
COUNTING AGGREGATE CLASSIFIERS

JAN ADEM· WILLY GOCHET • FRITS SPIEKSMA

OR 0451

Counting Aggregate Classifiers
Jan Adem, Willy Cochet, Frits Spieksma

Department of Applied Economics, Katholieke Universiteit Leuven,
Naamsestraat 69, 3000 Leuven, Belgium

e-mail: firstname.name©econ.kuleuven.be

Abstract: There are many methods to design classifiers for the supervised
classification problem. In this paper, we study the problem of aggregating
classifiers. We construct an algorithm to count the number of distinct aggre
gate classifiers. This leads to a new way of finding a best aggregate classifier.
When there are only two classes, we explore the link between aggregating
classifiers and n-bit boolean functions. Further, the sequence of the number
of distinct aggregated classifiers appears to be new.

Keywords: supervised classification, weighted majority vote, boolean func
tion, integer sequence.

1 Introduction

The supervised classification problem can be described as follows. Given is a
design data set {(Xl, CI), ... , (XN' CN)} where Xn is a P-dimensional row vec
tor of measurements describing pattern n, and Cn E {I, 2, ... , C} denotes the
class that pattern n belongs to, 1 :::; n :::; N. The supervised classification
problem consists of specifying a function 9 : IRP 1-----+ {I, ... , C} : X 1-----+ g(x)
that classifies any pattern with unknown class membership into one of the
C classes as accurately as possible. The function 9 is called a classifier. If
g(xn) = Cn, then pattern n is correctly classified by the classifier g, otherwise
it is misclassified. As Cn is given for n E {I, ... , N}, the problem is called the
supervised classification problem, in contrast with the unsupervised classifi
cation problem where one does not know the class membership of the design
data set patterns beforehand [9].

The supervised classification problem can be very hard to solve. For instance,
even when C = 2, finding a (P - I)-dimensional hyperplane minimizing the
number of misclassifications on the design data set is a NP-hard problem. In

1

fact, even the existence of an algorithm that has a constant worst-case ratio
would imply P = NP [10].

There exist many methods to design classifiers [9, 18]. This variety of meth
ods and the corresponding abundance of classifiers gives rise to an obvious
question: are there ways to aggregate classifiers such that the aggregated clas
sifier has more desirable characteristics than any of the classifiers separately?

This question is the subject of this paper; thus, instead of solving the super
vised classification problem by designing a classifier, we assume that we are
given a number of classifiers. More concrete, we consider the following set
ting. Given are a finite number of classifiers gl, ... , gL, L E {I, 2, ... }. These
L classifiers will be referred to as the component classifiers. For each pat
tern n of the design data set, the (unique) functional value gz(xn) is known,
l E {I, ... ,L}.

Aggregating component classifiers to obtain an aggregate classifier can be ex
plained as follows. A nonnegative real weight az is associated to each compo-
nent classifier gz, l E {I, ... , L}. Hereby, it is assumed that at least one of the
weights az > 0, l E {I, ... , L}. Let 1(·) be the indicator function, i.e. 1(·) = 1
if the argument is true and = 0 otherwise. The aggregated classifier classifies
a pattern n into the class c* for which c* = arg maxC{I:f=l azI(gz(xn) = cn.
Informally, the weight az can be seen as the voting power associated to com
ponent classifier gz and the aggregation operation is a simple majority vote
based on these L weights. Weighted majority vote procedures are also used
in fields such as game theory and distributed computing systems [7].

Example 1. Let L = 5, C = 4 and (gl(Xn), g2(Xn), g3(Xn),
g4(Xn), g5(Xn)) = (1,2,1,3,3). If (a1, a2, a3, a4, (5) = (1,1,2,0,0.4),
then c* = arg maxc{3, 1,0.4, O} and the aggregated classifier will
classify pattern n in class 1. •

In the last decade, aggregation of classifiers has become a popular issue in
the supervised classification literature. This is largely due to the promising
empirical results of two powerful aggregation techniques: bagging [4] and
boosting [14]. The theoretical framework on aggregation is an active field
of research and is developing fast [5, 8, 17]. Bagging uses a majority vote
to aggregate the component classifiers with each component classifier being

2

given an equal weight, i.e. o!z = ± for l E {I, ... ,L}. A drawback of bagging
is that the weights are fixed independently of the design data set, i.e. a bad
component classifier is given the same weight as a good component classifier.
In AdaBoost.M1, the weight of the l-th component classifier is chosen as
o!z = 10g((1 - ez)/ez) where ez is the fraction of design data set patterns that
are misclassified by component classifier 9z. Notice that in AdaBoost.M1,
the weights o!z can be negative and it is not required that at least one o!z > 0,
l E {I, ... , L}. Boosting takes the design data set indirectly into account by
letting the weight o!z depend on ez. An alternative to bagging and boosting
is to use mathematical programming approaches to determine the values for
the weights o!z according to some criterion function defined directly on the
available design data set [2]. Instead of finding an aggregate classifier by
computing weights and performing a majority vote, we show that enumer
ation over all possible distinct aggregate classifiers is a viable alternative,
especially when the number of component classifiers is not too large.

