
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Using Cultural Coevolution for Learning in General Game Playing Using Cultural Coevolution for Learning in General Game Playing

Shiven Sharma
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sharma, Shiven, "Using Cultural Coevolution for Learning in General Game Playing" (2009). Electronic
Theses and Dissertations. 8263.
https://scholar.uwindsor.ca/etd/8263

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8263?utm_source=scholar.uwindsor.ca%2Fetd%2F8263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

USING CULTURAL COEVOLUTION FOR
LEARNING IN GENERAL GAME PLAYING

by

Shiven Sharma

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2009

©2009 Shiven Sharma

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre inference
ISBN 978-0-494-82082-7
Our file Notre reference
ISBN 978-0-494-82082-7

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propnete du droit d'auteur
et des droits moraux qui protege cette these Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre impnmes ou autrement
reproduits sans son autorisation

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant

l + l

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to

include such material (s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

m

Abstract

Traditionally, the construction of game playing agents relies on using pre-programmed heuristics

and architectures tailored for a specific game. General Game Playing (GGP) provides a challenging

alternative to this approach, with the aim being to construct players that are able to play any

game, given just the rules. This thesis describes the construction of a General Game Player that is

able to learn and build knowledge about the game in a multi-agent setup using cultural coevolution

and reinforcement learning. We also describe how this knowledge can be used to complement UCT

search, a Monte-Carlo tree search that has already been used successfully in GGP. Experiments are

conducted to test the effectiveness of the knowledge by playing several games between our player

and a player using random moves, and also a player using standard UCT search. The results show

a marked improvement in performance when using the knowledge.

IV

Dedication

There are two people who have, in their own way. made it possible for me to reach this point and

still be alive. Consequently, this thesis is dedicated to them.

The first person is my grandfather, Dr. Ram Prakash Sharma, who always ensured that I had

money here to support myself in every possible way. Without his help I would not have been able to

reach this far. Though I did squander some of the money in pursuits that, in my mind, were totally

reasonable, but in his mind were frivolous, he remained patient with me and sold two houses, moved

twice to different ones, and still made sure I finished my studies. I don't know when I can repay his

generosity, but I hope this dedicate is a small step in that direction.

The second person is one of my best friends, Ivica Rosa. While my grandfather provided the

financial support, he provided the moral support. I have seen him transform from a bachelor to a

husband to a father, and all the time he has always been here for me whenever I needed him. Friends

like this are extremely hard to find, and I am grateful to him and his family for being the biggest

help and best of friends to me than I could have ever imagined.

v

Acknowledgment

I wish to thank Dr. Ziad Kobti and Dr. Scott D. Goodwin for their assistance with my work.

Dr. Kobti introduced me to General Game Playing during my undergraduate years. Little did

I know the hold it would take over my life. He has remained a steadfast supporter in my quest to

find a light at the end of the general games tunnel, and his carefree and friendly nature has made

sure I never fell through a hole of despair. For this, I gratefully acknowledge his help, support and

friendship.

Dr. Goodwin introduced me to Dr. Kobti, which started the chain reaction. He was the first

person to offer me an undergraduate research assistantship, and through that I got a flavour of games.

He was also the first (and only) professor to give me a teaching opportunity, which future solidified

my desire to go into academia. Throughout my work, he has endured and tolerated my laziness,

and it is my sincere hope that I have more than made up for that! His support and friendship has

been most valuable.

A special acknowledgment is due to Dr. Robert Kent who told me about the Artificial Intelligence

programme at the University of Windsor, which allowed me to escape from the clutches of business

studies and discover the exciting world of Artificial Intelligence research and academia. He may

not realise it, but he is responsible for one of the most significant turns in my life. For that, I am

extremely grateful to him.

VI

Contents

AUTHOR'S DECLARATION OF ORIGINALITY

ABSTRACT

DEDICATION

ACKNOWLEDGMENT

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1 Previous work in General Game Playing

1.2 The Stanford University GGP Project

1.3 Thesis Contribution

1.4 Organisation

2 The General Game Playing Architecture

2.1 Formal Game Description

2.2 Game Description Language: GDL

2.3 The Communication Model

2.4 Implementation Details

2.5 Updating States and Making Moves

2.5.1 Updating the states

2.5.2 Obtaining a legal move

3 Reinforcement Learning

3.1 The Exploration-Exploitation Dilemma

3.1.1 The N-Armed Bandit

3.2 Goals and Rewards

3.3 The Markov property and Markov Decision Processes

3.4 Value functions

3.5 Temporal Difference Learning

vii

3.6 UCT: Upper Confidence Bound Applied to Trees 18

3.6.1 UCT applied to General Games 19

3.7 Conclusions 19

4 Evolutionary Methods 21

4.1 Coevolution 2 1

4.2 Ant Colony Optimisation Algorithms . . 22

4.3 Cultural Algorithms 23

4.4 Conclusions 2 4

5 Learning and Knowledge Representat ion Architecture 25

5.1 Player Architecture 25

5.2 Knowledge Representation Scheme . . . 26

5.3 Recognising games independent of game rules 27

5.4 Conclusions 29

6 Using Reinforcement Learning for General Games 31

6.1 Using TD-Learning 31

6.2 Temporal Segmentation of Features 32

6.3 TD(0) Update . 33

6.4 Experiments. . . 34

6.5 Discussion 34

7 Using Coevolut ion 36

7.1 Population Model 36

7.1.1 Fitness calculations 37

7.2 Experiments. 37

7.3 Discussion 38

8 Ant Colony Optimisation 39

8.1 GGP using Ant Colonies 39

8.2 Communication via Pheromone and Desirabilities 41

8.3 Experiments 41

8.4 Discussion . 42

9 Adding Cultural Knowledge 43

9.1 Representing the Belief Space 43

9.2 Putting it all together . 44

9.3 Experiments . 45

viii

9.4 Discussion . 46

10 Using the model with UCT 48

10.1 Experiments 48

10.2 Discussion 49

11 Final Discussion and Future Work 50

11.1 Discussion of Results . . 5 0

11.2 Future Work . . 51

BIBLIOGRAPHY 53

VITA AUCTORIS 56

ix

List of Tables

6.1 Random Games

6.2 Player 1 uses knowledge

6.3 Player 2 uses knowledge

7.1 Player 1 uses knowledge

7.2 Player 2 uses knowledge

8.1 Player 1 uses coevolutionary knowledge .

8.2 Player 2 uses coevolutionary knowledge

9.1 Player 1 uses cultural and coevolutionary knowledge .

9.2 Player 2 uses cultural and coevolutionary knowledge

10.1 Number of wins for UCTS and UCTK over 100 matches

x

List of Figures

2.1 Communication between the Game Manager (GM) and the Game Player (GP) for

the game of Blocks. 12

5.1 The architecture for a general game player for learning. 26

5.2 Features in a state of Tic-Tac-Toe. The vector 9 represents the vector of features. 27

5.3 An example of knowledge representation and use while making a move in Tic-Tac-Toe. 28

6.1 The graph of the sigmoid function. 32

6.2 Temporal segmentation of features. Circular nodes are nodes from which the player

makes moves. Square nodes are the states that occur as a result of these moves (the

