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1. Introduction

Various syntactical normal forms for semantical properties of structures are known. For example, every first-order defin-
able property that is preserved under extensions of structures is definable by an existential first-order sentence (Łoś–Tarski
[26,22]). Gaifman’s normal form is another example that formalizes the observation that first-order logic can only express
local properties [10]. A third example in this line is Hanf’s theorem, giving another formalization of locality of first-order
logic (at least for structures of bounded degree) [14,7]. Finally, we should also mention the normal form by Schwentick and
Barthelmann [24] that rejoins the two formalizations of locality by Gaifman and by Hanf.

Gaifman’s and Hanf’s theorems have found applications in finite model theory and in particular in parametrized com-
plexity. Namely, they lead to efficient parametrized algorithms deciding whether a formula holds in a (finite) structure [25,
19,8,9,16,3,21,17,18] and even to more general algorithms that list all the satisfying assignments [5,15]. Hanf’s theorem was
also used in the transformation of logical formulas into different automata models [27,13,24,2,11,1,12].

In [4], it was shown that passing from arbitrary formulas to those in Łoś–Tarski or Gaifman normal form leads to a non-
elementary blowup. The same paper also proves that for structures of bounded degree, the blowup for Gaifman’s normal
form is between 2- and 4-fold exponential, and that for Łoś–Tarski normal forms (for a restricted class of structures) is
between 2- and 5-fold exponential.

This paper shows that Hanf’s normal form can be computed in three-fold exponential time and that this is optimal since
there is a necessary blowup of three exponentials when passing from general first-order formulas to their Hanf normal
form. We remark (as already observed by Seese [25]) that the first construction of Hanf normal forms [6] is not effective
since satisfiability of first-order formulas in graphs of bounded degree is undecidable, also when we restrict to finite struc-
tures [28]. Only Seese [25] gave a small additional argument showing that Hanf normal forms can indeed be computed. But
his algorithm is not primitive recursive. This was improved later to a primitive-recursive algorithm by Durand and Grandjean
[5] and (independently) by Lindell [21]. Their papers do not give an upper bound for the construction of Hanf normal forms,
but on the face of it, the algorithm seems not to be elementary.1 Their algorithm is a quantifier-elimination procedure that

* Corresponding author.
E-mail address: Dietrich.Kuske@tu-ilmenau.de (D. Kuske).

1 In the meantime, A. Durand has informed us of ongoing work aiming at an elementary upper bound for their algorithm.
1570-8683/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2012.01.002

https://core.ac.uk/display/82203991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jal.2012.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:Dietrich.Kuske@tu-ilmenau.de
http://dx.doi.org/10.1016/j.jal.2012.01.002


180 B. Bollig, D. Kuske / Journal of Applied Logic 10 (2012) 179–186
only works if the signature consists of finitely many injective functions (following Seese, one can bi-interpret every struc-
ture of bounded degree in such a structure, so this is no real restriction of the algorithm). Differently, our algorithm follows
the original proof of Hanf’s theorem very closely by examining spheres of bounded diameter, but avoiding the detour via
Ehrenfeucht–Fraïssé-games.

2. Definitions and background

Throughout this paper, let L be a finite relational signature and let Lm denote the extension of L by the constants
c1, c2, . . . , cm . Let A be an Lm-structure. We write a ∈A when we mean that a is an element of the universe of A. Further-
more, ā denotes a tuple (a1, . . . ,an) of length n of elements of some structure A and x̄ is the list of variables (x1, . . . , xn). In
both cases, n will be determined by the context. Finally, we define a distance (from N ∪ {∞}) on the universe of A setting
distA(a,b) = 0 iff a = b and distA(a, c) = d + 1 if there exists b ∈ A with distA(a,b) � d, there is some tuple in some of
the relations of A that contains both, b and c, and there is no such b ∈ A with distA(a,b) < d, and distA(a,b) = ∞ if
distA(a,b) �= d for all d ∈ N. Next, the degree of a ∈ A is the number of elements b ∈ A with distA(a,b) = 1, the degree of
A is the supremum of the degrees of a ∈A.

Let A be an L-structure, ā = (a1, . . . ,an) ∈ A, and d > 0. Then BA
d (ā) is the set of elements b ∈ A with distA(ai,b) < d

for some 1 � i � n.2 The d-sphere around ā is the Ln-structure

SAd (ā) = (
A � BA

d (ā), ā
)
.