In our setting, the aggregation problem can be formulated as follows:

[AP] For each design data set pattern n, L component classifi
cations 9z (xn) E {I, ... , C} and the true class en E {I, ... , C} are
given, n E {I, ... , N}. Find weights o!z such that o!z 2: ° and at
least one o!z > 0, l E {I, ... , L}.

There is no objective function specified in AP. We will focus on counting
the number of solutions to AP and, hence, the results are valid irrespective
of the objective function.

Notice however that an obvious objective function would be to minimize the
number of misclassifications on the design data set. This problem is referred
to as AP-MIN. It can be shown that AP-MIN is NP-hard [1].

Our contribution is threefold. First, we propose a new way to find a best
aggregate classifier. Second, the question of counting the number of distinct
aggregate classifiers is partially answered. Third, the link between aggregat
ing classifiers for C = 2 and n-bit boolean functions is described which allows
a reinterpretation of the aggregate classifier count in terms of n-bit boolean
functions.

3

In the second section, the solution space of AP is studied and the framework
to count the number of solutions to AP is built. The third section presents
an algorithm to count the number of solutions to AP. In section 4, the
link between n-bit boolean functions and aggregating classifiers for C = 2 is
discussed. The last section summarizes the conclusions.

2 Analyzing the Solution Space of AP

First, a solution to AP is defined.

Definition 1. An L-tuple (al, ... ,ad is a solution to AP if and
only if

(i) al 2': 0 and E IR with I E {I, ... , L} and

(ii) for every possible partition of the set {gl, ... , g£1 into at most
min{L, C} nonempty subsets, there exists a subset 9* in the
partition such that L9IEQ* al > L9lEQ al with 9 any other
subset of the partition.

Notice that conditions (i) and (ii) imply that (0, ... ,0) is excluded as a solution,
which comes down to saying that, in order to have a meaningful aggregation,
at least one component classifier must receive a strictly positive weight. Con
dition (i) forbids strictly negative weights as only positive voting is allowed,
i.e. we allow only for votes in favor of a class rather than against one. By
condition (ii), the aggregate classifier will also be a function, i.e. ties are
excluded. To see this, define the C sets 9nc = {gl I gl(Xn) = c}, c E {I, ... , C}
for a given design data set pattern n and consider only the nonempty sets
9nc. These nonempty sets form a partition of the set {gl, ... , g£1 into at
most min{L, C} nonempty subsets. Conversely, every partition of the set
{gl, ... ,gL} into at most min{L,C} nonempty subsets represents a way in
which the classifications of the component classifiers can differ, i.e. all com
ponent classifiers that are in the same subset of such partition give the same
classification for Xn which differs from the classification of component clas
sifiers in any other subset of the partition. Condition (ii) states that the
weights should be determined in such a way that there is always a unique
aggregation decision, i.e. for all the possible ways in which the classifications
of the component classifiers can differ. Notice that it is not relevant which

4

value from {I, ... , C} is associated to which nonempty subset in the partition.
What matters in the analysis of the solution space is the mechanism of the
aggregation, not the outcome.

Example 2. Let L = 3 and C = 4. The 3-tuple (a1,a2,a3)
= (~, ~, ~) is not a solution, as condition (ii) is not satisfied.
Indeed, for the partition {{gd, {g2}, {g3}}, there would be a tie.
Notice that (~, ~, ~) is the bagging solution. Some examples of
solutions are (1,0,0), C70' 120' 110) and (4,3,3) .•

Let T be the set of all the possible partitions of the set {gl, ... , gd into at
most min{ L, C} nonempty subsets. Order the ITI elements of T into any
order and label them from 1 to ITI. Denote by Pt the t-th element of T,
t E {I, ... , ITI} with

min{L,C}

ITI = L S(L,k)
k=l

where S(L, k) is the Stirling number of the second kind, representing the
number of ways to partition a set of L elements into exactly k nonempty
subsets [6, 19].

Let (a1, ... ,aL) be a solution to AP and denote by 9; the (unique) sub
set in Pt for which L 9/E9; al > L 9/E9t al with 9t any other subset of Pt,
t E {I, ... , ITI}. Condition (ii) in Definition 1 implies that with every L-tuple
that is a solution, exactly one ITI-dimensional vector [9r ... 91;-1] can be
associated. This ITI-dimensional vector will be called the partition decision
vector of the solution as it represents the aggregation decision, in terms of
nonempty subsets, for all Pt in T.

