq is C-hard, and Lq E C. Informally, if Lq is C-hard, then Lq represents a problem that
is at least as difficult to solve as any problem in C. If Lq is C-complete, then in a sense, Lq
is one of the most difficult problems in C.

Unless stated otherwise, Karp reducibility is generally assumed. Thus, a language Lq
is N P -hard if Lq is NP-hard under Karp reducibility. Lq is N P -com plete if Lq is NP-
complete under Karp reducibility.

Let Lq be NP-complete. If there exists a deterministic Turing machine that decides Lq
in polynomial time—that is, if Lq € P—then because P is closed under Karp reducibility

17

(Theorem 8 in Section 5.1), it would follow that NP C P, hence P = NP. In essence, the
question of whether P is the same as NP reduces to whether any particular NP-complete
language is in P.

A common misconception is that this property of NP-complete languages is actually
their definition: that is, if L e NP, and L e P implies P = NP, then L is NP-complete. This
“definition” is wrong. It is known that P # NP if and only if there exists a language L*
in NP - P such that L* is not NP-complete [Ladner, 1975]. Thus, if P ^ NP, then L* is a
counterexample to the “definition.”

We have noted that an NP-complete language Lq is unlikely to belong to P. It is also
unlikely to belong to co-NP, because, by an elementary argument, if Lq G co-NP, then
NP = co-NP.

5.3 Proving NP-Completeness
Proving NP-completeness is an important ingredient of our methodology for

studying computational problems. It is also something of an art form.
— C. H. Papadimitriou [1994]

After one language has been proved complete for a class, others can be proved complete
by constructing transformations. For NP, if L0 is NP-complete, then to prove that another
language Lx is NP-complete, it suffices to prove that Li G NP, and to construct a polynomial­
time transformation that establishes Lq L\. Since Lq is NP-complete, for every language
L in NP, L < £ Lq, hence by transitivity (Theorem 7 in Section 5.1), L < £ Lx.

Cook [1971] defined NP-completeness and proved that SAT, the language of satisfiable
boolean formulas defined in Section 3.3, is NP-complete. Consequently, if deciding sat is
easy (in polynomial time), then factoring integers is easy— a surprising connection between
ostensibly unrelated problems.

Beginning with Cook [1971] and Karp [1972], hundreds of computational problems in
many fields of science and engineering have been proved to be NP-complete, almost always
by reduction from a problem that was previously known to be NP-complete. The follow­
ing NP-complete decision problems are frequently used in these reductions. (The language
corresponding to each problem is the set of instances whose answers are “yes.”)

3 -Satisfiability (3SAT)
Instance: A boolean expression 0 in conjunctive normal form with three literals per clause
(e.g., (w V x V y) A (x V y V z)).
Question: Is (f> satisfiable?

V ertex Cover
Instance: A graph G and an integer k.
Question: Does G have a set W of k vertices such that every edge in G is incident on a
vertex of W?

Clique
Instance: A graph G and an integer k.

18

Question: Does G have a set K of k vertices such that every two vertices in K are adjacent
in G?

Hamiltonian Circuit
Instance: A graph G.
Question: Does G have a circuit that includes every vertex exactly once?

3-Dimensional Matching
Instance: Sets W ,X ,Y with \W\ = \X\ = \Y\ = q and a subset S C W x X x Y.
Question: Is there a subset S' C S of size q such that no two triples in S' agree in any
coordinate?

Partition
Instance: A set S of positive integers.
Question: Is there a subset S' C S such that the sum of the elements of S' equals the sum
of the elements of S — S'?

Here is an example of an NP-completeness proof, for the following decision problem:

T raveling Salesman Problem (TSP)
Instance: A set of m cities C i ,. . . , Cm, with a distance d(i,j) between every pair of cities C{
and Cj, and an integer D.
Question: Is there a tour of the cities whose total length is at most D , i.e., a permutation
ci> • • • 5 cm of { 1 , . . . , m}, such that

d(ci, C2) + * * ■ + d(cm_i, cm) + d(cm, Ci) ^ D?

First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply
guesses a tour and checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction
goes from the known NP-complete problem, Hamiltonian Circuit, to the new problem,
TSP, not vice versa!)

From a graph G on m vertices Vi,. . . , vm, define the distance function d as follows:

Mi i \ - i 1 if (vi,Vj) is an edge in G
’ (m + 1 otherwise

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of
G corresponds to a city in the constructed instance of TSP.

If G has a hamiltonian circuit, then the length of the tour that corresponds to this circuit
is exactly m. Conversely, if there is a tour whose length is at most m, then each step of the
tour must have distance 1, not m + 1. Thus, each step corresponds to an edge of G, and the
corresponding sequence of vertices in G is a hamiltonian circuit.

19

5.4 Complete Problems for Other Classes
Besides NP, the following canonical complexity classes have natural complete problems.
The three problems listed below are complete for their respective classes under log-space
reducibility.

NLOG: G r a p h A c c e s s ib il it y P r o b l e m
Instance: A directed graph G with nodes 1 , . . . , N.
Question: Does G have a directed path from node 1 to node N ?

P: C ir c u it V a l u e P r o b l e m

Instance: A boolean circuit (see Section 9) with output node u, and an assignment I of
{0 ,1 } to each input node.
Question: Is 1 the value of u under /?

