14 research outputs found

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog

    Get PDF
    We propose a novel, type-elimination-based method for reasoning in the description logic SHIQbs including DL-safe rules. To this end, we first establish a knowledge compilation method converting the terminological part of an ALCIb knowledge base into an ordered binary decision diagram (OBDD) which represents a canonical model. This OBDD can in turn be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base in order to perform combined reasoning. In order to leverage our technique for full SHIQbs, we provide a stepwise reduction from SHIQbs to ALCIb that preserves satisfiability and entailment of positive and negative ground facts. The proposed technique is shown to be worst case optimal w.r.t. combined and data complexity and easily admits extensions with ground conjunctive queries.Comment: 38 pages, 3 figures, camera ready version of paper accepted for publication in Logical Methods in Computer Scienc

    TBox Reasoning in the Probabilistic Description Logic SHIQ P

    Get PDF
    Abstract. One shortcoming of classic Descriptions Logics, DLs, is their inability to encode probabilistic knowledge and reason over it. This is, however, a strong demand of some modern applications, e.g. in biology and healthcare. Therefore, probabilistic extensions of DLs are attracting attention nowadays. We introduce the probabilistic DL SHIQP which extends a known probabilistic DL. We investigate two reasoning problems for TBoxes: deciding consistency and computing tight probability bounds. It turns out that both problems are not harder than reasoning in the classic counterpart SHIQ. We gain insight into complexity sources

    Querying the Guarded Fragment

    Full text link

    The Complexity of Finite Model Reasoning in Description Logics

    Get PDF
    We analyze the complexity of finite model reasoning in the description logic ALCQI, i.e. ALC augmented with qualifying number restrictions, inverse roles, and general TBoxes. It turns out that all relevant reasoning tasks such as concept satisfiability and ABox consistency are EXPTIME-complete, regardless of whether the numbers in number restrictions are coded unarily or binarily. Thus, finite model reasoning with ALCQI is not harder than standard reasoning with ALCQI
    corecore