In order to structure the solution space of AP further, a second definition is
introduced.

Definition 2. Let the L-tuples (a1, ... ,aL) and ((31, ... ,(3d both
be solutions. (a1, ... ,aL) and ((31, ... ,(3L) are distinct solutions if
and only if their partition decision vectors are not the same.

To see the intuition of the definition, notice that the weights are just a means
to merge the (possibly) different classifications of the component classifiers

5

into a (unique) aggregated prediction. Hence, if two distributions of weights
are such that they always, i.e. for all Pt in T, yield the same aggregate
decision, they can be considered identical.

Example 2 (continued). The 3-tuples (1,0,0), C70' 120' 110) and
(4,3,3) are solutions. (1,0,0) and (4,3,3) are distinct solutions as
for partition {{gd, {g2, g3}}, the aggregate decision according to
(1,0,0) is {gd, but according to (4,3,3) it is {g2, g3}' By ex
haustively going through all cases, {{gl, g2, g3}}, {{gd, {g2, g3}},
{{gd, {g2, g3}}, {{g3}, {g2, gd} and {{gd, {g2}, {g3}}, it can be
verified that no partitions of at most three nonempty subsets ex
ist for which (1,0,0) and C70' 120' 110) yield a different aggregate
decision and hence, they are not distinct solutions .•

The above definitions structure the solution space of AP. Let Ss01 = {
(aI, ... , aL) I (aI, ... , aL) is a solution}. For all values of Land C, the set Ss01
contains infinitely many elements, L E {I, 2, ... }, C E {2, 3, ... }. Definition 2
partitions the set Ss01 into Q subsets 5:01 with q E {I, ... , Q} in such a way
that (i) any two solutions that belong to the same subset are not distinct,
and (ii) any two solutions that belong to different subsets are distinct. A
visualization of the structure of the solution space of AP is given in Figure
1.

Ss01
/' 1 "'\

Ss01
2

Ssol
.. ..
•

SQ
\.. sol • • •

Figure 1: Visualization of the Structure of the Solution Space of AP

6

Having introduced the necessary elements for the analysis of the solution
space of AP, Q can be formally defined.

Definition 3. Let C be a finite number in {2, 3, ... } and L be
a finite number in {I, 2, ... }. Q(L, C) is the number of distinct
solutions of AP with L component classifiers and C classes.

It is easy to see that, for all possible values of Land C, Q(L, C) is finite.
Definition 2 implies that the number of distinct solutions to AP cannot be
larger than the number of different partition decision vectors, which is obvi
ously finite for finite values of Land C.

Hence, a representation of the solution space of AP is obtained that is dis
crete rather than continuous. This is an important finding as it reveals the
discrete nature of AP. In terms of solution methods for AP, it means that
any instance of AP with given Land C can be solved by enumeration over
Q(L, C) distinct solutions, in the worst case. Notice that this is true irre
spective of the objective function.

There are still two important unanswered questions.

Question 1. How large is Q(L, C)?

Question 2. Given Q(L, C), how are Q(L, C) distinct solutions
obtained?

In the next section, these questions will be partially answered. We are not
able to come up with a direct or recursive expression for Q(L, C) as a func
tion of Land C. As a best alternative, an algorithm to count Q(L, C) will be
presented. Interestingly, the counting algorithm will also provide an answer
to question 2.

3 An Algorithm to Compute Q(L, C)

Any ITI-dimensional vector for which the t-th entry, t E {I, ... , ITI}, is an
element of P t is called a candidate partition decision vector. The number of
different candidate partition decision vectors is

7

which can be rewritten as

min{L,C} II kS(L,k)

k=l

since IPtl E {I, ... ,min{L, C}} for t E {I, ... , ITI}. S(L, k) is again the Stir
ling number of the second kind, or, the number of ways to partition a set of
L elements into exactly k nonempty subsets.

The number of candidate partition decision vectors for a given value of Land
C gives a (loose) upper bound for Q(L, C). Observe that the parameter C
only influences the upper bound through the number min{ L, C}. If L :::; C,
the parameter C does not determine the upper bound.

In Table 1, the number of candidate partition decision vectors for small AP
are given. The numbers get very large very fast. E.g. for L=5 and C=3, the
result is 215325 which is already a 17-digit number.