PSPACE: Q u a n t if ie d B o o l e a n F o r m u l a s
Instance: A boolean expression with all variables quantified with either V or 3 (e.g.,
VxVy3z(x A (y V z))).
Question: Is the expression true?

The theory of P-completeness, analogous to the theory of NP-completeness, is explained
in Chapter 14, on parallel algorithms.

Stockmeyer and Meyer [1973] defined a natural decision problem that they proved to
be complete for NE. If this problem were in P, then by closure under Karp reducibility
(Theorem 8 in Section 5.1), we would have NE C P, a contradiction of the Hierarchy The­
orems (Theorem 4 in Section 4.3). Therefore, this decision problem is infeasible: it has
no polynomial-time algorithm. In contrast, decision problems in NE - P constructed by
diagonalization are unnatural.

6 Relativization of the P vs. NP Problem

Let L be a language. Define PL (respectively, NPL) to be the class of languages decided in
polynomial time by deterministic (nondeterministic) oracle Turing machines with oracle L.

Theorem 9 There exist languages A and B such that PA = NPA, and PB ^ NPS . [Baker
et al., 1975].

This theorem suggests that resolving the P vs. NP question demands techniques that do
not relativize, i.e., that do not apply to oracle Turing machines too. Proofs that use the
diagonalization technique on Turing machines without oracles generally relativize to oracle
Turing machines; thus, diagonalization is unlikely to succeed in separating P from NP. The
only major nonrelativizing proof technique in complexity theory appears to be the technique
used to prove that IP = PSPACE (see Section 11.1).

20

PSPACE

PH

P

Figure 3: The polynomial hierarchy.

7 The Polynomial Hierarchy

The oracle B in Theorem 9 is an ad hoc language. Let us explore what classes we can define
with oracle languages from known complexity classes.

Let C be a class of languages. Define

NPC = |J NPl

Define

For k > 0, define

Lee

So = n0p = p

y p^ k +1 = NP]
nf+i — co-Sf+1

PObserve that E f = NP = NP, because each of polynomially many queries to an oracle
language in P can be answered directly by a (nondeterministic) Turing machine in polynomial
time. Consequently, I lf = co- NP. For each fc, E f C Ef+1, and n f C Ef+1, but these
inclusions are not known to be strict. See Figure 3.

The classes E f and I lf constitute the polynom ial hierarchy. Define

PH = U S f
k>0

It is straightforward to prove that PH C PSPACE, but it is not known whether the inclusion
is strict. In fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level,
i.e., PH = E f for some m.

In the next section, we define the polynomial hierarchy in two other ways, one in terms
of alternating Turing machines.

21

8 Alternating Complexity Classes

The possible computations of an alternating Turing machine M on an input word x can be
represented by a tree Tx in which the root is the initial configuration, and the children of a
nonterminal node C are the configurations reachable from C by one step of M . For a word
x in C(M), define an accepting subtree S of Tx as follows:

• S is finite.

• The root of S is the initial configuration with input word x.

• If S has an existential configuration C, then S has exactly one child of C in Tx; if S
has a universal configuration C , then S has all children of C in Tx.

• Every leaf is a configuration whose state is the accepting state qA.

See Figure 4. Observe that each node in S is an accepting configuration (see Section 2.4).
We consider only alternating Turing machines that always halt. For x € C(M), define

the time taken by M to be the height of the shortest accepting tree for x, and the space to
be the maximum number of nonblank worktape cells among configurations in the accepting
tree that minimizes this number. For x & £ (M), define the time to be the height of Tx, and
the space to be the maximum number of nonblank worktape cells among configurations in
T-LX'

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function.
Define the following complexity classes:

• ATIME(i(n)) is the class of languages decided by alternating Turing machines of time
complexity 0(t(n)).

• ASPACE(s(n)) is the class of languages decided by alternating Turing machines of space
complexity 0(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing
machine, for every t(n) and s(n), NTIME(i) C ATIME(t) and NSPACE(s) Ç ASPACE(s).
The next theorem states further relationships between computational resources used by al­
ternating Turing machines, and resources used by deterministic and nondeterministic Turing
machines.

Theorem 10 [Chandra et al., 1981]. Lett(n) be a time-constructible function, and let s(n)
be a space-constructible function, s(n) > log n.

1. NSPACE(s) Ç ATIME(n + s2)

2. ATIME(f) Ç DSPACE(t)

3. ASPACE(s) Ç DTIME(n + 0(1)*)
l DTIME(t) Ç ASPACE(logt)

22

Figure 4: A computation tree of an alternating Turing machine. Each 3 marks an existential
configuration; each V marks a universal configuration. The edges of one accepting subtree
are drawn with dashed lines.

23

In other words, space on deterministic and nondeterministic Turing machines is polyno­
mial^ related to time on alternating Turing machines. Space on alternating Turing machines
is exponentially related to time on deterministic Turing machines. In particular, logarithmic
space on alternating Turing machines corresponds to P. Polynomial time on alternating
Turing machines corresponds to PSPACE. Polynomial space on alternating Turing machines
corresponds to EXP.

In Section 7, we defined the classes of the polynomial hierarchy in terms of oracles, but
we can also define them in terms of alternating Turing machines with restrictions on the
number of alternations between existential and universal states. Define a ^-alternating
Turing m achine to be a machine such that on every computation path, the number of
changes from an existential state to universal state, or from a universal state to an existential
state, is at most k - 1. Thus, a nondeterministic Turing machine, which stays in existential
states, is a 1-alternating Turing machine.

