54 research outputs found

    An optimal construction of Hanf sentences

    Get PDF
    We give the first elementary construction of equivalent formulas in Hanf normal form. The triply exponential upper bound is complemented by a matching lower bound

    First-order query evaluation on structures of bounded degree

    Get PDF
    We consider the enumeration problem of first-order queries over structures of bounded degree. It was shown that this problem is in the Constant-Delaylin class. An enumeration problem belongs to Constant-Delaylin if for an input of size n it can be solved by: - an O(n) precomputation phase building an index structure, - followed by a phase enumerating the answers with no repetition and a constant delay between two consecutive outputs. In this article we give a different proof of this result based on Gaifman's locality theorem for first-order logic. Moreover, the constants we obtain yield a total evaluation time that is triply exponential in the size of the input formula, matching the complexity of the best known evaluation algorithms

    Efficient FPT algorithms for (strict) compatibility of unrooted phylogenetic trees

    Full text link
    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species XX; these relationships are often depicted via a phylogenetic tree -- a tree having its leaves univocally labeled by elements of XX and without degree-2 nodes -- called the "species tree". One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g. DNA sequences originating from some species in XX), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The so-obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping -- but not identical -- sets of labels, is called "supertree". In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed-parameter tractable in the number of input trees kk, by using their expressibility in Monadic Second Order Logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on kk of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time 2O(k2)â‹…n2^{O(k^2)} \cdot n, where nn is the total size of the input.Comment: 18 pages, 1 figur

    Model Checking Lower Bounds for Simple Graphs

    Full text link
    A well-known result by Frick and Grohe shows that deciding FO logic on trees involves a parameter dependence that is a tower of exponentials. Though this lower bound is tight for Courcelle's theorem, it has been evaded by a series of recent meta-theorems for other graph classes. Here we provide some additional non-elementary lower bound results, which are in some senses stronger. Our goal is to explain common traits in these recent meta-theorems and identify barriers to further progress. More specifically, first, we show that on the class of threshold graphs, and therefore also on any union and complement-closed class, there is no model-checking algorithm with elementary parameter dependence even for FO logic. Second, we show that there is no model-checking algorithm with elementary parameter dependence for MSO logic even restricted to paths (or equivalently to unary strings), unless E=NE. As a corollary, we resolve an open problem on the complexity of MSO model-checking on graphs of bounded max-leaf number. Finally, we look at MSO on the class of colored trees of depth d. We show that, assuming the ETH, for every fixed d>=1 at least d+1 levels of exponentiation are necessary for this problem, thus showing that the (d+1)-fold exponential algorithm recently given by Gajarsk\`{y} and Hlin\u{e}n\`{y} is essentially optimal

    The succinctness of first-order logic on linear orders

    Full text link
    Succinctness is a natural measure for comparing the strength of different logics. Intuitively, a logic L_1 is more succinct than another logic L_2 if all properties that can be expressed in L_2 can be expressed in L_1 by formulas of (approximately) the same size, but some properties can be expressed in L_1 by (significantly) smaller formulas. We study the succinctness of logics on linear orders. Our first theorem is concerned with the finite variable fragments of first-order logic. We prove that: (i) Up to a polynomial factor, the 2- and the 3-variable fragments of first-order logic on linear orders have the same succinctness. (ii) The 4-variable fragment is exponentially more succinct than the 3-variable fragment. Our second main result compares the succinctness of first-order logic on linear orders with that of monadic second-order logic. We prove that the fragment of monadic second-order logic that has the same expressiveness as first-order logic on linear orders is non-elementarily more succinct than first-order logic
    • …
    corecore