Table 1: Number of Candidate Partition Decision Vectors for Small AP

C=2 C=3 C=4 C=5
L=l 2° 2° 2° 2°
L=2 21 21 21 21

L=3 23 2331 2331 23 31

L=4 27 2736 273641 273641

L=5 215 215325 215325410 21532541°51

By Definition 2, it suffices to generate all candidate partition decision vectors
and check if there exists a solution that could give the candidate partition
decision vector. If so, the candidate partition decision vector is a partition
decision vector. The check comes down to solving the following feasibility
problem:

8

[FPj Is the system of linear strict inequalities {~9IEQ; az- ~9IEQt az >
0,9t #- 9t, t E {I, ... , ITI}} feasible for real valued nonnegative
az, l E {I, ... , L} ?

As solutions can be multiplied by a real number T > 0 without changing the
aggregate classifications, FP is equivalent to FP-E which can be solved in
polynomial time by linear programming techniques. These techniques also
yield a feasible solution if there exists one and hence, in this way, answer
Question 1 and 2 at the same time and same computational cost.

[FP-E] Let E E IR and> O. Is the system of linear inequalities

{~9IEQ; az - ~9IEQt az ~ E,9t #- 9t, t E {I, ... , ITI}} feasible for
real valued nonnegative az, l E {I, ... , L}?

However, FP-E needs to be solved for all candidate partition decision vectors
and, as is illustrated in Table 1, the number of candidate partition decision
vectors gets very large very fast. However, there is a way to reduce the num
ber of candidate partition decision vectors for which FP-E needs to be solved.

If the following consistency rule does not hold, we know beforehand that
FP-E cannot be feasible.

Consistency Rule. Consider Pt and let 9t be the t-th entry
in the candidate partition decision vector. Then, for all Ps , s E

{I, ... , ITI}, s #- t for which

(i) there exists a subset 9; such that 9t C 9; and,

(ii) every other subset 9s of Ps is a subset of some other subset
9t of Pt,

it must hold that 9; is the s-th entry in the candidate partition
decision vector, for otherwise the candidate partition decision vec
tor cannot be a partition decision vector.

The idea behind the rule is consistency. Loosely speaking, if, for a partition,
there is a subset of az's that dominates the other subsets, it has to dominate
those subsets also in the other partitions.

9

Example 3. Let L = 3 and C = 4. There are five possible par
titions of at most min{3,4} nonempty subsets. Suppose we are
constructing two candidate partition decision vectors by filling in
the entries. Below, it can be seen that for the first candidate par
tition decision vector, only the second entry has been determined
and for the second, only the fifth position has been filled up.

Construction of Construction of
Candidate Partition Candidate Partition

Decision Vector 1 Decision Vector 2
{{gl, g2, g3}} ? ?

{{gl, gd, {g3}} {g3} ?
{{gl, g3}, {g2}} ? ?
{{g2, g3}, {gd} ? ?

{{gl},{g2},{g3}} ? {gd

In the first candidate partition decision vector, the second entry
{g3} implies that 0:1 + 0:2 < 0:3· By the consistency rule, this
choice determines all further entries. E.g., if the candidate parti
tion decision vector would have g2 as a third entry, it cannot be
a partition decision vector as no 3-tuple (0:1,0:2,0:3) can be found
for which both 0:1 + 0:2 < 0:3 and 0:1 + 0:3 < 0:2. In the second
candidate partition decision vector, the entry {gl} determines
the entry for {{gl, g2, g3}}, {{gl, g2}, {g3}} and {{gl, g3}, {g2}}.
For {{g2, g3}, {gd}, condition (ii) of the consistency rule is not
fulfilled .•

Rather than enumerating all the possible candidate partition decision vectors,
only those will be enumerated that do not violate the consistency rule. This
strongly reduces the number of feasibility problems FP-E that need to be
solved. Table 2 gives the number of candidate partition decision vectors that
comply with the consistency rule. It should be compared to Table 1. E.g. for
L = 4 and C = 3, only 116 feasibility checks are required while the number
of candidate partition decision vectors is 2736 = 93312.

10

Table 2: Number of Candidate Partition Decision Vectors that Comply with the
Consistency Rule for Small AP

C=2 C=3 C=4 C=5
L=l 1 1 1 1
L=2 2 2 2 2
L=3 4 6 6 6
L=4 12 116 140 140
L=5 81 756865 2503042 2867234

Below, an informal description is given of an algorithm that counts the num
ber of distinct solutions for AP, or, the number of subsets Siol' or, Q(L, C)
for a given value of Land C, L E {I, 2, ... }, C E {2, 3, ... }. This algorithm
will be referred to as the counting algorithm.

Input: A number L E {I, 2, ... }, a number C E {2, 3, ... }.