Theorem 11 [Stockmeyer, 1976; Wrathall, 1976]. The following are equivalent:

1. L e E f .

2. L is decided in polynomial time by a k-altemating Turing machine that starts in an
existential state.

3. There exists a language L' in P and a polynomial p such that x G L if and only if

(3j/i : li/il <p(M))(V jft : \y2\< p(|z|)) • • • : |»| < p(|x|))[(z, €

where the quantifier Q is 3 if k is odd, V if k is even.

Alternating Turing machines are closely related to boolean circuits, which are defined in
the next section.

9 Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into
combinational networks. (See Chapter 17, on architecture components.) Here, we specify a
model of computation that formalizes the (bounded fan-in) combinational network.

A boolean circuit on n input variables X i , . . . ,x n is a directed acyclic graph with
exactly n input nodes of indegree 0 labeled X\,... ,xn, and other nodes of indegree 1 or 2,
called gates, labeled with the boolean operators in {A, V, -.}. One node is designated as the
output of the circuit. See Figure 5. Without loss of generality, we assume that there are no
extraneous nodes: there is a directed path from each node to the output node.

An input assignment I is a function that maps each variable Xi to either 0 or 1. The
value of each gate g under I is obtained by applying the boolean operation that labels g to
the values of the immediate predecessors of g. The function computed by the circuit is the
value of the output node for each input assignment.

A boolean circuit computes a finite function: a function of only n binary input variables.
To decide membership in a language, we need a circuit for each input length n.

24

A circuit family is an infinite set of circuits C = {c i ,c 2, . . . } in which each cn is a
boolean circuit on n inputs. C decides a language L C {0, l}* if for every n and every
assignment au . . . , an of {0 ,1 } to the n inputs, the value of the output node of cn is 1 if and
only if the word ax • • • an £ L. The size com plexity of C is the function z(n) that specifies
the number of nodes in each cn. The depth com plexity of C is the function d(n) that
specifies the length of the longest directed path in cn. Clearly, since the fan-in of each gate
at most 2, d(n) > log z(n) > logn.

With a different circuit for each input length, a circuit family could solve an undecidable
problem such as the Halting Problem (see Chapter 4, on models and computability)! For
each input length, a table of all answers for machine descriptions of that length could be
encoded into the circuit. Thus, we need to restrict our circuit families. The most natural
restriction is that all circuits in a family should have a concise, uniform description, to
disallow a different answer table for each input length. Several uniformity conditions have
been studied, and the following is the most convenient.

A circuit family {ci, c2, . . . } of size complexity z(n) is log-space uniform if there exists
a deterministic Turing machine M such that on each input of length n, machine M produces
a description of cn, using space 0(log z(n)).

Now we define complexity classes for uniform circuit families and relate these classes to
previously defined classes. Define the following complexity classes:

• SIZE(z(n)) is the class of languages decided by log-space uniform circuit families of
size complexity 0(z(n)).

• DEPTH(d(n)) is the class of languages decided by log-space uniform circuit families of
depth complexity 0(d(n)).

Theorem 12

1. If t(n) is a time-constructible function, then DTIME(t) C SIZE(tlogt). [Pippenger and
Fischer, 1979].

2. SIZE(z) C DTIME(z0(1)).

25

3. If s(n) is a space-constructible function and s(n) > log n, then NSPACE(s) C
DEPTH(s2). [Borodin, 1977].

4. DEPTH(d) C DSPACE(d). [Borodin, 1977].

The next theorem shows that size and depth on boolean circuits are closely related to
space and time on alternating Turing machines, provided that we permit sublinear running
times for alternating Turing machines, as follows. We augment alternating Turing machines
with a random-access input capability. To access the cell at position j on the input tape, M
writes the binary representation of j on a special tape, in logy steps, and enters a special
reading state to obtain the symbol in cell j.

Theorem 13 Lett(n) > logn and s(n) > logn.

1. Every language decided by an alternating Turing machine of simultaneous space com­
plexity s(n) and time complexity t(n) can be decided by a uniform circuit family of
simultaneous size complexity 0 (l) 5<n) and depth complexity 0(t(n)). [Ruzzo, 1981].

2. If d(n) > (log z(n))2, then every language decided by a uniform circuit family of simul­
taneous size complexity z(n) and depth complexity d(n) can be decided by an alternat­
ing Turing machine of simultaneous space complexity 0(log2(n)) and time complexity
0(d(n)). [Ruzzo, 1981].

In a sense, the boolean circuit family is a model of parallel computation, because all gates
compute independently, in parallel. A fortiori, boolean circuits (or equivalently, alternating
Turing machines) can be used to define the parallel complexity classes NCfc. (See Chapter
14, on parallel algorithms.)

10 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems
(see Chapter 8, on randomized algorithms), complexity theorists have placed randomized
algorithms on a firm intellectual foundation. Several definitions of randomness have been
compared, and various kinds of errors distinguished. In this section, we outline some basic
concepts in this area.

A probabilistic Turing machine M is a nondeterministic Turing machine with exactly
two choices at each step. During a computation, M chooses each possible next step with
independent probability 1/2. Intuitively, at each step, M flips a fair coin to decide what
to do next. The probability of a computation path of t steps is 1/2*. The probability that
M accepts an input word x, denoted pM{x), is the sum of the probabilities of the accepting
computation paths.