A d-sphere (with n centers) is an Ln-structure (A, ā) with SAd (ā) =A. The Ln-structure (A, ā) is a sphere if there exists d > 0
such that (A, ā) is a d-sphere; the least such d is denoted d(τ ) and is the radius of (A, ā). The d-sphere τ is realized by ā in
A if

τ ∼= SAd (ā).

If two L-structures A and B satisfy exactly the same first-order sentences, then we write A ≡ B. If they satisfy the
same sentences of quantifier rank � r, then A≡r B. Provided the degrees of A and B are finite, both these concepts can be
characterized using the number of realizations of spheres.

Theorem 2.1 (Hanf [14]). For any L-structures A and B, we have A ≡ B whenever any sphere in A or B is finite and any sphere is
realized in A and in B the same number of times or � ℵ0 times.

This result was sharpened by Fagin, Stockmeyer & Vardi (see also Ebbinghaus & Flum [6]) to characterize the relation ≡r :

Theorem 2.2 (Fagin et al. [7]). For all r, f ∈N there exist d,m ∈ N (where d depends on r, only) such that for any L-structures A and
B of degree � f , we have A≡r B whenever any d-sphere with one center is realized in A and in B the same number of times or � m
times.

Proof of both theorems. The proof proceeds by showing that the respective counting property implies that duplicator has
a winning strategy in the Ehrenfeucht–Fraïssé-game [6,20]. This then implies the respective equivalence of A and B. �

This theorem has (at least) three different applications: The first application (and its original motivation in [7]) is a
technique to prove that certain properties P are not expressible in first-order logic: One provides two lists of structures
Ar and Br where Ar has the desired property and Br does not. Furthermore, for any r, Ar and Br satisfy the counting
condition from Theorem 2.2 with d and m determined by r and the degree f of Ar and Br . This implies Ar ≡r Br and
therefore the property P cannot be expressed by a first-order sentence of quantifier rank r. Since this holds for all r, the
property is not first-order expressible. The simplest such property is connectivity of a graph where Ar can be chosen a
circle of size max(m,2d) and Br a disjoint union of two copies of Ar (m and d are the constants from Theorem 2.2 for
f = 2).

The second application is an efficient evaluation of first-order properties on finite structures of bounded degree [25,9,5]:
The idea is to count the number of realizations of spheres up to the threshold m and, depending on the vector obtained
that way, decide whether the formula holds or not (we will come back to this aspect later in this section).

The third application is a normal form for first-order sentences [6]. For a finite d-sphere τ with n centers, let sphτ (x̄)
denote a formula such that (A, ā) |
 sphτ iff SAd (ā) ∼= τ . A Hanf sentence asserts that there are at least m realizations of the
finite sphere τ with one center. Formally, it has the form

∃x1, x2, . . . , xm :
∧

1�i< j�m

xi �= x j ∧ ∀x :
(( ∨

1�i�m

x = xi

)
→ sphτ (x)

)

2 In the literature, one usually defines BA
d (ā) as the closed ball. Here, we prefer to consider the open ball which slightly simplifies some later calculations.
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which we abbreviate as

∃�mx : sphτ (x).

A sentence is in Hanf normal form if it is a Boolean combination of Hanf sentences.
Let ϕ and ψ be two formulas with free variables in x1, . . . , xn . To simplify notation, we will say that ϕ and ψ are

f -equivalent if, for all structures A of degree � f , we have

A |
 ∀x1∀x2 · · · ∀xn : (ϕ ↔ ψ).

Corollary 2.3 (Ebbinghaus & Flum [6]). For every sentence ϕ and all f ∈ N, there exists an f -equivalent sentence ψ in Hanf normal
form.

Proof. Let r be the quantifier rank of ϕ and let d and m denote the numbers from Theorem 2.2. Then there are only finitely
many d-spheres of degree � f with one center; let (τ1, . . . , τn) be the list of these spheres. Now we associate with every
structure A of degree � f a tuple tA ∈ {0,1, . . . ,m}n as follows: For 1 � i � n, let tAi denote the minimum of m and
the number of a ∈ A with SAd (a) ∼= τi . Note that there are only finitely many tuples tA . Now ψ is a disjunction. It has one
disjunct for every t ∈ {0,1, . . . ,m}n for which there exists a structure A of degree � f with A |
 ϕ and t = tA . This disjunct
is the conjunction of the following formulas for 1 � i � n:{∃=ti x : sphτ (x) if ti < m,

∃�mx : sphτ (x) if ti = m. �
Note that ϕ is satisfiable if and only if the disjunction ψ is not empty. Hence an effective construction of ψ would allow

us to decide satisfiability of first-order formulas in structures of degree � f which is not possible [28].
We now turn to finite structures. Clearly, the disjunction ψ as in the above corollary is also equivalent to ϕ for all

finite structures of degree � f . But in this context, we can also define another disjunction ψfin by taking only those t ∈
{0,1, . . . ,m}n for which there exists a finite structure A of degree � f with A |
 ϕ and t = tA (cf., e.g., [20, p. 101]). As
above, an effective construction of ψfin would allow us to decide satisfiability of first-order formulas in finite structures of
degree � f which, again, is not possible [28].