1. Generate all Pt and label them in any order from 1 to ITI. Set
q = O.

2. Take the first entry in a to-be-built candidate partition
decision vector, t = 1.

3. Choose a subset gt in Pt and put subset gt at entry t of the
to-be-built candidate partition decision vector,
g; = gt·

4. If possible, fill in unfilled entries of the to-be-built
candidate partition decision vector by application of the
consistency rule.

5. If all the entries of the to-be-built candidate partition
decision vector are filled in, a candidate partition
decision vector has been built and proceed to step 6;
else update t to the next unfilled entry in the to-be-built
candidate partition decision vector and go to step 3.

6. Use FP-E to check if there exists a solution that would
give the candidate partition decision vector. If so, the

11

candidate partition decision vector is a partition decision
vector, q +- q + 1 and the solution is saved.

7. Empty the entries of the to-be-built candidate partition
decision vector filled up in the last step 3 and 4.

8. If there exists a subset Qt in Pt which has not yet been chosen,
go to step 3; else if possible, set t to its
previous value and go to step 8; else go to step 9.

9. Set Q = q.

Output: A number Q, a set of Q solutions.

In Table 3, the values for Q(L, C) for small AP are given. A question mark
indicates that it was not possible to calculate Q(L, C) within 24 hours of
computation time on a PENTIUM III 550 Mhz computer.

Table 3: Q(L, C) for Small AP

C=2 C=3 C=4 C=5 C=6
L=l 1 1 1 1 1
L=2 2 2 2 2 2
L=3 4 6 6 6 6
L=4 12 76 84 84 84
L=5 81 7625 13805 14025 14025
L=6 1684 ? ? ? ?
L=7 122921 ? ? ? ?
L=8 ? ? ? ? ?

Given our computational resources, this table is currently the best answer
that we can provide to Question 1. For all the cases where Q(L, C) can
be found, also Question 2 is answered as the counting algorithm provides
us with a set of Q(L, C) solutions, each of which is associated to a distinct
aggregate classifier. Consequently, in these cases, the aggregation problem
can be solved by enumeration over the set of Q(L, C) solutions, whatever the
objective function. Notice that we only need to run the counting algorithm
once to obtain a set of Q(L, C) solutions. This set then suffices to solve

12

any instance of the aggregation problem with L component classifiers and C
classes. In contrast to the mathematical programming approach in [2], the
influence on the computational performance of the number of patterns N in
the design data set is negligible.

Example 4. Take any instance of AP with L = 3 and C = 4.
If follows from the counting algorithm that Q(3,4) = 6. Hence,
there are only six subsets 5:01 and from each of these six subsets,
which contain infinitely many elements, only one element needs
to be checked e.g. (1,0,0), (0,1,0), (0,0,1), (4,3,2) (2,4,3), (2,3,4).
Whatever the criterion function, the instance will be solved to
optimality by calculating the criterion function value for these
six 3-tuples and choosing the one with the highest value of the
criterion function .•

Instead of finding an aggregate classifier by computing weights and perform
ing a majority vote, we show that enumeration over all possible distinct
aggregate classifiers is a viable alternative, especially when the number of
component classifiers is not too large.

Notice that Q(L, C) = Q(L, L) whenever C > L, L E {I, ... , 5}. This
is not surprising as it is not difficult to see that when C > L, Q(L, C)
depends on L only. [16] provides an on-line encyclopedia of integer se
quences. Interestingly, none of the sequences in the table (e.g. 2,6,84,14025
or 1,2,4,12,81,1684,122921) can be found in the on-line encyclopedia. Also
the question whether or not a recursive relation for Q(L, C) exists remains
open.

From Table 3, it is clear that the numbers Q(L, C) grow extremely fast with
increasing L and, due to limited computational resources, one will never
be able to find Q(L, C) when both L gets large, say L = 100, by means
of the counting algorithm. However, for small aggregation problems, i.e.,
those for which it is possible to obtain Q(L, C) by means of the counting
algorithm within a reasonable amount of computing time, exact solutions
can be obtained whatever the objective function. These exact solutions pro
vide easy-to-obtain lower bounds for larger aggregation problems and, in this
sense, might prove useful in the development of algorithms to solve larger ag
gregation problems.

13

In the next section, the link between AP and n-bit boolean functions is
described. The main motivation for presenting the link is that it yields a
new way of looking at AP and the problem of computing Q(L, C).

4 Linking AP with C = 2 to n-Bit Boolean
Functions

Let n E {I, 2, ... }. An n-bit boolean function is a function of the form
b : {O, l}n I-----t {O, I} : x I-----t b(x). The domain {O, l}n contains 2n elements.
Hence, the number of n-bit boolean functions is 22n [11]. We refer to [7] for
an introduction to boolean functions.