Throughout this section, we consider only machines whose time complexity t(n) is time-
constructible. Without loss of generality, we may assume that every halting computation
path of the machine has exactly t steps, and terminates in either the accepting state or
the rejecting state qr.

Let L be a language. A probabilistic Turing machine M decides L with

26

__________________________________ for all x g L______ for all x £ L
two-sided error if pM(x) > 1/2 Pm (x) < 1/2
bounded two-sided error if pu(x) > 1/2 + e Pm (x) < 1/2 — €

for some constant e
one-sided error if pM(x) > 1/2 Pm {x) = 0

For example, the Solovay-Strassen primality testing algorithm of Chapter 8 (on random­
ized algorithms) makes one-sided errors: when the input x is a prime number, the algorithm
always says “prime” ; when x is composite, the algorithm usually says “composite,” but
may occasionally say “prime.” (Actually, the Solovay-Strassen algorithm is a compositeness
testing algorithm, because it errs only for inputs that are composite numbers.)

Define the following complexity classes:

• PP is the classes of languages decided by probabilistic Turing machines of polynomial
time complexity with two-sided error.

• BPP is the classes of languages decided by probabilistic Turing machines of polynomial
time complexity with bounded two-sided error.

• RP is the classes of languages decided by probabilistic Turing machines of polynomial
time complexity with one-sided error.

In the literature, RP is also called R.
A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an

RP-machine) if M has polynomial time complexity, and M decides with two-sided error
(bounded two-sided error, one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines
and RP-machines arbitrarily small:

Theorem 14 If L € BPP, then for every polynomial q(n), there exists a BPP-machine M
such that pM{x) > 1 - l/2q(n) for every x € L, and pM(x) < l/2q{n) for every x g L.

if L e RP, then for every polynomial q(n), there exists an RP-machine M such that
Pm {x) > 1 — l/2q̂ for every x in L.

Next, we define a class of problems that have probabilistic algorithms that make no
errors. Define

ZPP = RP n co-RP

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose L € ZPP.
Here is an algorithm that checks membership in L. Let M be an RP-machine that decides
L, and let M' be an RP-machine that decides L. For an input word x, alternately run M
and M' on z, repeatedly, until a computation path of one machine accepts x. If M accepts
x, then accept x; if M' accepts x, then reject x. This algorithm works correctly because
when an RP-machine accepts its input, it does not make a mistake. This algorithm might
not terminate, but with high probability, the algorithm terminates after a few iterations.

The next theorem expresses some known relationships between probabilistic complex­
ity classes and other complexity classes, such as classes in the polynomial hierarchy (see
Section 7).

27

PSPACE

PP

RP

ZPP

P

Figure 6: Probabilistic complexity classes.

T heorem 15 P C ZPP C RP C BPP C PP C PSPACE. [Gill, 1977].
RP C NP C PP. [Gill, 1977].
BPP C S 2p n I lf . [Sipser, 1983; Lautemann, 1983].
PH C PPP. [Toda, 1991].

See Figure 6.

11 Interactive Models and Complexity Classes

11.1 Interactive Proofs
In Section 3.3, we characterized NP as the set of languages whose membership proofs can
be checked quickly, by a deterministic Turing machine M of polynomial time complexity. A
different notion of proof involves interaction between two parties, a prover P and a verifier
V, who exchange messages. In an interactive p roo f system [Goldwasser et al., 1989], the
prover is an all-powerful machine, with unlimited computational resources, analogous to a
teacher. The verifier is a computationally limited machine, analogous to a student. One
of the original papers on interactive proof systems [Babai and Moran, 1988] called them
“Arthur-Merlin games” : the wizard Merlin corresponds to P, and the dim-witted Arthur
corresponds to V.

Formally, an interactive p roo f system comprises the following:

• A read-only input tape on which an input word x is written.

• A prover P, whose behavior is not restricted.

28

• A verifier V, which is a probabilistic Turing machine augmented with the capability
to send and receive messages. The running time of V is bounded by a polynomial in
M*

• A tape on which V writes messages to send to P, and a tape on which P writes
messages to send to V. The length of every message is bounded by a polynomial in
W-

A computation of an interactive proof system (P, V") proceeds in rounds, as follows. For
j = 1 ,2 ,..., in round j , V performs some steps, writes a message rrij, and temporarily stops.
Then P reads rrij and responds with a message m'-, which V reads in round j + 1. An
interactive proof system (P, V) accepts an input word x if the probability of acceptance by
V satisfies pv{x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a
statement without exhibiting an entire proof. For example, consider the graph isomorphism
problem: the input consists of two graphs G and H , and the decision is “yes” if and only if
G is isomorphic to H. Here is an interactive proof system (P, V) for this problem. On the
first round, V asks P whether the input graphs are isomorphic, but V does not immediately
believe the response. If P says “yes” on the first round, then V repeatedly presents queries
to P to try to construct an isomorphism. If P says “no” on the first round, then V challenges
P by repeatedly asking further queries, as follows. In each round, V randomly chooses either
G or H with equal probability; if V chooses G, then V computes a random permutation G'
of G, presents G' to P, and asks P whether G' came from G or from H (and similarly if V
chooses H). If P gave an erroneous answer on the first round, and G is isomorphic to H,
then after k subsequent rounds, the probability that P answers all the subsequent queries
correctly is l/2k. Thus, in polynomial time, with high probability, V can check whether the
original answer of P was correct.

