19 research outputs found

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    Counting aggregate classifiers.

    Get PDF
    There are many methods to design classifiers for the supervised classification problem. In this paper, we study the problem of aggregating classifiers. We construct an algorithm to count the number of distinct aggregate classifiers. This leads to a new way of finding a best aggregate classifier. When there are only two classes, we explore the link between aggregating classifiers and n-bit boolean functions. Further, the sequence of the number of distinct aggregated classifiers appears to be new.Boolean function; Classification; Classifiers; Design; Functions; Methods; Studies; Supervised classification; Weighted majority vote;

    Global optimization for low-dimensional switching linear regression and bounded-error estimation

    Get PDF
    The paper provides global optimization algorithms for two particularly difficult nonconvex problems raised by hybrid system identification: switching linear regression and bounded-error estimation. While most works focus on local optimization heuristics without global optimality guarantees or with guarantees valid only under restrictive conditions, the proposed approach always yields a solution with a certificate of global optimality. This approach relies on a branch-and-bound strategy for which we devise lower bounds that can be efficiently computed. In order to obtain scalable algorithms with respect to the number of data, we directly optimize the model parameters in a continuous optimization setting without involving integer variables. Numerical experiments show that the proposed algorithms offer a higher accuracy than convex relaxations with a reasonable computational burden for hybrid system identification. In addition, we discuss how bounded-error estimation is related to robust estimation in the presence of outliers and exact recovery under sparse noise, for which we also obtain promising numerical results

    Applications of regularized least squares to pattern classification

    Get PDF
    AbstractWe survey a number of recent results concerning the behaviour of algorithms for learning classifiers based on the solution of a regularized least-squares problem

    From Sparse Signals to Sparse Residuals for Robust Sensing

    Full text link
    One of the key challenges in sensor networks is the extraction of information by fusing data from a multitude of distinct, but possibly unreliable sensors. Recovering information from the maximum number of dependable sensors while specifying the unreliable ones is critical for robust sensing. This sensing task is formulated here as that of finding the maximum number of feasible subsystems of linear equations, and proved to be NP-hard. Useful links are established with compressive sampling, which aims at recovering vectors that are sparse. In contrast, the signals here are not sparse, but give rise to sparse residuals. Capitalizing on this form of sparsity, four sensing schemes with complementary strengths are developed. The first scheme is a convex relaxation of the original problem expressed as a second-order cone program (SOCP). It is shown that when the involved sensing matrices are Gaussian and the reliable measurements are sufficiently many, the SOCP can recover the optimal solution with overwhelming probability. The second scheme is obtained by replacing the initial objective function with a concave one. The third and fourth schemes are tailored for noisy sensor data. The noisy case is cast as a combinatorial problem that is subsequently surrogated by a (weighted) SOCP. Interestingly, the derived cost functions fall into the framework of robust multivariate linear regression, while an efficient block-coordinate descent algorithm is developed for their minimization. The robust sensing capabilities of all schemes are verified by simulated tests.Comment: Under review for publication in the IEEE Transactions on Signal Processing (revised version
    corecore