afterstates). 33

8.1 The forage of Antx through the Tic-Tac-Toe landscape. The presence of Anto besides

the hollow arrows indicates that Antx has the option of asking Anto for a move,

though it is not necessary to do so. Pheromone is deposited along the squiggly arrow

once a series of forages has been completed. 40

8.2 The Ant Colony GGP Architecture. 40

9.1 The architecture for a single role using coevolution and cultural evolution. 45

XI

Chapter 1

Introduction

This thesis addresses the challenge of building intelligent General Game Playing agents. The field

of General Game Playing (GGP) is relatively new in the field of Artificial Intelligence (AI) research,

and provides an important leap in the direction and approach of the construction of intelligent agent

systems. In the past, much of the emphasis in the creation of intelligent systems was on their ability

to be proficient only for tasks they were constructed to perform. As an example, the IBM Deep Blue

computer had been constructed specifically for being good and intelligent at playing chess. However,

if any other game was given to it, it would be unable to play it as a result of its specialisation. GGP

systems, as the name implies, are far more general. They are able to accept descriptions of any

game, and are able to play them, either by making legal random moves, or legal moves made in an

intelligent manner, depending on their construction.

The importance of this research lies in the fact that GGP systems provide a step from intelligent

systems giving an illusion of intelligence to intelligent systems that act in an intelligent manner.

This difference is clear from the distinction made above between systems like Deep Blue and GGP

systems. GGP systems demonstrate their intelligence in being able to successfully play any game,

given only the rules of the game. One must delve into the areas of machine learning, knowledge

representation and pattern recognition in order to be able to construct a proficient player.

A brief overview of previous work done in the area of GGP and details of the work being

done based on the foundations laid down by Stanford University, in context of their annual GGP

competition, is now provided.

1.1 Previous work in General Game Playing

Though pure General Game Playing capabilities have not entirely been implemented, systems have

been designed which display a general behaviour with respect to a specific class of games. One

class of games where general game playing has been investigated are positional games. These type

1

of games were formalised by [18]. Some examples of position games include Tic-Tac-Toe, Hex. the

Shannon switching games.

A position game can be defined by three sets, P, A, B. Set P is a set of positions: with set A and

B both containing subsets of P In other words, sets A and B represent a collection of subsets of P.

with each subset representing a specific positional situation of the game. The game is played with

two players, with each player alternating in moves, which consist of choosing an element from P

The chosen element cannot be chosen again. The aim for the first player is to construct one of the

sets belonging to A. whereas the aim for the second player is to construct one of the sets belonging

to B.

Programs that are capable of accepting rules of positional games, and. with practice, learn how to

play the game have been developed. Koffman constructed a program that is able to learn important

board configurations in a 4 x 4 x 4 Tic-Tac-Toe game. This program plays about 12 times before it

learns and is effectively able to play and start defeating opponents. A set of board configurations

are described by means of a weighted graph.

1.2 The Stanford University G G P Project

The annual General Game Playing Competition [15] organised by Stanford University has been

instrumental in bringing about renewed interest in GGP. The rules of the games are written in

Game Description Language (GDL) [14], which is syntactically similar to prefix KIF [16]. As a

consequence, most of the current research in GGP is based on the foundations laid down by the

Stanford Group. The tournaments are controlled by the Game Manager (GM) which relays the game

information to each Game Player (GP) and checks for legality of moves and termination of the game.

Communication between players and the GM takes place in the form of HTTP messages. A more

detailed description of the architecture and game rules can be found at [1]. Successful players have

mostly focused on automatically generating heuristics based on certain generic features identified

in the game. Cluneplayer [7] was the winner of the first GGP competition, followed by Fluxplayer

[26]. Both these players, along with UTexas Larg [4] use automatic feature extraction. Evaluation

functions are created as a combination of these features and are updated in real-time to adapt to the

game. Another approach that has been taken is in [5], where transfer of knowledge extracted from

one game to another is explored by means of a TD(A) based reinforcement learner. CADIA-Player

[6] was the first General Game Player to use a simulation based approach, using UCT [17] to search

for solutions, and was the winner of the last GGP Competition. [27] also explored a Monte-Carlo

approach in which random simulations were generated and the move with the highest win rate was

selected. To improve the nature of these simulations, patterns in the sequences were extracted and

used to generate new sequences. [22] have discussed a co-evolutionary approach using NEAT [31],

2

an algorithm for automatically evolving neural networks using an evolutionary approach, for GGP

1.3 Thesis Contribution

The major contributions thesis can be enumerated as follows:

1. This work represents, what is to the best of our knowledge, the first attempt at using machine

learning techniques for GGP

2. We use cultural coevolution to learn knowledge in two player, zero-sum. perfect information

deterministic games in the total absence of any prior knowledge or information about the game.

3. We demonstrate that effectiveness of this knowledge by playing various games for which the

knowledge is learnt using our approach against a standard random player. The matches are

against a random player because the current GGP format does not support learning players.

4. We combine the knowledge with UCT search, and demonstrate that this combination improves

the performance of UCT for general games.

There is a growing interest in the academic community at starting new GGP competitions that

will allow learning players to compete. As a result, there is a great scope for future work in the area

that looks into developing architecture and description languages that will suit learning players. The

work presented in this thesis is based on the format developed at Stanford, which is not conducive

to learning players. However, the principles and algorithms presented here can be used with any

game description language that allows for a random game to be played and state descriptions to be

stored and recognised. Future work which develops languages and architetures for learning players

will further complement the ideas presented in this work.

