3,533 research outputs found

    The complexity properties of probabilistic automata with isolated cut point

    Get PDF
    A probabilistic automaton (PA) which accepts a language with e-isolated cut point 1 2 corresponds to a PA which computes with ( 1 2-e) bounded error probability. Let P(L, e) be the minimal number of states of a PA necessary for accepting a language L with e-isolated cut point 1 2. It is shown that there are languages Lk, 1 < k < ∞ and an infinite sequence of numbers 0 < e1 < e2 < ... < 1 2 such that for all i ≥1, P(Lk,ei) P(Lk, ei+1) → 0 when k→∞. It is also shown that the probabilistic recognition of the language Wk is more effective than that of the Lk. © 1988

    Mean-payoff Automaton Expressions

    Get PDF
    Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions

    On the state complexity of semi-quantum finite automata

    Full text link
    Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata \cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.Comment: 19 pages. We improve (make stronger) the results in section

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update

    Deciding the value 1 problem for probabilistic leaktight automata

    Get PDF
    The value 1 problem is a decision problem for probabilistic automata over finite words: given a probabilistic automaton, are there words accepted with probability arbitrarily close to 1? This problem was proved undecidable recently; to overcome this, several classes of probabilistic automata of different nature were proposed, for which the value 1 problem has been shown decidable. In this paper, we introduce yet another class of probabilistic automata, called leaktight automata, which strictly subsumes all classes of probabilistic automata whose value 1 problem is known to be decidable. We prove that for leaktight automata, the value 1 problem is decidable (in fact, PSPACE-complete) by constructing a saturation algorithm based on the computation of a monoid abstracting the behaviours of the automaton. We rely on algebraic techniques developed by Simon to prove that this abstraction is complete. Furthermore, we adapt this saturation algorithm to decide whether an automaton is leaktight. Finally, we show a reduction allowing to extend our decidability results from finite words to infinite ones, implying that the value 1 problem for probabilistic leaktight parity automata is decidable

    Photonic realization of a quantum finite automaton

    Get PDF
    We describe a physical implementation of a quantum finite automaton that recognizes a well-known family of periodic languages. The realization exploits the polarization degree of freedom of single photons and their manipulation through linear optical elements. We use techniques of confidence amplification to reduce the acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we physically realize is not only interesting per se but it turns out to be a crucial building block in many quantum finite automaton design frameworks theoretically settled in the literature

    Polynomially Ambiguous Probabilistic Automata on Restricted Languages

    Get PDF
    We consider the computability and complexity of decision questions for Probabilistic Finite Automata (PFA) with sub-exponential ambiguity. We show that the emptiness problem for non-strict cut-points of polynomially ambiguous PFA remains undecidable even when the input word is over a bounded language and all PFA transition matrices are commutative. In doing so, we introduce a new technique based upon the Turakainen construction of a PFA from a Weighted Finite Automata which can be used to generate PFA of lower dimensions and of subexponential ambiguity. We also study freeness/injectivity problems for polynomially ambiguous PFA and study the border of decidability and tractability for various cases
    • …
    corecore