The complexity class IP comprises the languages L for which there exists a verifier V and
an e such that

• there exists a prover P such that for all x in L, the interactive proof system (P, V)
accepts x with probability greater than 1/2 + e; and

• for every prover P and every x £ L, the interactive proof system (P, V) rejects x with
probability greater than 1/2 + e.

By substituting random choices for existential choices in the proof that ATIME(i) C
DSPACE(i) (Theorem 10 in Section 8), it is straightforward to show that IP C PS PACE.
As evidence of strict inclusion, Fortnow and Sipser [1988] constructed an oracle language
A for which co-NPA - \PA ± 0, and hence IPA is strictly included in PSPACEa Using a
proof technique that does not relativize, however, Shamir [1992] proved that in fact, IP and
PS PACE are the same class.

Theorem 16 IP = PS PACE. [Shamir, 1992].

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 16 says that
interactive proof systems can decide a larger class of languages than NP.

29

11.2 Probabilistically Checkable Proofs
In an interactive proof system, the verifier does not need a complete conventional proof to
become convinced about the membership of a word in a language, but uses random choices to
query parts of a proof that the prover may know. A new notion of proof explicitly quantifies
how much of the proof needs to be inspected.

A language L has a probabilistically checkable proof if there exists an oracle BPP-
machine M such that

• for all x € L, there exists an oracle language Bx such that M Bx accepts x.

• for all x qL L, and for every language B , machine M B rejects x.

Intuitively, the oracle language Bx represents a proof of membership of x in L. Notice
that Bx can be finite since the length of each possible query during a computation of M Bx
on x is bounded by the running time of M. The oracle language takes the role of the prover
in an interactive proof system. The next theorem makes this role precise.

Theorem IT L has a probabilistically checkable proof if and only if L is decided by an
interactive proof system with multiple provers. [Fortnow et al., 1988].

Let PCP(r(n), q(n)) denote the class of languages with probabilistically checkable proofs
in which the probabilistic oracle Turing machine M makes 0(r(n)) random binary choices,
and queries its oracle 0(q(n)) times. (For this definition, we assume that M has either one
or two choices for each step.) By definition, BPP = PCP(n0(1), 0), and NP = PCP(0, n0(1)).

Theorem 18 NP = PCP(logn, 1). [Arora et al., 1992].

Theorem 18 asserts that for every language L in NP, a proof that x G L can be encoded
so that the verifier can be convinced of the correctness of the proof (or detect an incorrect
proof) by using only 0(log n) random choices, and inspecting only a constant number of bits
of the proof!

11.3 Computational Learning Theory
When we defined interactive proof systems, we compared the prover to a teacher, and the
verifier to a student. In this section, we define formal models of learning, with a reliable
teacher, and a computationally limited student (the learner).

Let X be a set, called the domain; an element of X is an example. A concept class C
is a collection of subsets of X, i.e., C C 2X. For a concept c in C, an example x is positive
if x € c, negative if x £ c. The learner’s task is to learn an initially unknown concept c in
C.

For instance, the learner may be required to learn a boolean formula <j> on n variables
from a class of boolean formulas $. In this case, the domain is the set of binary n-tuples,
{0, l } n, and a concept is the set of n-tuples (aq, . . . , xn) on which <£(aq, . . . , xn) = 1. Each
n-tuple example represents a truth assignment, with 0 = fa lse and 1 = true. An example
(aq,. . . , xn) is positive if <j>(xu . . . , xn) = 1, negative if <f>(xu . . . , xu) = 0. The task of the

30

learner is to output a boolean formula in $ that is equivalent to 0, and hence specifies the
same concept. Each boolean formula is a particular representation of an underlying concept,
which formally is a subset of {0, l } n; learnability results often depend on the representation
of concept classes.

In computational learning theory, there are two basic models. In the Exact Learning
Model, the learner (student) presents queries to an oracle (teacher), which provides the
correct answers. In the PAC Model, the learner receives positive and negative examples, but
has no choice about the examples.

Exact Learning Model. [Angluin, 1988]. In each round, the learning algorithm pro­
poses a hypothesis d . If d = c, then the oracle responds “yes.” If not, then the oracle
provides a counterexample: an example on which c and d differ. A concept class C is learn-
able if there is a learning algorithm that eventually outputs a correct hypothesis for each
possible c in C, such that the total running time of the algorithm is a polynomial in the size
|c| of (the representation of) c.

PAC (Probably Approximately Correct) Model. [Valiant, 1984]. The learning
algorithm receives a sequence of examples, generated according to an arbitrary probability
distribution D on the domain. Each example is labeled correctly as positive or negative. A
concept class C is learnable if for every c in C, for all e and 5 such that 0 < 6,5 < 1, and
for all probability distributions D , there is a learning algorithm with the following behavior:
the algorithm runs in polynomial time t(|c|, 1/e, 1/5) with probability at least 1 - 5 , and the
algorithm outputs (the representation of) a concept d such that the probability measure of
the examples on which c and d differ, D(c 0 d), satisfies D(c 0 d) < e.

The two models differ primarily in their criteria for success. The Exact Learning Model
requires logical equivalence, whereas the PAC Model requires only approximate distribution-
weighted equivalence.

Theorem 19 Every concept class learnable under the Exact Learning Model is also learnable
under the PAC Model. [Angluin, 1987].