1.4 Organisation

This dissertation is organised as follows: Chapter 2 provides an overview of the GGP framework as

laid down by Stanford University, including the Game Description Language. We use this framework

as a testbed for our work. Chapters 3 and 4 provide brief introductions to Reinforcement Learning

and the Evolutionary methods that we use in our work. Chapter 5 gives the basic structure of the

player and also describes how the knowledge is represented. Chapters 6 discusses how RL can be

used in GGP. Chapters 7 to 9 discuss using complementing the RL architecture with coevolution,

ant colonies and cultural algorithms respectively. In Chapter 10 we describe how the knowledge

learnt can be used with UCT search. Finally, Chapter 11 gives the various directions for future work

in learning for GGP.

3

Chapter 2

The General Game Playing

Architecture

In this chapter, we first review a formal description of what a game is. We then look into the syntax

and semantics of the Game Description Language (GDL). The game of Tic-Tac-Toe is chosen to

provide an example on how the GDL is written and interpreted. Then, we describe the basic

communication mechanisms between the Game Manager (GM), and the Game Player (GP). We

discuss the types of messages involved in the communication, and detail out a sequence of message

exchanges between the GM and the GP for a small game. Much of the details of this chapter are

based on [14, 15].

2.1 Formal Game Description

The games considered in GGP can be considered to be finite, synchronous games. The game runs

in an environment which consists of a finite number of game states. A single state is designated

as the start state. The game also consists of one or more terminal states. The number of players

playing the game is a fixed, finite number. Whenever a player is in a game state, the player has a

finite number of actions possible from that state. All players make moves on all steps. Whether or

not they move from one state to another, or stay in the same state, is dependent on the move made,

and the state of the game at that time. The environment updates the game state only when players

make moves.

From the above description of a game, it is clear that we can view a game to be a finite state

machine. Below, we list the various components of the machine:

4

S : A set of game states

'"li f"2, • • • • rn : The various roles, or players of an ra-player game

Ai,A2,--- ,An : Sets of actions for each player. A set At corre

sponds to the actions possible by player rt

h- h, • • - 'n : Legal actions from a particular state. Each lt can

be considered to be a subset of Ak x S

u : An update function from one state to another

based on all the moves made

u : Ai x A2 x • • • x An x S —> S

si : The start state

Pi>92, • • • ,9n • Each gt C S x 1, • • • , 100. The value of a game

outcome for a player. For player r t , the value for

a terminal state s is given to be gt(s, value)

T : The set of terminal states. T QS

2.2 Game Description Language: GDL

A Game Description Language (GDL) is a language that can be used to describe games of complete

or partial information. It is a logical language, using logical sentences to describe rules of a game.

Syntactically, it is similar to LISP in infix notation. As we will later describe, it is relatively easy

to parse this into an equivalent form based on predicate calculus. In this section, we examine the

nature of GDL, using Tic-Tac-Toe as an example to explain it.

As a game can be viewed as a finite state machine, each game has a start state. For Tic-Tac-Toe,

the start state is a 3 x 3 gird in which each cell is blank. Therefore, we can initialise each cell to

be blank by using the init keyword of GDL in the following way (the example below illustrates only

the first row):

i n i t (c e l l (l , l . b))

i n i t (c e l l (l , 2 , b))

i n i t (c e l l (l , 3 , b))

ce l l (x , y, z) implies that the cell in row x and column y is initialised, or set, to z. In the case

above, z is b, implying blank.

Since the game is a two-player game, we have to give the control of the play to the first player.

5

This can be done b\ the following statement:

i n i t (con t ro l (wh i t e))

Player one has been given the name white, and the control relation takes the players name as

the argument, and gives that player the ability to make the move.

A GDL should be able to define which moves are legal. In Tic-Tac-Toe. a move is legal for a

player if it is that players turn, and the player marks a cell that has not already been marked. In

the eventuality that neither of the conditions are true for a legal move, the player waits (the legal

action in this case is termed a noop). This can be illustrated as shown below:

legal(P.mark(M.N)) < = trae(cell(M.N.b)) k t rue (cont ro l (P))

l ega l (vh i te .noop) < = true(cell(M.N.b)) k t rue (con t ro l (b l ack))

legal (b lack,noop) < = t rue(cel l (M. N. b)) k t rue (con t ro l (whi te))

In the above statements, the first statement implies that if the player P has the control (i.e.. it is

player P"s turn to move), and if the cell in row M and column N is blank, then the player is allowed to

mark that cell. Otherwise, if the control is with the other player, then the player performs a noop

action, which is an abbreviation for no operation.

Whenever a cell is marked with an X or an 0. the game states are updated. The update rules are

specified by the next predicate. These are shown as follows:

next(cell(M. N. x)) < = does(white.mark(M. N)) & true(cel l (M. N. b))

next(cell(M. N. o)) < = does(black,mark(M. N)) k t rue(cel l (M. N. b))

next(cell(M.N.W)) < = does(true(cell(M.N.W))) k d is t inct(W.b)

next(cell(M. N. b)) < = does(W.mark(J. K)) k t rue(cel l (M. N. V)) &

(dist inct(M. J) | d is t inct(N.K))

The first two statements describe that if the control is with player white or black, then, if the cell

they are marking is blank initially, then that cell is marked with an X or an 0 respectively. The third

statement guarantees that the cell being marked is always blank. The fourth statement is an update

statement for a cell that is blank and is not marked. It ensures that if another cell, distinct from

this cell, is marked, and this cell is blank, then this cell remains blank after the move is executed.

Even- game has a set of terminal states. In Tic-Tac-Toe, these are when any single row. column

or diagonal of the board is marked with all X"s or all 0's. or in the eventuality that the game fails to

6

achieve these conditions, i.e., a stalemate. Therefore, the terminal states can be defined as follows:

t e rmina l < = l ine(x)

t e rmina l < = l ine(o)

t e rmina l < = open

While the terminal states specify the states at which if the game is, then the game is done.