Despite the fact that the proof of Corollary 2.3 is not constructive, Seese showed that some sentence ψ as required in
Corollary 2.3 can be computed.

Theorem 2.4 (Seese [25, p. 523]). From a sentence ϕ and f ∈ N, one can compute an f -equivalent sentence in Hanf normal form.

Proof. Let β express that a structure has degree � f . Then search for a tautology of the form β → (ϕ ↔ ψ) where ψ is
a sentence in Hanf normal form. Since the set of tautologies is recursively enumerable, we can do this search effectively.
And since we know from Theorem 2.2 that an f -equivalent sentence in Hanf normal form exists, this search will eventually
terminate successfully. �

Note that Seese’s procedure to compute ψ is not primitive recursive. A primitive recursive construction of a Hanf normal
form was described by Durand and Grandjean [5] and independently by Lindell [21]. They present a quantifier elimination
scheme and do not rest their reasoning on Ehrenfeucht–Fraïssé-games. But so far, no elementary upper bound for the
running time of their algorithm is known. The main result of this paper is an elementary procedure for the computation of
a Hanf normal form. This is achieved by a new (direct) proof of Corollary 2.3 that does not use games.

The effective constructions of Hanf normal forms led Seese [25], Durand and Grandjean [5] and Lindell [21] to efficient
algorithms for the evaluation of first-order queries on structures of bounded degree. Seese showed that sentences in Hanf
normal form can be evaluated in time linear in the structure and the Hanf normal form. Consequently, the set of pairs
(A,ϕ) with A a structure of degree � f and ϕ a sentence with A |
 ϕ can be decided in time

g1
(|ϕ|, f

) + g2
(|ϕ|, f

) · |A| (1)

where g1(|ϕ|, f ) is the time needed to compute the Hanf normal form and g2(|ϕ|, f ) is its size3 (it can be shown that the
function g2 is elementary since the radiuses appearing in the Hanf normal form can be bound). Since Seese’s construction
is not primitive recursive, the function g1 is not primitive recursive. The constructions by Durand and Grandjean and by
Lindell show that g1 can be replaced by a primitive recursive function g′

1. Since they get another Hanf normal form, also
the function g2 changes to g′

2, say (but as for Seese’s Hanf normal form, also this function is elementary).
In addition, Durand and Grandjean and Lindell show that the set of tuples ā from A with A |
 ϕ(ā) can be computed in

time

3 It should be noted that Frick and Grohe proved this problem to be solvable with g1 the identity and g2 triply exponential in |ϕ| and f [9].
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g′
1

(|ϕ|, f
) + g′

2

(|ϕ|, f
) · (|A| + ∣∣{ā | A |
 ϕ(ā)

}∣∣) (2)

where ϕ is a first-order formula and f is the degree of the structure A. This was recently improved by Kazana and Segoufin
who compute this set in time

222O (|ϕ|) · (|A| + ∣∣{ā | A |
 ϕ(ā)
}∣∣).

Here, the triply exponential factor originates from the work by Frick and Grohe [9] and the summand g′
1 is avoided since

they do not precompute a Hanf normal form. Our result in this paper will show that the Hanf normal form can be computed
in triply exponential time. Consequently, the functions from (1) and from (2) can be replaced by triply exponential functions.
As a result, the model checking algorithm by Seese and the enumeration algorithm by Durand and Grandjean and by Lindell
perform as well as the algorithms by Frick and Grohe and by Kazana and Segoufin, resp.

3. Construction of a Hanf normal form

A Hanf formula with free variables from x1, . . . , xn is a formula of the form

∃�m y : sphτ (x̄, y)

where τ is a sphere with n + 1 centers. A formula is in Hanf normal form if it is a Boolean combination of Hanf formulas.