In both models, to learn a concept, a learning algorithm finds a hypothesis that is consis­
tent with the examples that it has received. The “Occam’s razor” principle of Blumer et al.
[1987] asserts that if a sufficiently short hypothesis (not necessarily the shortest) consistent
with sufficiently many examples can be computed in polynomial time, then the concept is
PAC-learnable.

Many results on learnability and non-learnability (under complexity theoretic assump­
tions) have been proved for classes of boolean formulas. Here are two examples.

Theorem 20 The following classes of boolean formulas are PAC-learnable:

1• Monomials: conjunctions of literals (e.g., (w A x A y A z)). [Valiant, 1984].

2. k-DNF: formulas in disjunctive normal form with at most k literals per (monomial)
term.

3. k-CNF: formulas in conjunctive normal form with at most k literals per clause (e.g.,
3SAT). [Valiant, 1984].

31

T heorem 21 [Pitt and Valiant, 1988]. If RP ^ NP, then the following classes of boolean
formulas are not PAC-leamable for k > 2 :

1. k-term-DNF: formulas in disjunctive normal form with at most k terms.

2. k-clause-CNF: formulas in conjunctive normal form with at most k clauses.

Results such as Theorem 21 indicate that only simple kinds of concepts are learnable in
the two basic models. Thus, to expand the classes of learnable concepts, learning theorists
have devised numerous enhancements to the models. Both models can be augmented by
allowing the learning algorithm to ask additional queries, such as requests for positive or
negative examples. For a m em bership query, the learning algorithm presents an example
x to the oracle, which tells whether x is a positive or negative example.

See Section IV of this Handbook, on artificial intelligence, for other work on models and
algorithms for machine learning and concept acquisition.

12 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and
space used by running Turing machines. Kolmogorov complexity is a static complexity
measure that captures the difficulty of describing a word. For example, the word consisting
of three million zeroes can be described with fewer than three million symbols (as in this
sentence). In contrast, for a word consisting of three million randomly generated bits, there
is probably no shorter description than the word itself.

Let U be a universal Turing machine. Let A denote the empty word. The K olm ogorov
com plexity of a binary word y with respect to U, denoted Kjj(y), is the length of the
shortest binary word i such that on input (i, A), machine U outputs y. In essence, i is a
description of y , for it tells U how to generate y.

The next theorem states that different choices for the universal Turing machine affect
the definition of Kolmogorov complexity in only a small way.

Theorem 22 (Invariance Theorem) There exists a universal Turing machine U such
that for every universal Turing machine U', there is a constant c such that for all y,

Ku{y) < Kv>(y) + c

Henceforth, let K be defined by the universal Turing machine of Theorem 22. For every
integer n and every binary word y of length n, because y can be described by giving itself
explicitly, K(y) < n + d for a constant d. Call y incompressible if K(y) > n. Since there
are 2 binary words of length n, and only 2n — 1 possible shorter descriptions, there exists
an incompressible word for every length n.

Kolmogorov complexity has been used to prove many lower bounds on computational
complexity. For example, Maass et al. [1987] constructed a language Lsmt (sparse matrix
transposition) that can be decided by a 2-tape deterministic Turing machine of time complex­
ify 0 {n), but every 1-tape Turing machine that decides Lsmt requires L!(7ilog?7./loglogn)
time.

32

13 Research Issues and Summary

The core research questions in complexity theory are expressed in terms of separating com­
plexity classes:

• Is DLOG different from NLOG?

• Is P different from RP or BPP?

• Is P different from NP?

• Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the
power of nondeterminism, randomization, and interaction. In these studies, researchers have
gone well beyond the theory presented in this chapter:

• beyond Turing machines and boolean circuits, to restricted and specialized models in
which nontrivial lower bounds on complexity can be proved;

• beyond Karp reducibility and Cook reducibility, to other kinds of reducibilities;

• beyond worst case complexity, to average case complexity;

• beyond decision problems, to enumeration problems and optimization problems.

Recent research in complexity theory has had direct applications to other areas of com­
puter science and mathematics. Results on the existence of probabilistically checkable proofs
imply that obtaining approximate solutions to NP-complete problems can be as difficult as
solving them exactly. Complexity theory provides new tools for studying questions in finite
model theory, a branch of mathematical logic. Some questions about logical expressibility
are equivalent to open questions about relationships between complexity classes. Fundamen­
tal questions in complexity theory are intimately linked to practical questions about the use
of cryptography for computer security, such as the existence of one-way functions and the
strength of public key cryptosystems.

With precisely defined models and mathematically rigorous proofs, research in complexity
theory will continue to provide sound insights into the difficulty of solving real computational
problems.

14 Defining Terms

Complexity class: A set of languages that are decided within a particular resource bound.
For example, NTIME(n2 logn) is the set of languages decided by nondeterministic Turing
machines within 0 (n 2 log n) time. (See Section 3.3.)

Constructibility: A function / (n) is time- (respectively, space-) constructible if there exists
a deterministic Turing machine that halts after exactly f(n) steps (after using exactly f(n)
worktape cells) for every input of length n. (See Section 3.2.)

33

Diagonalization: A technique for constructing a language L that differs from every £(M¿)
for a list of machines Mi, M 2,___(See Section 4.3.)

N P -com plete: A language L0 is NP-complete if L0 € NP and L < £ L0 for every L in NP;
that is, for every L in NP, there exists a function / computable in polynomial time such that
for every x, x e L if and only if f (x) € Lq. (See Sections 5.1 and 5.2.)

