729 research outputs found

    High-dimensional Black-box Optimization via Divide and Approximate Conquer

    Get PDF
    Divide and Conquer (DC) is conceptually well suited to high-dimensional optimization by decomposing a problem into multiple small-scale sub-problems. However, appealing performance can be seldom observed when the sub-problems are interdependent. This paper suggests that the major difficulty of tackling interdependent sub-problems lies in the precise evaluation of a partial solution (to a sub-problem), which can be overwhelmingly costly and thus makes sub-problems non-trivial to conquer. Thus, we propose an approximation approach, named Divide and Approximate Conquer (DAC), which reduces the cost of partial solution evaluation from exponential time to polynomial time. Meanwhile, the convergence to the global optimum (of the original problem) is still guaranteed. The effectiveness of DAC is demonstrated empirically on two sets of non-separable high-dimensional problems.Comment: 7 pages, 2 figures, conferenc

    Open-ended Learning in Symmetric Zero-sum Games

    Get PDF
    Zero-sum games such as chess and poker are, abstractly, functions that evaluate pairs of agents, for example labeling them `winner' and `loser'. If the game is approximately transitive, then self-play generates sequences of agents of increasing strength. However, nontransitive games, such as rock-paper-scissors, can exhibit strategic cycles, and there is no longer a clear objective -- we want agents to increase in strength, but against whom is unclear. In this paper, we introduce a geometric framework for formulating agent objectives in zero-sum games, in order to construct adaptive sequences of objectives that yield open-ended learning. The framework allows us to reason about population performance in nontransitive games, and enables the development of a new algorithm (rectified Nash response, PSRO_rN) that uses game-theoretic niching to construct diverse populations of effective agents, producing a stronger set of agents than existing algorithms. We apply PSRO_rN to two highly nontransitive resource allocation games and find that PSRO_rN consistently outperforms the existing alternatives.Comment: ICML 2019, final versio

    A Universal Lifetime Distribution for Multi-Species Systems

    Full text link
    Lifetime distributions of social entities, such as enterprises, products, and media contents, are one of the fundamental statistics characterizing the social dynamics. To investigate the lifetime distribution of mutually interacting systems, simple models having a rule for additions and deletions of entities are investigated. We found a quite universal lifetime distribution for various kinds of inter-entity interactions, and it is well fitted by a stretched-exponential function with an exponent close to 1/2. We propose a "modified Red-Queen" hypothesis to explain this distribution. We also review empirical studies on the lifetime distribution of social entities, and discussed the applicability of the model.Comment: 10 pages, 6 figures, Proceedings of Social Modeling and Simulations + Econophysics Colloquium 201

    Heterogeneous Multi-agent Zero-Shot Coordination by Coevolution

    Full text link
    Generating agents that can achieve zero-shot coordination (ZSC) with unseen partners is a new challenge in cooperative multi-agent reinforcement learning (MARL). Recently, some studies have made progress in ZSC by exposing the agents to diverse partners during the training process. They usually involve self-play when training the partners, implicitly assuming that the tasks are homogeneous. However, many real-world tasks are heterogeneous, and hence previous methods may be inefficient. In this paper, we study the heterogeneous ZSC problem for the first time and propose a general method based on coevolution, which coevolves two populations of agents and partners through three sub-processes: pairing, updating and selection. Experimental results on various heterogeneous tasks highlight the necessity of considering the heterogeneous setting and demonstrate that our proposed method is a promising solution for heterogeneous ZSC tasks

    Theoretical advantages of lenient learners : an evolutionary game theoretic perspective

    Get PDF
    This paper presents the dynamics of multiple learning agents from an evolutionary game theoretic perspective. We provide replicator dynamics models for cooperative coevolutionary algorithms and for traditional multiagent Q-learning, and we extend these differential equations to account for lenient learners: agents that forgive possible mismatched teammate actions that resulted in low rewards. We use these extended formal models to study the convergence guarantees for these algorithms, and also to visualize the basins of attraction to optimal and suboptimal solutions in two benchmark coordination problems. The paper demonstrates that lenience provides learners with more accurate information about the benefits of performing their actions, resulting in higher likelihood of convergence to the globally optimal solution. In addition, the analysis indicates that the choice of learning algorithm has an insignificant impact on the overall performance of multiagent learning algorithms; rather, the performance of these algorithms depends primarily on the level of lenience that the agents exhibit to one another. Finally, the research herein supports the strength and generality of evolutionary game theory as a backbone for multiagent learning

    EvoTanks: co-evolutionary development of game-playing agents

    Get PDF
    This paper describes the EvoTanks research project, a continuing attempt to develop strong AI players for a primitive 'Combat' style video game using evolutionary computational methods with artificial neural networks. A small but challenging feat due to the necessity for agent's actions to rely heavily on opponent behaviour. Previous investigation has shown the agents are capable of developing high performance behaviours by evolving against scripted opponents; however these are local to the trained opponent. The focus of this paper shows results from the use of co-evolution on the same population. Results show agents no longer succumb to trappings of local maxima within the search space and are capable of converging on high fitness behaviours local to their population without the use of scripted opponents

    Neuroevolution in Games: State of the Art and Open Challenges

    Get PDF
    This paper surveys research on applying neuroevolution (NE) to games. In neuroevolution, artificial neural networks are trained through evolutionary algorithms, taking inspiration from the way biological brains evolved. We analyse the application of NE in games along five different axes, which are the role NE is chosen to play in a game, the different types of neural networks used, the way these networks are evolved, how the fitness is determined and what type of input the network receives. The article also highlights important open research challenges in the field.Comment: - Added more references - Corrected typos - Added an overview table (Table 1

    Using Cultural Coevolution for Learning in General Game Playing

    Get PDF
    Traditionally, the construction of game playing agents relies on using pre-programmed heuristics and architectures tailored for a specific game. General Game Playing (GGP) provides a challenging alternative to this approach, with the aim being to construct players that are able to play any game, given just the rules. This thesis describes the construction of a General Game Player that is able to learn and build knowledge about the game in a multi-agent setup using cultural coevolution and reinforcement learning. We also describe how this knowledge can be used to complement UCT search, a Monte-Carlo tree search that has already been used successfully in GGP. Experiments are conducted to test the effectiveness of the knowledge by playing several games between our player and a player using random moves, and also a player using standard UCT search. The results show a marked improvement in performance when using the knowledge
    • …
    corecore