However, it does not specify the goals of the players. For each player, each goal can be assigned a

numerical value. The player with the highest value of the goal wins the game. In a zero-sum game

such as Tic-Tac-Toe, there is only one winner. However, it is to be noted that not all games are

zero-sum, and games can have multiple winners. In these cases, the players with the highest goal

values win the game. In order to specify goals for Tic-Tac-Toe, we can define them as follows (only

the goals for white are shown):

goal(white , 100) < = l ine(x)

goal(white , 50) < = l ine(x) & l ine(o) & open

goal(white, 0) < = l ine(o)

The goal of white is maximised when white gets a line of X's (a line in this case is either a row,

column or diagonal). The second goal specifies an example of a draw, in which neither player is able

to get a line of X's and X's. If the other player is able to get a line of 0's. then the goal value of white

becomes 0, i.e., white loses the game.

2.3 The Communication Model

The architecture of the GGP model that will be tested for this project will consist of a Game Manager

(GM) and the Game Player (GP). The Game Manager is the centralised server machine that holds

the game descriptions, allows for players to communicate and maintains the state of the overall

game. The Game Player initiates communication with the GM, during which the GM provides the

GP with the rules, written in GDL. The GP then has a limited time to learn from those rules.

Communication takes place in the form of HTTP messages that are passed between the GM and

the GP. The start message, sent to the GP by the GM, has the form of:

(START < MATCH ID > < ROLE > < GAME DESCRIPTION > < STARTCL0CK > < PLAYCLOCK >)

Where MATCH ID is the unique identification for that particular match, the ROLE is the role of

the player assumed by the GP, GAME DESCRIPTION is the description of the game in GDL, and

7

STARTCLOCK and PLAYCLOCK are integer values representing the move times. Game descriptions sent

are in the prefix form of the GDL described in the previous section.

The PLAY command takes the form:

(PLAY < MATCH ID > (< Aj > < A2 > • • • < AD >))

where each < An > is the action taken by the players in the previous steps. These actions are

well-ordered; the ordering sequence is specified by the game description axioms. The reply to the

PLAY command is the actual move made by the GP.

The STOP command takes the form:

(STOP < MATCH ID > (< A,. > < A2 > • • • < An >))

where each < An > is the same as what is described above in the PLAY command. This message

terminates the game.

An example of the basic communication model that is used by the General Game Playing (GGP)

server, Game manager, and the Game Player is illustrated below. The example used is that of the

game of Blocks. The valid moves for the game are MOVE, DROP and GRAB.

2.4 Implementation Details

In this chapter we will examine in detail the steps necessary for the GGP programme to take in

order to be able to successfully play a game, given the game description. The previous chapters

have examined the abstract communication model and methods to build the knowledge base from

the game rules. Now. the approach taken to facilitate the player to be able to make legal moves and

update states is described.

2.5 Updating States and Making Moves

Very briefly, the task of making a legal random move can be seen as consisting of the following steps:

1. Obtain the moves made by each player in the current turn (if the game is just starting, then

this step is ignored).

2. Use these moves to update the game states (if the game is just starting, then this step is

ignored).

3. Obtain all the legal moves that can be made in the current game state.

4. Select a random move from this set and send that back to the GM.

8

As we have seen from the description and syntax of the GDL, the game descriptions are written

in a logical language. Updating states and obtaining legal moves is therefore a process of inferencing

and reasoning using the rules. As we have seen in the previous chapter, converting these rules

into an equivalent Prolog code simplifies this task. This code, along with additional ground clauses

and rules, make up the knowledge base of the game. We use Prolog's inbuilt inference engine to

handle the inferencing procedures. Therefore, given all this, the task of updating states is simply

the modification of the state clauses in the knowledge base.

2.5.1 Updating the states

The states are represented as ground clauses in the knowledge base. The next predicate takes

a state description as an argument (this description represents the state valid when the moves

communicated by the GM for all players have been executed). This argument is a valid state iff

the next rule evaluates to true. If this the case, then we need to update the knowledge base by

removing the current state description, and replacing it with the argument of the next rule. In

Prolog terminology, this would imply:

1. Retract all the current state ground clauses.

2. Assert the state descriptions unified to the argument of the next rule after its evaluation.

The idea of updating states can be illustrated by a simple example. Consider the following

ground clauses and the next rule for the game of Tic-Tac-Toe:

i n i t (c e l l (l , l , b))

i n i t (c e l l (1 . 2 , b))

i n i t (c e l l (1 . 3 , b))

next(cell(M.N,x)) < = does(white,mark(M. N)) & true(cell(M,N.b))

If. during game play, the player with the role white marks the cell at row 1 and column 2 with an

X, then the ground clause does(white.mark(1.2,x)) is true. We need to assert this ground clause

into the knowledge base so that the next rule can be evaluated. When the Prolog inference engine

starts to evaluate the rule, the variables M and N are unified with 1 and 2 respectively. Therefore,

the new state to be asserted is c e l l (l , 2 . x) and the state to be retracted is ce l l (1 .2 ,b) .

2.5.2 Obtaining a legal move

Moves that are legal, given the current game state, are represented by the arguments to the legal

predicate in the knowledge base. Once the states are updated as described above, we need to evaluate

the legal rules to obtain all possible legal moves that can be made.

9

Now the evaluation procedure to obtain a legal move is described. The legal predicate takes two

arguments: the first argument represents the player, and the second argument represents the move

that the player can make. The constraints under which this move can be made are represented by

the predicates on the right hand side of the rule. If all these predicates evaluate to true, then the

player can make the move.

The procedure for obtaining a legal move is similar in concept to that of updating states. The

idea is to unify the variables of the rule and use the value for the move as a legal move. Prolog

automatically performs the unification during evaluation, and the legal moves can easily be collected

in a list. Therefore, to obtain a set of legal moves, we simply call all the legal rules and collect the

assignments to the argument corresponding to the move in a list. After this, it is a simple matter

of selecting a random move and sending it to the game manager.

Below, we illustrate an example of obtaining a legal move. Consider the following clause for

making a legal move:

legal(W.mark(X.Y)) < = cell(X.Y.b) k control(W)

In the clause above, we check for two state conditions to make sure if the move represented in

the argument to legal can be made. Consider also the following state clauses:

c e l l (l . l .b)

c e l l (1 . 2 . c)

c e l l (l , 3 . b)

control (whi te)

Assume that our role is that of white. We call the l e g a l predicate to provide us with possible

legal moves. Upon running, W is unified with white (as the current state has control (whi te)) . Xow.