Oracle: An oracle is a language L to which a machine presents queries of the form “Is w in
Ln and receives the correct answers at no cost. (See Sections 2.5, 6, and 7.)

Padding: A technique for establishing relationships between complexity classes that uses
padded versions of languages, in which each word is padded out with multiple occurrences
of a new symbol— the word x is replaced by the word — in order to artificially reduce
the complexity of the language. (See Section 4.4.)

R eduction : A language L\ reduces to a language L2 if a machine that decides L2 can be
used to decide L\ efficiently. (See Section 5.1.)

T im e and space com plexity: The time (respectively, space) complexity of a deterministic
Turing machine M is the maximum number of steps taken (nonblank cells used) by M among
all input words of length n. (See Section 3.1.)

Turing machine: A Turing machine M is a model of computation with a read-only input
tape and multiple worktapes. At each step, M reads the tape cells on which its access heads
are located, and depending on its current state and the symbols in those cells, M changes
state, writes new symbols on the worktape cells, and moves each access head one cell left or
right or not at all. (See Section 2.2.)

15 Further Information

Three contemporary textbooks on complexity theory are by Balcázar et al. [1998, 1990],
by Bovet and Crescenzi [1994], and by Papadimitriou [1994]. The exhaustive survey of
complexity theory by Wagner and Wechsung [1986] covers work published before 1986.

A good general reference is the Handbook of Theoretical Computer Science [van Leeuwen,
1990]. The following chapters in the Handbook are particularly relevant: Machine models and
simulations, by P. van Emde Boas, pp. 1-66; A catalog of complexity classes, by D. S. John­
son, pp. 67-161; Machine-independent complexity theory, by J. I. Seiferas, pp. 163-186;
Kolmogorov complexity and its applications, by M. Li and P. M. B. Vitányi, pp. 187-254;
and The complexity of finite functions, by R. B. Boppana and M. Sipser, pp. 757-804, which
covers circuit complexity.

A collection of articles edited by Hartmanis [1989] includes an overview of complexity
theory, and chapters on sparse complete languages, on relativizations, on interactive proof
systems, and on applications of complexity theory to cryptography.

For specific topics in complexity theory, the following references are helpful. Garey
and Johnson [1979] explain NP-completeness thoroughly, with examples of NP-completeness
proofs, and a collection of hundreds of NP-complete problems. Li and Vitányi [1993] provide
a comprehensive scholarly treatment of Kolmogorov complexity, with many applications.

34

Angluin [1992] and Kearns and Vazirani [1994] give up-to-date introductions to computa­
tional learning theory.

For historical perspectives on complexity theory, see Hartmanis [1994], Sipser [1992], and
Stearns [1990].

Research papers on complexity theory are presented at several annual conferences, includ­
ing the annual ACM Symposium on Theory of Computing; the annual International Collo­
quium on Automata, Languages, and Programming, sponsored by the European Association
for Theoretical Computer Science (EATCS); and the annual Symposium on Foundations of
Computer Science, sponsored by the IEEE. The annual Conference on Computational Com­
plexity (formerly Structure in Complexity Theory), also sponsored by the IEEE, is entirely
devoted to complexity theory. Research articles on complexity theory regularly appear in
the following journals, among others: Computational Complexity, Information and Com­
putation, Journal of the ACM, Journal of Computer and System Sciences, Mathematical
Systems Theory, SIAM Journal on Computing, and Theoretical Computer Science. Each
issue of ACM SIGACT News and Bulletin of the EATCS contains a column on complexity
theory.

Acknowledgments Eric Allender, Donna Brown, Bevan Das, Lane Hemaspaandra, Leo­
nard Pitt, Kenneth Regan, and Martin Tompa kindly read earlier versions of this chapter
and suggested numerous helpful improvements. Karen Walny drew the figures and checked
the references.

16 References

Angluin, D. 1987. Learning regular sets from queries and counterexamples. Inform. Comput.
75(2):87-106.

Angluin, D. 1988. Queries and concept learning. Machine Learning 2(4):319—342.

Angluin, D. 1992. Computational learning theory: survey and selected bibliography. Proceed­
ings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, B.C., Canada,
pp. 351-369.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1992. Proof verification and
hardness of approximation problems. Proceedings, 33rd Annual Symposium on Foundations
of Computer Science, Pittsburgh, PA, IEEE, pp. 14-23.

Babai, L., and Moran, S. 1988. Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity classes, J. Comput. System Sci. 36(2):254-276.

Baker, T., Gill, J., and Solovay, R. 1975. Relativizations of the P =? NP question. SIAM
J. Comput. 4(4):431-442.

Balcazar, J. L., Diaz, J., and Gabarro, J. 1988. Structural Complexity /, Springer-Verlag,
Berlin.

Balcazar, J. L., Diaz, J., and Gabarro, J. 1990. Structural Complexity II, Springer-Verlag,
Berlin.

35

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. 1987. Occam’s razor.
Inform. Process. Lett. 24(6):377-380.

Book, R. V. 1974. Comparing complexity classes. J. Comput. System Sci. 9(2) :213—229.

Borodin, A. 1972. Computational complexity and the existence of complexity gaps. J. ACM
19(1):158—174.

Borodin, A. 1977. On relating time and space to size and depth. SIAM J. Comput. 4(4):733-
744.