Example 5. Say n = 2. The 222 = 16 2-bit boolean functions
are shown in Table 4 .•

Table 4: 2-Bit Boolean Functions

Xl X2 bl b2 b3 b4 bs b6 b7 bs bg blO bll bl 2 bl3 bl4 blS bl 6
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0 1 0 1 0 1

To see the link with AP, assume C = 2 and the two classes are coded by °
a~~d 1. Then, for C = 2 and L E {I, 2, ... }, each aggregated classifier that is
given by a solution of AP can be seen as a function from {O, IF I-----t {O, I}
and consequently, must correspond to one of the 22L possible n-bit boolean
functions, where n = L. The words "boolean" and "bit" simply refer to the
fact that C = 2. More general, AP with C E {2, 3, ... } and L E {I, 2, ... } can
be linked with the set of functions, b : {O, 1, ... , C - l}L I-----t {O, 1, ... , C - I} :
(X1, ... ,XL) I-----t b(X1, ... ,xd. In the remainder of this section, the focus is on
the case C = 2.

Example 5 (continued). Let C = 2 and L = 2. It is easy
to verify that (0:1,0:2) = (0.7,0.3) is a solution to AP. The aggre
gated classifier that is associated to (0.7,0.3) gives the following
classifications,

14

91 (X) 92(X) arg maXcE{O,l} {2::~=1 (YzI(9z(x) = e)}
0 0 -----+ 0
0 1 -----+ 0
1 0 -----+ 1
1 1 -----+ 1

Hence, it corresponds to the 2-bit boolean function b4 .•

For C = 2 and L E {I, 2, ... }, each solution to AP corresponds to exactly one
n-bit boolean function where n = L. The reverse is not true. There are n-bit
boolean functions that do not correspond to a solution to AP with C = 2
and L = n. Also, every n-bit boolean function that corresponds to at least
one solution to AP with C = 2 and L = n, corresponds to an infinite number
of such solutions. Further, distinct solutions to AP correspond to different
n-bit boolean functions. Solutions to AP that are not distinct correspond to
the same n-bit boolean function. The proofs of these claims are simple and
are left out (see [1]).

This establishes a relation between the set of solutions Ss01 for AP with
C = 2 and L E {I, 2, ... } and the set of n-bit boolean functions with L = n.
The relation is visualized in Figure 2.

15

Ssol

S~ol

n-Bit Boolean Functions

Figure 2: Visualization of the Relation between the Set of Solutions of AP with
C = 2 and L = n and the Set of n-Bit Boolean Functions

From the relation, it follows that counting the number of n-bit boolean func
tions that correspond to at least one solution of AP with C = 2 and L = n
is an alternative way to count Q(L, 2). Hence, the problem of computing
Q(L,2) can also be formulated in terms of n-bit boolean functions.

Let X E {O, 1 pn xn be the matrix that consists of all the possible inputs of
an n-bit boolean function. Denote by Xi the i-th row of X, i E {I, ... , 2n}.
Let A E { -1, 1 pn x nand y E IR n Xl.

Definition 4. An n-bit boolean function b : {O, l}n)-----t {O, I}
x)-----t b(x) is an aggregate n-bit boolean Junction if the system
{Ay > 0, y ~ O} has a feasible solution where aij = 1 if Xij =

b(Xi) and aij = -1 if Xij -# b(Xi), i E {I, ... , 2n} and j E {I, ... , n}.

We claim that every aggregate n-bit boolean function corresponds to at least
one solution of AP with C = 2 and L = n and, consequently, comput
ing Q(L, 2) can be done by counting the number of aggregate n-bit boolean
functions with n = L. Before proving this claim, two properties of aggregate
n-nit boolean functions will be presented.

16

Let x be an element of {O, I}. If X= 1, then x=o and if x=O, then x= 1. An n
bit boolean function is self-dual if for all (Xl, ... ,Xn) E {O, l}n, b(XI, ... ,Xn) =
b(XI, ... ,Xn). It is easy to see that the number of self-dual n-bit boolean
functions is 22n

-
1

•

Example 5 (continued). There are 222
-

1 = 22 = 4 self-dual
2-bit boolean functions. They are shown in Table 5 .•

Table 5: Self-Dual 2-Bit Boolean Functions

Xl X2 b4 b6 bll bl3

0 0 0 0 1 1
0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 0 0

This leads to the following proposition.

Proposition 1. An aggregate n-bit boolean function is self-dual.