X and Y are first unified with 1 and 1 respectively (from the state c e l l (l . l .b)) . Therefore, the first

possible legal move that we can make will be mark(l. 1). However, this is not the only move that we

can make. Notice that following the same procedure. X and Y also get unified to 1 and 3 respectively.

Therefore, another move that we can make is mark(1.3). Therefore, for the above descriptions, we

can make two legal moves. In order to make a move, we randomly select one of these moves, and

send it as a reply to the game manager as our move.

For now. we have seen how to get a list of legal moves. An important aspect of the game player

programme will be to decide which of these moves to make. In subsequent chapters, methods on

how to make intelligent legal moves will be explored. For an intelligent player, the main ideas of

updating states and getting a list of possible legal moves is the same: what changes is the selection

10

process for a move to chose as the final response.

11

Game Manager (GM) Game Player (GP)

1 3M sends start message with rules, player ID match ID, start clock and
play dock

2 GP sends message with body READY, indicating it is ready to play a game

3 GM sends message with body PLAY, and the match ID, and NIL,
indicating no moves made yet

4 GP. after waiting for at least as much time as specified by play dock,
calculates a move and sends it to the manager as the body of an HTTP
message In our example, the move is MOVE

5 GM now sends a message with the match ID and a list representing all the
moves made in this turn In this case the list is (MOVE)

6 GP sends a message with body MOVE as its move

7. GM sends a message with body match ID and (MOVE)

8 GP sends message with body GRAB as its move.

9. GM sends message with body match ID and (GRAB)

10 GP sends message with body MOVE, as its move

11.GM sends a message with body match ID and (MOVE)

12 GP sends a message with body DROP, as its move

13. GM sends a message with body match ID and(DROP) This is the
winning move

14. GP sends a message with body DONE since it has finished the game

Figure 2.1: Communication between the Game Manager (GM) and the Game Player (GP) for the
game of Blocks.

12

Chapter 3

Reinforcement Learning

This chapter provides a brief introduction to Reinforcement Learning (RL). The GGP player relies

heavily on RL, using both Temporal Difference Learning and UCT (Upper Confidence Bounds

Applied to Trees) search. Both these topics are discussed in later sections. Much of the content of

this chapter is derived from [32] which is the standard text for RL.

Reinforcement learning is not a method or an algorithm. Its an approach, a problem solving idea.

It is different from supervised learning, where an external supervisor directs the learning by telling

the algorithm whether or not they are on the right track. What if the learning is taking place in an

unknown environment, where there just can't be a supervisor? In such a case, the agent must learn

from its experiences and interaction with the environment. This is where RL comes in.

Since RL takes place in real-time, the agent needs to constantly monitor its environment, taking

into account any unpredictable events that might happen as a result of its action, and then react

appropriately. The goals are defined explicitly for the agent, so the agent can monitor its progress

towards the goal as it takes actions and interacts with the environment, using the experience learnt

to improve its performance.

The four main features in a RL system are:

1. Policy: Given a state, what action should be taken? In other words, a policy is a mapping

from a state to a set of possible actions that can be taken from that state. It determines the

agents behaviour.

2. Reward function: Indicates what is good or bad. Defines the main goal of the reinforce

ment agent. It associates with each state or state-action pair a number, which indicates the

intrinsic desirability of that state or pair. Consequently, it provides an immediate feedback of

a situation. The aim of the agent is to maximise the total reward it receives in the long run.

The agent has no control over the reward function; it can't modify it.

13

3. Value function: Tells the agent the total reward it can receive from a situation. Whereas the

reward gives an immediate feedback, the value function gives the long-term feedback, taking

into account the rewards from its current situation and all possible states that are likely to

follow it.

4. Environment Model: Gives a model of the environment in which the agent is operating. It

tells the agent how the environment behaves, and what the agent can expect when it takes

actions from states.

In subsequent sections we examine the exploration-exploitation dilemma which lies at the heart

of RL, Temporal Difference Learning and Monte-Carlo Learning methods in RL.

3.1 The Exploration-Exploitation Dilemma

Since action selection is a core component of RL. a natural question that arises is whether an agent

should exploit actions based on what it already knows (i.e. it greedily selects the best action) or

should it instead explore new actions, with the hope of possibly increasing its reward? This is known

as the exploration-exploitation dilemma. This question also arises in the UCT algorithm described in

later chapters, where the player needs to select a move to be made and descend down the game tree.

Therefore, it is worth examining this in more detail. These questions are perhaps best explained in

the literature in the form of the N-armed bandit problem.

3.1.1 The N-Armed Bandit

The bandit in this case is an analogy to a slot machine, with N arms, and the gambler is the

agent. Each time the agent selects (or pulls) an arm, it gets a reward from a stationary probability

distribution (in other words, its not a fixed reward). A probability distribution is associated with

each arm. The goal of the agent is to maximise its total reward over a number of plays, where each

play is the selection of an arm.

Assume that for each arm, the agent maintains an estimate of its value. This value is the mean

reward it has received from that arm so far (discussed in more detail below). Now. at time step k.

what action should the agent select? The one with the highest estimate, called the greedy action

(exploitation), or a non-greedy action (exploration)? Selecting a non-greedy action may well result

in a better reward in the long run. or it may not. Deciding between exploration and exploitation

depends on many things, such as the value of the estimates, the certainty with which we know these

values and the remaining plays.

14

Estimating and Selecting Action-Values

The actual value of the action (i.e. play of an arm) is the mean reward received from selecting it.

However, since the distribution from which the reward comes is not known, we can only make a

guess as to what reward we will get from it. One simple way to estimate this is by keeping track

of all the rewards received for k selections for action o, and then taking the average of it. In other

words, if total plays have been t, and action a has been selected ka times, then the estimated reward

from a will be

Qt{a) = ra+r2 + rt + ... + rka ^

This is called the sample average estimate for a. As the number of plays approaches infinity.

Qt{a) will become equal to Q1 (a), which is the actual value for a.

Now that we have estimates, how do we select actions based on these estimates? A pure greedy

method would mean selecting a' for which Qt(a') = maxaQt{a). In other words, at time t, select

the action which has the highest estimated value. This would, however, mean that we never explore.

An alternative to this is selecting the greedy action most of the time, but with a small probability

e, select an action randomly, without considering its value. This is called the e — greedy action

selection method. For an infinite number of plays, each action will be sampled an infinite number

of times. If the rewards are fixed for each action, then, after selecting an action once, we know the

value. In this case, greedy action selection will work. However, most applications are non-stationary

(the rewards change over time), and so exploration is needed.