Bovet, D. P. and Crescenzi, P. 1994. Introduction to the Theory of Complexity, Prentice Hall
International (UK) Limited, Hertfordshire, U.K.

Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. 1981. Alternation. J. ACM 28(1):114-
133.

Cook, S. A. 1971. The complexity of theorem-proving procedures. Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, Shaker Heights, OH, pp. 151-158.

Cook, S. A., and Reckhow, R. A. 1973. Time bounded random access machines. J. Comput.
System Sci. 7(4):354-375.

Fischer, M. J. 1980. On developing a theory of distributed computing: summary of current
research. Tech. Rept. 80-09-03, Dept, of Computer Science, Univ. of Washington, Seattle,
WA.

Fortnow, L., and Sipser, M. 1988. Are there interactive protocols for co-NP languages?
Inform. Process. Lett. 28(5):249-251.

Fortnow, L., Rompel, J., and Sipser, M. 1988. On the power of multi-prover interactive pro­
tocols. Proceedings, Structure in Complexity Theory: Third Annual Conference, Washington,
D.C., IEEE, pp. 156-161.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, San Francisco.

Gill, J. 1977. Computational complexity of probabilistic Turing machines. SIAM J. Comput.
6(4):675-695.

Goldwasser, S., Micali, S., and Rackoff, C. 1989. The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1):186—208.

Hartmanis, J., ed. 1989. Computational Complexity Theory, American Mathematical Soci­
ety, Providence, R.I.

Hartmanis, J. 1994. On computational complexity and the nature of computer science.
Commun. ACM 37(10):37—43.

Hartmanis, J., and Stearns, R. E. 1965. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117:285-306.

Hopcroft, J., Paul, W., and Valiant, L. 1977. On time versus space. J. ACM 24(3):332-337.

Immerman, N. 1988. Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5):935-938.

36

Jones, N. D. 1975. Space-bounded reducibility among combinatorial problems. J. Comput.
System Sei. 11 (1):68—85.

Karp, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer
Computations, ed. R. E. Miller and J. W. Thatcher, pp. 85-103, Plenum Press, New York.

Kearns, M. J., and Vazirani, U. V. 1994. Introduction to Computational Learning Theory,
M.I.T. Press, Cambridge, MA.

Kobayashi, K. 1985. On proving time constructibility of functions. Theoret. Comput.
Sei. 35(2,3):215-225.

Ladner, R. E. 1975. On the structure of polynomial time reducibility. J. ACM 22(1):155—171.

Lautemann, C. 1983. BPP and the polynomial hierarchy. Inform. Process. Lett. 17(4):215-
217.

Li, M., and Vitanyi, P. M. B. 1993. An Introduction to Kolmogorov Complexity and Its
Applications, Springer-Verlag, New York.

Maass, W., Schnitger, G., and Szemeredi, E. 1987. Two tapes are better than one for off-line
Turing machines. Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
New York, NY, pp. 94-100.

Papadimitriou, C. H. 1994. Computational Complexity, Addison-Wesley Publishing Com­
pany, Reading, MA.

Pippenger, N., and Fischer, M. J. 1979. Relations among complexity measures. J. ACM
26(2):361—381.

Pitt, L., and Valiant, L. G. 1988. Computational limitations on learning from examples. J.
ACM 35(4):965-984.

Ruzzo, W. L. 1981. On uniform circuit complexity. J. Comput. System Sei. 22(3):365—383.

Savitch, W. J. 1970. Relationships between nondeterministic and deterministic tape com­
plexities. J. Comput. System Sei. 4(2):177—192.

Seiferas, J. L, Fischer, M. J., and Meyer, A. R. 1978. Separating nondeterministic time
complexity classes. J. ACM 25(1)146-167.

Shamir, A. 1992. IP = PSPACE. J. ACM 39(4):869-877.

Sipser, M. 1983. A complexity theoretic approach to randomness. Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, Boston, MA, pp. 330-335.

Sipser, M. 1992. The history and status of the P versus NP question. Proceedings of the 2fth
Annual ACM Symposium on Theory of Computing, Victoria, B.C., Canada, pp. 603-618.

Stearns, R. E. 1990. Juris Hartmanis: the beginnings of computational complexity. In
Complexity Theory Retrospective, ed. A. L. Selman, pp. 5-18, Springer-Verlag, New York.

Stockmeyer, L. J. 1976. The polynomial-time hierarchy. Theoret. Comput. Sei. 3(1)1-22.

Stockmeyer, L. J., and Chandra, A. K. 1979. Intrinsically difficult problems. Scientific
American 240(5):140-159.

37

Stockmeyer, L. J., and Meyer, A. R. 1973. Word problems requiring exponential time: pre­
liminary report. Proceedings of the 5th Annual ACM Symposium on Theory of Computing,
Austin, TX, pp. 1-9.

Szelepcsenyi, R. 1988. The method of forced enumeration for nondeterministic automata.
Acta Inform. 26(3):279-284.

Toda, S. 1991. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5):865-
877.

Valiant, L. G. 1984. A theory of the learnable. Commun. ACM 27(11): 1134-1142.

van Leeuwen, J. 1990. Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, Elsevier Science Publishers, Amsterdam, The Netherlands, and M.I.T. Press,
Cambridge, MA.

Wagner, K., and Wechsung, G. 1986. Computational Complexity, D. Reidel Publishing,
Dordrecht, The Netherlands.

Wrathall, C. 1976. Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci
3(l):23-33.

38