Theorem 3.1. From a formula Φ with free variables among x̄ and f � 1, one can construct an f -equivalent formula Ψ in Hanf normal
form. This construction can be carried out in time

2 f 2O (|Φ|)
.

The construction of Ψ from Φ will be done by structural induction on Φ . The central part in this induction is described
by the following lemma (the proof of Theorem 3.1 can be found at the end of this section).

Lemma 3.2. From a formula ϕ in Hanf normal form with free variables among x̄, xn+1 and f � 1, one can construct a formula ψ in
Hanf normal form with free variables in x̄ such that ∃xn+1 : ϕ and ψ are f -equivalent. This construction can be carried out in time

|ϕ| · 2nO (1)· f O (d)
where d is the maximal radius of a sphere appearing in ϕ . Furthermore, the largest radius appearing in ψ is 3d.

Proof. Set e = 3d. The formula ψ will be a disjunction with one disjunct for every e-sphere τ ′ with n + 1 centers. This
disjunct will have the form

ψτ ′ = ϕτ ′ ∧ ∃�1xn+1 : sphτ ′ .

We next describe how ϕτ ′ is obtained from ϕ . For this, let α = ∃�mxn+2 : sphτ be some Hanf formula appearing in ϕ . This
formula will be replaced by the Hanf formula α′ that we construct next. In this construction, we distinguish two cases,
namely whether the d(τ )-sphere around cn+1cn+2 in τ is connected or not.

(a) Sτ
d(τ )

(cn+1cn+2) is connected.

Let p denote the number of elements c ∈ Bτ ′
2d(τ )

(cn+1) with

Sτ ′
d (c̄cn+1c) ∼= τ

and set

α′ =
{

true if p � m

false otherwise.

(b) Sτ
d(τ )

(cn+1cn+2) is not connected.
Let

σ = Sτ
d(τ )(c̄cn+2)

and write p for the number of c ∈ Bτ ′
2d(τ )

(cn+1) with

Sτ ′
d(τ )(c̄c) ∼= σ .

In this case, set

α′ = ∃�m+pxn+2 : sphσ (x̄, xn+2).
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This finishes the construction of ϕτ ′ and therefore of the disjunction ψ . Clearly, ψ is in Hanf normal form.
Now let an+1 ∈A with SAd (āan+1) ∼= τ ′ . We will show

(A, āan+1) |
 α ⇐⇒ (A, ā) |
 α′

again distinguishing the two cases above.

(a) First let Sτ
d(τ )

(cn+1cn+2) be connected. Then, for an+2 ∈A with τ ∼= SAd(τ )
(āan+1an+2), we have

distA(an+1,an+2) = distτ (cn+1, cn+2) � 2d(τ ) − 1 < 2d(τ )

and therefore an+2 ∈ BA
2d(τ )

(an+1). Hence

∣∣{an+2 ∈ A
∣∣ SAd(τ )(āan+1an+2) ∼= τ

}∣∣
= ∣∣{an+2 ∈ BA

2d(τ )(an+1)
∣∣ SAd(τ )(āan+1an+2) ∼= τ

}∣∣
= ∣∣{c ∈ Bτ ′

2d(τ )(cn+1)
∣∣ SAd(τ )(c̄cn+1c) ∼= τ

}∣∣ = p

where the last equality follows from SAe (āan+1) ∼= τ ′ and e � 3d(τ ). Hence we showed

(A, āan+1) |
 α ⇐⇒ (A, āan+1) |
 ∃�mxn+2 : sphτ (x̄, xn+1)

⇐⇒ p � m

⇐⇒ (A, ā) |
 α′.
(b) Next consider the case that Sτ

d(τ )
(cn+1cn+2) is not connected. Then, for an+2 ∈ A, we have SAd(τ )

(āan+1an+2) ∼= τ if and
only if

distA(an+1,an+2) � 2d(τ ) and SAd(τ )(āan+2) ∼= σ .

But this implies
∣∣{an+2 ∈ A

∣∣ SAd(τ )(āan+1an+2) ∼= τ
}∣∣

= ∣∣{an+2 ∈ A
∣∣ distA(an+1,an+2) � 2d(τ ), SAd(τ )(āan+2) ∼= σ

}∣∣
= ∣∣{an+2 ∈ A

∣∣ SAd(τ )(āan+2) ∼= σ
}∣∣

− ∣∣{an+2 ∈ A
∣∣ distA(an+1,an+2) < 2d(τ ), SAd(τ )(āan+2) ∼= σ

}∣∣
= ∣∣{an+2 ∈ A

∣∣ SAd(τ )(āan+2) ∼= σ
}∣∣

− ∣∣{c ∈ τ ′ ∣∣ distτ
′
(cn+1, c) < 2d(τ ), Sτ ′

d(τ )(c̄c) ∼= σ
}∣∣

= ∣∣{an+2 ∈ A
∣∣ SAd(τ )(āan+2) ∼= σ

}∣∣ − p.