Another approach to selecting actions is by taking into account the action values. The probabil

ities are weighted by the value of each action. So, the probability of selecting action a £ A will be

given by

eQ(«0/r
P(fl) = E AW (3"2)

This is called the softmax selection, r is called the temperature parameter. As r —> 0. action

selection becomes closer to greedy.

3.2 Goals and Rewards

As mentioned before, the agent attempts to maximise the long term reward (not the immediate

reward). This formalisation is a key feature in R.L; providing the agent a clear learning task.

Rewards then should be given in a clever manner, so that the agent can use them to achieve the

goal. For example, in a path finding task, if we want the agent to find the quickest route from a

starting point to an ending point, we can let it have a negative reward for each step it takes, and

15

a positive reward for when it reaches the ending point. Clearly, the shortest path will have the

highest reward. Another important thing to remember is that rewards are not meant to give the

agent knowledge on how to accomplish something; they are meant to tell it what to accomplish.

3.3 The Markov property and Markov Decision Processes

Is it necessary for the agent to know how it reached a state in order to make a decision? A good

state will tell the agent all that has happened, and at the same time retain all information that

is needed by the agent to make a decision to select an action. Such a state is said to be Markov.

In other words, all that is needed to move on to the next state is the current state, not the entire

sequence telling how you reached the current state. Formally, the Markov Property is defined as

P(st+i,<h+i\st,<h-St-i,at-i,st-2,at-2, • • • ,*o,ao) = P{st+i-at+i\st.at)

The Markov property is an important part in RL as it assumes that making decisions are a

function of only the current state.

Any RL task having the Markov property is a Markov Decision Processes (MDP), defined by the

set of states, set of actions and the one-step dynamics of the environment. A stochastic M.D.P (a

deterministic M.D.P can easily be derived from this definition) is defined as {§. A, P, E} , where S is

the set of states, A is the set of actions, P£a, gives the probability that the next state will be s' if the

agent takes action a in state s and R°s, is the expected reward rt+l the agent gets by transitioning

from state s at time step t to state s' by taking action a. Clearly, P£s, and K°3, specify the one-step

dynamics of the system.

3.4 Value functions

A value function simply tells how good a state (or a state-action pair) is. i.e. how much discounted

future reward (expected return) can be received. If a state sa gives a higher return than a state st,,

then the former has a higher value than the latter. Since a value is the expected return, which in

turn is defined by the actions that are taken from states, which in turn are defined by the policy we

follow (since a policy tells us what actions to take), values are related to specific policies.

We can define a value for a state s under a policy IT as V*(s), called the state value function, and

the value of a state-action pair (s,a) as Qn(s,a), called the action-value function. V"*(s) gives the

expected return from state s if from s we follow (select actions) policy n. Qn(s, a) gives the expected

return of taking action a from state s if, well, we take action a from state s and then follow policy

IT. Usually, a is taken using some other policy. Naturally, if a was taken using 7r itself, Qw(s, a) will

be the same as ^ (s) .

16

Since the values are the expected rewards starting from s or (s, a), we get

V'(a) = E^Rtlst = s} = E„ I ^rt+1+k\at = a \

Q*(s,a) = Ev{Rt\st = s.at = a} = ET I ^ r t + 1 + f c | s t = s,at = a\
U=o J

These values are represented in a tabular form, one for each state or state-action pair. Of course,

this is not the best way, as if there are too many states, then we run into a problem. Function

approximation techniques can be used to deal with this, in which the approximators take as inputs

state parameters representing V and/or Q and output the corresponding values.

In the next section, we discuss Temporal Difference Learning. These algorithms are amongst the

most commonly used in RL problems. They do not need a model of the environment (the dynamics

of the environment) and are therefore practical for most large, real-world problems. Since we use

TD(0) for our work in this thesis, we only discuss TD(0) in the following section.

3.5 Temporal Difference Learning

Temporal Difference (TD) Learning algorithms are a family of RL algorithms that learn through

errors in the value functions at each temporal step in the state sequence. The simplest algorithm is

TD(0), which updates the value function for a state s using the error (difference) between the value

function of s, V(s), and the value function of the successor state s', V(s'). This update is shown as

V{s)i-V(s)+a[r + -yV(s') -V(s)] (3.3)
" v '

target for TD(0)

a is called the learning rate, and usually decreases over time, r is the reward received after tran

sitioning from s to s' The update can be thought of as moving the previous value function for s

towards the value given by the target. The update shown in Equation (3.3) is used to learn state

value functions. Algorithms such as SARSA [32] and Q-Learning [34] are used to learn action-value

functions.

Value functions are typically represented as tables, with one entry for each state or state-action

pair. However, in problems with large state spaces, this is not practical. In such cases, function

approximation techniques are used with parameterised functional forms of states, using a parameter

vector 9. State values are therefore calculated entirely from this vector, and changes are made to the

parameters instead of each individual state. The representation of the parameter vector depends on

the problem formulation.

One of the most famous applications of TD Learning to games is TD-Gammon [33]. a backgam-

17

mon player, which uses TD(A). a TD Learning algorithm. Neural Networks (NN) are used to

approximate the value functions of states, with each node in the NN corresponding to a single pa

rameter. Using a number of simulated self-play games, TD gammon was able to reach the level of

grandmasters in backgammon.

In the next section, we describe the UCT algorithm, which uses RL to search a tree and therefore

can be used effectively for searching game trees. We also discuss how this algorithm can be used in

the GGP framework.

3.6 UCT: Upper Confidence Bound Applied to Trees

UCT [17] is an extension of the UCB1 algorithm [3], and stands for Upper Confidence Bounds

applied to Trees. The UCB1 Algorithm aims at obtaining a fair balance between exploration and

exploitation in an N-Armed bandit problem, in which the player is given the option of selecting one

of K arms of a slot machine (i.e. the bandit). This has been discussed in a previous section.

The selection of arms is directly proportional to the total number of plays and inversely propor

tional to the number of plays of each arm. This is seen in the selection formula

The arm maximising (3.4) is selected. Xj is the average return of arm j after n plays, and Tj(n) is the

number of times it has been selected. C controls the balance between exploration and exploitation

of the tree. This formula is used in our player.