Proof: For any n-bit boolean function, let X E {O, 1pnxn be the
matrix that consists of all the possible inputs of an n-bit boolean
function. Let Xi be the i-th row of X, i E {I, ... , 2n}. For every
row Xi, i E {I, ... , 2n}, there exists a row Xj, j E {I, ... , 2n}, i =I- j,
such that for all k E {l, ... ,n}, Xjk = 1-xik = Xik. Ifb(Xi) =
b(xj), {Ay > 0, y 2: O} cannot be feasible as inequality i and j
will be contradictory. Hence, if b is an aggregate n-bit boolean
function, it must hold that b(Xi) =I- b(xj), or b(Xi) = b(Xi)' As this
is true for all i E {I, ... , 2n}, an aggregate n-bit boolean function
is self-dual. (Q.E.D.)

Let 8 0 = {b I b(O, ... ,0) = O}. The number of self-dual n-bit boolean functions
that are an element of 8 0 is 22n

-
1 -1 which equals the number of candidate par

tition decision vectors for C = 2 and L = n, i.e. TI~:~{L,2} kS(L,k) = 22n -
1 -1

(see also Table 1).

For any (Xl, ... ,Xn), (YI, .. ·,Yn) E {O, l}n: (Xl, ... ,Xn) :s; (Yl, .. ·,Yn) when Xi :s;
Yi for i E {I, ... ,n}. An n-bit boolean function is monotone if b(XI, ... ,xn) :s;

17

b(YI, ... , Yn) whenever (Xl, ... , Xn) :::; (YI, ... , Yn). Determining the number of
monotone n-bit boolean functions is known as Dedekind's problem. Many
mathematicians contributed to this problem but despite these efforts, only
for small values of n the number of monotone n-bit boolean functions is
known [12].

Example 5 (continued). The 6 monotone 2-bit boolean func-
tions are shown in Table 4 . •

Table 6: Monotone 2-Bit Boolean Functions

Xl X2 bl b2 b4 b6 bs b16
0 0 0 0 0 0 0 1
0 1 0 0 0 1 1 1
1 0 0 0 1 0 1 1
1 1 0 1 1 1 1 1

This leads to the following proposition.

Proposition 2. An aggregate n-bit boolean function is mono
tone.

Proof: Assume there exists an aggregate n-bit boolean function
b that is not monotone. Then, there exists an (Xl, ... , xn) and
(YI, ... , Yn) such that (Xl, ... , Xn) :::; (YI, ... , Yn) and b(XI' ... , xn) >
b(YI' ... , Yn). Hence, b(XI' ... , xn) = 1 and b(YI, ... , Yn) = o. As
(Xl, ... , Xn) :::; (YI, ... , Yn), adding up the inequalities in the system
{Ay > 0, y 2:: O} that correspond to (Xl, ... , xn) and (YI, ... , Yn)
leads to a contradiction. If (Xl, ... , Xn) < (YI, ... , Yn), the contra
diction is established by the fact that y 2:: o. (Q.E.D.)

By Proposition 1 and 2, the number of self-dual monotone n-bit boolean
functions is an upper bound for the number of aggregate n-bit boolean func
tions. The number of self-dual monotone n-bit boolean functions is not easy
to determine in general and known as sequence A001206 in the on-line ency
clopedia of integer sequences [16].

18

n number of self-dual monotone n-bit boolean functions
1 2
2 4
3 12
4 81
5 2646
6 1422564
7 229809982112

Without proof, we notice that the number of self-dual monotone n-bit boolean
functions is exactly the the number of candidate partition decision vectors
that comply with the consistency rule for C = 2 and L = n. For C = 2
the counting algorithm simply generates all self-dual monotone boolean n

bit functions and, only for those, checks whether or not they are an aggregate
boolean function by solving FP-E.

Example 5 (continued). The two self-dual monotone 2-bit
boolean functions are shown in Table 7.

Table 7: Monotone Self-Dual 2-Bit Boolean Functions

Xl X2 b4 b6

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Notice that, in this case, both monotone self-dual 2-bit boolean
functions can be associated to a solution of to AP for C = 2 and
L = 2. E.g. b4 can be associated to (0.7, 0.3) and b6 to (0.3, 0.7),
which are two distinct solutions to AP for C = 2 and L = 2 .•

The main result will now be proven.

Proposition 3. An aggregate n-bit boolean function corre
sponds to at least one solution of AP with C = 2 and L = n.

19

Proof: Let y = (Y1, ... , Yn) be a feasible solution of the system
{Ay> 0, y 2:: O}. Hence, y is an L-tuple that satisfies condition
(i) of Definition 1 and ~~=1 Yi > 0, for otherwise it cannot be
true that Ay > o. Two cases are possible.

(i) L = 1. If Y1 satisfies condition (i) of Definition 1 and Y1 > 0,
Y1 must also satisfy condition (ii) as, in this case, ITI = 1.