Hence

(A, āan+1) |
 α ⇐⇒ (A, āan+1) |
 ∃�mxn+2 : sphτ

⇐⇒ ∣∣{an+2 ∈ A
∣∣ SAd(τ )(āan+1an+2) ∼= τ

}∣∣ � m

⇐⇒ ∣∣{an+2 ∈ A
∣∣ SAd(τ )(āan+2) ∼= σ

}∣∣ � m + p

⇐⇒ (A, ā) |
 α′.

We next evaluate the size of the formula ψ . Since ψ is a disjunction of formulas ψτ ′ , we first fix some e-sphere τ ′ with
n + 1 centers (with e = 3d). Then τ ′ has � f 3d−1 · (n + 1) elements. Hence the formula sphτ ′ has size � ( f 3d−1 · (n + 1))O (1)

(the constant O (1) depends on the signature L). Now we deal with the formula ϕτ ′ . It results from ϕ by the replacement
of subformulas of the form α = ∃�mxn2 : sphτ . In the first case, |α′| � |α|. In the second case, note that σ is a subsphere of
τ , so |sphσ |� |sphτ | < |α|. Furthermore, p � f 2d(τ )−1 � f 2d−1. Recall that the formula

α′ = ∃�m+pxn2 : sphσ (x̄, xn+2)

is shorthand for

∃y1, y2, . . . , ym+p :
∧

yi �= y j ∧ ∀y

(( ∨
y = yi

)
→ sphσ (x̄, y)

)
.

1�i< j�m+p 1�i�m+p
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The size of this formula is bounded by

O
(

p2) + |sphσ | � O
(

f 4d−2) + |α|.
Since ϕτ ′ is obtained from ϕ by at most |ϕ| replacements, we obtain

|ϕτ ′ | = |ϕ| · O
(

f 4d−2) + |ϕ| � |ϕ| · f O (d)

and therefore

∣∣ϕτ ′ ∧ ∃�1xn+1 : sphτ ′
∣∣ = f O (d) · (|ϕ| + nO (1)

)
.

The number of disjuncts of ψ equals the number of 3d-spheres with n + 2 centers. Since any such sphere has at most
f 3d−1(n + 1) elements, the number of these spheres is bounded by

2(n· f 3d−1)O (1) = 2nO (1)· f O (d)

which finally results in

|ψ |� 2nO (1)· f O (d) · f O (d) · (|ϕ| + nO (1)
)
� 2nO (1)· f O (d)

.

We finally come to the evaluation of the time needed to compute ψ . The crucial point in our estimation is the time
needed to compute the numbers p in (a) and (b); we only discuss (a).

There are � f 2d(τ )+1 − 1 candidates c in Bτ ′
2d(τ )

(cn+1). For any of them, we have to compute the set Bτ ′
d (c) (which can

be done in time f 2d+1 − 1). Then, isomorphism of τ and Sτ ′
d (c̄cn+1c) has to be decided. But these are two structures of

degree � f and of size (n + 2) · ( f d+1 − 1) � |ϕ| · ( f d+1 − 1). Hence, by [23], this isomorphism test can be performed in time
polynomial in the size of the structures (the degree of the polynomial depends on f ).4 Hence, the number p can indeed be
computed within the given time bound. �

We now come to the proof of the central result of this paper:

Proof of Theorem 3.1. The proof is carried out by induction on the construction of the formula Φ . So first, let ϕ be a
quantifier-free subformula of Ψ whose free variables are among x1, . . . , xn . Let T be the set of all 1-spheres τ of degree � f
with n + 1 centers such that the constants c1, . . . , cn of τ satisfy ϕ . Then set

ψ =
∨
τ∈T

∃�1xn+1 : sphτ .

Note that any 1-sphere with n + 1 centers has precisely n + 1 elements. Furthermore, n � |Φ| since ϕ is a subformula of Φ .
Hence the formula sphτ has size nO (1) � |Φ|O (1) and there are 2|Φ|O (1)

disjuncts in the formula ψ (where the constants

O (1) depend on the signature L), i.e., |ψ | = 2|Φ|O (1)
.