UCT extends UCB1 to trees. A single simulation consists of selecting nodes to descend down

the tree using and using (3.4) and random simulations to assign values to nodes that are being seen

for the first time. CADIA-Player [6] was the first General Game Player to use a simulation based

approach, using UCT to search for solutions, and was the winner of the last GGP Competition.

UCT has also been used in the game of Go, and the current computer world champion, Mo-Go [13].

uses UCT along with prior game knowledge. [27] also used simulations to build a basic knowledge

base of move sequence patterns in a multi-agent General Game Player. Selection of moves was done

based on the average returns, and mutation between move sequence patterns was done to facilitate

exploration. An advantage of a simulation based approach to General Game Playing is that for any

game, generating a number of random game sequences does not consume a lot of time, since no effort

is made in selecting a good move. UCT is able to guide these random playoffs and start delivering

near-optimal moves. However, even with UCT. lack of game knowledge can be a significant obstacle

in more complex games. This is because in the absence of any knowledge to guide the playoffs, it

takes a large number of runs of the UCT algorithm to converge upon reasonably good moves.

18

3.6.1 UCT applied to General Games

In order to make a move the current state is set as the root node of a tree w hich is used bv LCT

To allow for adequate exploration the algorithm ensures that each child is visited at least once To

manage memory, even node that is visited at least once is added to a visited table Once a node

is reached which is not in the table a random simulation is carried on from that node till the end

of the game The reward received is backed up from that node to the root Algorithm 1 shows the

basic method of UCT and the update of values in a 2 plaver zero-sum game A number of such

simulations are carried out each starting from the root and building the tree asymmetricallv

Algorithm 1 UCTSearch(root)

1 node = root
2 while visitedTable contains(node) do
3 if node is leaf then
4 return value of node
5 else
6 if node children size == 0 then
7 node createChildrenQ
8 end if
9 selectedChild = LCTSelect(node)

10 node = selectedChild
11 end if
12 end while
13 visitedTable add(node)
14 outcome = RandomSimulation(node)
15 while node parent / null do
16 node visits = node visits + 1
17 node wins = node wins + outcome
18 outcome = 1 — outcome
19 node = node parent
20 end while

The value of each node is expressed as the ratio of the number of vv inning sequences through it

to the total number of times it has been selected In order to select the final move to be made the

algorithm returns the child of the root having the best value

3.7 Conclusions

This chapter provided a basic introduction to Reinforcement Learning (RL) It is beyond the scope

of this dissertation to provide a comprehensive overview of RL, however the reader is directed to

[32] for a more thorough mtroduction to the fundamentals of RL Indeed the material of this chapter

is adapted from this book This introduction to RL is sufficient to understand the concepts of RL

that have been used m this work

In the next chapter we will provide a brief overview of the evolutionan methods used for GGP

19

namely coevolution, ant colony optimisation and cultural algorithms.

\

20

Chapter 4

Evolutionary Methods

In this chapter we will provide a brief overview of several evolutionary methods that have been

used in our work for generating knowledge in GGP. We start by introducing coevolution and then

proceed to discuss ant colony optimisation (ACO) methods and cultural algorithms. The details of

how these are used in our work will be clearer in subsequent chapters.

4.1 Coevolution

The principle of coevolution1 can be best explained with the help of an example. Consider the

complex relationships that exist between herbivores and plants. To prevent themselves from being

eaten, plants evolve to develop defense mechanisms such as toxic leaves, thick foliage, size and thorns.

To overcome this, herbivores evolve, for example, long tongues and thick lips to overcome the foliage

and thorns and special dietary habits such as eating clay to neutralise the toxins in the leaves. Both

plants and herbivores in this case represent competing populations, each one trying to get an edge

over the other. This is the principle of coevolution; using random variation and selection to evolve

and learn strategies that will enable individuals to gain this edge that they need to survive.

A successful example of coevolution is the checkers player Blondie24 [10]. Each player is repre

sented as a neural network which accepts as input a vector representing a checkers board position

and outputs a number in the range [—1.1] to indicate its estimation of a moves' quality. A popu

lation of such players play against each other, alternating between roles (red or black). The top 15

individuals are selected to spawn a new generation. The best evolved network at the end of this

coevolutionary process is selected to play the game against opponents. At www.zone.com, a free

checkers game website, Blondie24 was ranked amongst the top 500 of the 120,000 registered players.

[20] and [11] also discuss the use of coevolution in evolving strategies for games such as checkers

and tic-tac-toe. The population model uses Particle Swarms. The particles are vectors of weights

'We consider competitive coevolution here.

21

http://www.zone.com

of a neural network, and it is these weights that are trained using coevolution and Particle Swarm

Optimisation.

4.2 Ant Colony Optimisation Algorithms

Ant Colony Optimisation Algorithms (ACO) were developed by [8]. They take inspiration from the

behaviour of ants in nature. In nature, ants wander randomly, searching for food. Once they have

found food, they return to their colony while laying down pheromone trails These act as a guide for

other ants in the future. When other ants find such a path, instead of wandering around randomly,

they are more likely to follow the trail and further reinforce it by their pheromone deposits if they are

successful. Since pheromone evaporates over time, shorter paths are more likely to have a stronger

concentration of deposits. As a consequence, over time, short paths get favoured by more and more

ants. This approach is applied in computer science to solve optimisation and path finding problems,

such as in [9], using multiple agents (the ants) that move around in the problem space in search for

the desired solutions.

Two key parameters that determine the state transitions are the desirability (or attractiveness),

77,j, and the pheromone level, TtJ of the path (or arc) between the two states i and j . rjtj is usually

represented by a predefined heuristic, and therefore indicates an a priori fitness of the path. On the

other hand, r y indicated the past success of the move, and therefore represents a posteriori fitness

of the path. The update for T13 take place once all the ants have finished foraging. Given these two

parameters, the probability of selecting a path ptJ between states i and j is given by (4.1)

B _ (^aW)
P,J - £Ke„(^)(^) (41)

a and (3 are user-defined parameters that determine how much influence should be given to the trail

strength and desirability respectively. M is the set of all legal moves that can be made from state i.