(ii) L 2:: 2. Assume condition (ii) of Definition 1 is not satisfied.
As C = 2, this means that there exists a Pt that consists of
two nonempty subsets, say go and gl, such that ~9lEgo Yl =
~91E9l Yl· In that case there are two strict inequalities in
{Ay > 0, y 2:: O} that are not satisfied. This contradicts
that y is a feasible solution to the system {Ay > 0, y 2:: O}.
Hence, y must satisfy condition (ii) in Definition 1 and is a
solution to AP with C = 2 and L = n.(Q.E.D.)

To summarize, determining Q(L, 2) for L E {l, 2, ... } boils down to counting
the number of aggregate n-bit boolean functions for n = L. To count the
number of aggregate boolean functions, it suffices to see how many of the se1£
dual monotone n-bit boolean functions are aggregate n-bit boolean functions.
The link between n-bit boolean functions and AP for C = 2 and L =
{l, 2, ... } indicates that this is exactly what the counting algorithm of Section
3 does. In a sense, the link also justifies the counting algorithm as for similar
counting problems in the field of n-bit boolean functions, one has to resort
to simple counting algorithms too.

5 Conel usions

By studying the solution space of the aggregation problem, it was shown
that number of distinct solutions of the aggregation problem is finite. An
algorithm is presented that is able to count and save the distinct solutions,
which makes it possible to find exact solutions to the aggregation problem
by simple enumeration whatever the objective function. Interestingly, the
sequence of the number of distinct solutions appears to be new. Evidently, for
lack of computational power, this approach is only successful for instances of
the aggregation problem where Land C are small. There is a link between the
aggregation problem for C = 2 and n-bit boolean functions which provides

20

a different way of looking at the aggregation problem and opens up new
opportunities to study the aggregation problem.

Acknowledgement

We thank Yves Crama and Peter Goos for their helpful comments.

References

[1] Adem J. (2004) Mathematical Programming Approaches for the Su
pervised Classification Problem, PhD Thesis, Katholieke Universiteit
Leuven.

[2] Adem J. and Gochet W. (to appear) Aggregating Classifiers with Math
ematical Programming Computational Statistics and Data Analysis.

[3] Amaldi E. and Kann V. (1995) The Complexity and Approximability of
Finding Maximum Feasible Subsystems of Linear Relations Theoretical
Computer Science 147 (1-2) pp 181-210.

[4] Breiman L. (1996) Bagging Predictors Machine Learning 24 pp 123-140.

[5] Blihlmann P. and Yu B. (1996) Analyzing Bagging The Annals of Statis
tics 30 (4) pp 927-961.

[6] Conway J. and Guy, R. (1996) The Book of Numbers, Springer-Verlag
New York.

[7] Crama Y. and Hammer P. (in preparation) Boolean Functions The
ory, Algorithms, and Applications http://www.eaa.egss.ulg.ac . bel
rogpl crama/.

[8] Friedman J., Hastie T. and Tibshirani R. (2000) Additive Logistic Re
gression: a Statistical View of Boosting The Annals of Statistics 28 (2)
pp 337-374.

[9] Hastie T., Tibshirani R. and Friedman J. (2001) The Elements of Sta
tistical Learning, Springer.

21

[10] Hoffgen K. and Simon H. (1995) Robust Trainability of Single Neurons
Journal of Computer and System Sciences 50 (1) pp 114-125.

[11] Kuntzmann J. (1967) Fundamental Boolean Algebra Blackie London

[12] Mathpages (2003) Dedekind's Problem, published electronically at
http://www.mathpages.com/home/kmath030.htm.

[13] Muroga S., Tsuboi T. and Baugh C. (1970) Enumeration of Threshold
Functions of Eight Variables IEEE Transactions on Computers 19 (9)
pp 818-825.

[14] Schapire R. (1990) The Strength of Weak Learnability Machine Learning
5 (2) pp 197-227.

[15] Schapiro H. (1970) On the Counting Problem for Monotone Boolean
Functions Communications on Pure and Applied Mathematics 23 pp
299-312.

[16] Sloane N. (2003) The On-Line Encyclopedia of Integer Sequences
published electronically at http://www.research.att.com/rvnj as/
sequences/ .

[17] Tsybakov A. (2004) Optimal Aggregation of Classifiers in Statistical
Learning The Annals of Statistics 32 (1) pp 135-166.

[18] Webb A. (1999) Statistical Pattern Recognition, Arnold London.

[19] Weisstein E. (2004) Stirling Number of the Second Kind, from
Math World - A Wolfram Web Resource published electronically at
http://mathworld.wolfram.com/StirlingNumberoftheSecondKindo
html.

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