We now come to the induction step. The computation of Hanf normal forms of ¬ϕ and of ϕ ∨ ϕ′ are straightforward
from Hanf normal forms of ϕ and ϕ′ . The only critical point in the induction are subformulas of the form ∃xn+1 : β . By
the induction hypothesis, β can be transformed into an f -equivalent Hanf normal form ϕ and then Lemma 3.2 is invoked
yielding an f -equivalent Hanf normal form for ∃xn+1 : β . We have to invoke Lemma 3.2 at most |Φ| times where the
number n is always bounded by |Φ|. Each invocation increases the radius of the spheres considered by a factor of three, so

the maximal radius will be 3|Φ| = 2O (|Φ|) . Hence, each invocation of Lemma 3.2 increases the formula by a factor of 2 f 2O (|Φ|)
.

Putting this to the power of |Φ| does not change the expression. �
4. Optimality

In this section, we give a matching lower bound for the size of an f -equivalent formula in Hanf normal form. Namely,
we prove

Theorem 4.1. There is a family of sentences (χn)n∈N such that |χn| ∈ O (n) and every 3-equivalent formula ψn in Hanf normal form

has � 222n+1−1 subformulas, so |ψn|� 222n+1−1 .

4 For this result to apply, one has to code the L-structure into a graph. This standard technique is explained, e.g., in [25, Proof of Theorem 3.2].
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The formulas χn will speak about labeled trees. More formally, our signature L consists of two binary relations S0 and
S1 and one unary relation U . A structure A = (A, SA0 , SA1 , UA) over this signature is a tree if there is a finite, nonempty
and prefix-closed set X ⊆ {0,1}∗ such that

A ∼= (
X,

{
(u, u0) | u0 ∈ X

}
,
{
(u, u1) | u1 ∈ X

}
, H

)
for some H ⊆ X . Note that every tree has degree at most 3. The tree is complete if every inner node has two children and
any two maximal paths have the same length, this length is called the height of the tree (i.e., X = {0,1}�h where h is the
height). A forest is a disjoint union of trees. As in [9, Lemma 23], one can construct formulas χn of size O (n) such that for
every forest A, we have

A |
 χn if and only if any two complete trees of height 2n in A are non-isomorphic. (3)

Lemma 4.2. Let ψ be a formula in Hanf normal form that is 3-equivalent to χn. Then there are 222n+1−1 non-isomorphic spheres σ
such that the formula sphσ appears in ψ .

Proof. Suppose, towards a contradiction, that ψ contains < 222n+1−1 subformulas of the form sphσ .
Let M be the maximal number m such that ∃�mx : sphσ appears in ψ (for any sphere σ ). We can assume that ψ does

not contain any formula sphσ where σ is a 1-sphere. The complete tree of height 2n has 22n+1 − 1 nodes. Hence there are

222n+1−1 ways to color such a tree. By our assumption on ψ , there is one such tree B (with root r) such that the formula
sph(B,r) does not appear in ψ .

Next, we need a bit of terminology. If A is a tree, a a node in τ , and d ∈ N, then also τ � BA
d (a) is a tree that we

denote NA
d (a). Recall that the sphere SAd (a) = (NA

d (a),a) about a of radius d has an additional constant.
Now we define a structure A0. It consists of M + 1 copies of any of the structures NB

d (b) where

(1) 1 < d � 2n and b is not the root of B or
(2) d < 2n .

Finally, let A2 = A0 � B � B be the disjoint union of A0 and two copies of the tree B. Then, by (3), we have A2 �|
 ψ .
Since A0 does not contain any complete tree of height 2n , we get A0 |
 χn and therefore A0 |
 ψ . Note that any sphere
realized in A0 or A2 is also realized in B. So let b ∈ B, and d ∈ N. We distinguish several cases:

(1) 1 < d � 2n and b is not the root of B. Then the sphere (NB
d (b),b) is realized in A0 more than M times, hence the same

holds for A2.
(2) d < 2n . Then (NB

d (b),b) is realized in A0 more than M times, hence the same holds for A2.
(3) b is the root of the tree B and d = 2n . Then NB

d (b) = B. Hence SBd (b) is not realized in A0 and it is realized twice
in A2. But validity of ψ does not depend on this number since ψ does not mention the formula sph(B,b) .

Hence, we obtain A2 |
 ψ , contrary to our assumption that χn and ψ are 3-equivalent. �
The theorem now follows immediately from this lemma.
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