Once all the ants have finished foraging through the state space, the trails are updated as

r,_, (i) = prl3 (t - 1) + A r y (4.2)

ATV, is the cumulative accumulation of pheromone by each ant that has passed between i and j and

t represents the time step, p is called the evaporation parameter, and determines by what value

the previous trail level decreases. This gradual evaporation prevents the ants from converging to a

locally optimal solution. More resources on Ant Colony Optimisation can be found at [2].

22

4.3 Cultural Algorithms

Cultural Algorithms simulate cultural evolution, bringing about a more comprehensive learning and

evolution than simple biological evolution. They can be used in both static and dynamic environ

ments, and in complex multi-agent systems to provide effective simulations of learning procedures

[23]. Evolution takes place at both the cultural level (the belief space) and the population level

(for each individual). The belief space is the knowledge that is shared amongst the agents in the

population. This model of dual-inheritance is the key feature of Cultural Algorithms, as it allows

for a two-way system of learning and adaptation to take place. In a dual-inheritance system, the fit

population members, as selected by an acceptance function on the basis of a fitness value, add their

knowledge and experience to the belief space, thereby sharing it with all other agents in the environ

ment. The belief space knowledge in turn helps guide the agents in the population by means of an

influence function. Other evolutionary approaches, such as Genetic Algorithms, allow for evolution

to take place only at the individual (or population) level, i.e., they do not support a dual-inheritance

system.

[24] showed that cultural learning takes place using three distinct phases of problem solving.

They defined them as coarse-grained, fine-grained and backtracking. They also discovered five types

of knowledge, namely normative (ranges of acceptable values), topographic (representing spatial

patterns), situational (successful and unsuccessful instances), historic (temporal patterns) and do

main (relationships and interactions between domain objects) knowledge. Each of the phases has a

dominance of one type of knowledge over the other.

Recent work done by [23] uses cultural algorithms to simulate the early Anasazi settlements

and answer questions regarding their disappearance from the Mesa Verde region, and is discussed

in chapter 3. This work is an example of the use of Cultural Learning in a complex multi-agent

system, in which many different factors affect the manner in which the population evolves.

To get an idea of how cultural evolution can complement coevolution, consider the following

example: assume a large herd of wilderbeests are constantly being eaten by lions. Soon, a few them

come up with a way to evade this unfortunate fate. In normal coevolution, this information would

not be shared by other members of the herd. Instead, future generations would most likely inherit

it, and so the knowledge would be passed on. However, when cultural evolution comes into play,

this knowledge of evasion is put into the herds' "belief space', and thus can be shared by other

wilderbeasts. It is the same as the clever wilderbeests going to their herd members and passing this

knowledge on to them. From a gaming perspective, players that are come up with strong strategies

are able to share them with other players, thereby allowing for faster learning and the emergence of

stronger strategies amongst the weaker players.

23

4.4 Conclusions

This chapter gave an overview of the evolutionary- methods that will be used in our work. Subsequent

chapters will build upon the methods introduced in this and preceding chapters and explain how

these are used to generate knowledge for GGP

24

Chapter 5

Learning and Knowledge

Representation Architecture

This chapter describes the basic architecture of the multi-agent coevolutionary environment that is

used by the game player to generate game knowledge. The knowledge representation structure is

also described in detail. The terminology used in this chapter will be in context of the terminology

used in evolutionary computation. Given that in the Stanford GGP system, the lexicon of the game

rules can be changed while the underlying game logic remains the same, a way to recognise games

is also described at the end.

5.1 Player Architecture

Upon receiving the game rules, the player first calls upon the learning module to use the game

rules to learn knowledge about the game. Once the knowledge is learnt, moves are simply made by

consulting the knowledge and making the move which results in the state having the highest value

(this is explained in more detail in the next section). This is illustrated in Figure 5.1.

The learning module consists of a population of agents. Each of these agents can play the game

based on the game rules. The population is divided into a number of sub-populations, where the

number of such sub-populations is the same as the number of roles in the game. For example, Chess

has two roles, Black and White. Therefore, the number of sub-populations for Chess would be two.

These populations play against each other in a coevolutionary setup and generate knowledge for

their respective roles. The knowledge is stored and saved so that it can be used later when the game

is played again, thereby eliminating the need for learning the game from scratch.

25

Game Rules

Accept and use rules

Game
Player

Learn
g a m e I

Learning
Module

Store game
knowledge

Use knowledge
to make moves

Figure 5.1: The architecture for a general game player for learning.

5.2 Knowledge Representation Scheme

The knowledge relates directly to the states of the game (i.e. the nodes of the game tree). The

knowledge is used to evaluate state that results from making a move, and then select the move that

gives the state with the highest value. These values are learnt using the learning module.

Since the number of states in most games is extremely large, using a table with an entry for a

value function of each state is impractical. Therefore, we approximate the state representations by

using features 1 to represent each state. In the context of the game descriptions given in GDL, this

can be done as follows. States in GDL are represented as a set of ordered tuples, each of which

specifies a certain feature of the state. For example, in Tic-Tac-Toe. mark(l, 1,X) specifies that the

cell in row 1 and column 1 is marked with an X. Therefore, a state in Tic-tac-Toe is represented as

a set of 9 such tuples, each specifying whether a cell is blank or contains an X or an O. Figure 5.2

given as example of a state in Tic-Tac-Toe and the corresponding features associated with it. Xote

that the elements of the feature vector in Figure 5.2 are represented as strings for clarity. In reality,

each element 8 of the vector can be viewed as a 2-tuple (<;. v). consisting of the string <; representing

' I t would perhaps be more technically accurate to use the term atomic properties. However, in this dissertation
we will use the term feature instead of atomic property.

26

o
X

X

0 = {cell(l, 3, X), ceU(2, 2, X), cell(3, 1, O)}

Figure 5.2: Features in a state of Tic-Tac-Toe. The vector 9 represents the vector of features.

the feature and its corresponding value v € 9?. From now on, whenever we talk about features,

whether we are referring to the string or the value will be clear depending on the context. In GGP,

the lexicon of the game can change, but the underlying logic remains the same. Consequently, the

learning that occurs is not based on the actual strings but the values that are learnt for them.

These features are stored in a table, with entries for the various values for each feature. These

values for each feature are learnt by using the various learning algorithms that will be described in

the next chapter. To obtain the value of a state, the features present in the state are matched to the

features in the tables, and their values are then used to calculate the state value. This is illustrated

in Figure 5.3. For simplicity, only a part of the table and one possible move that can be made from

the given state is shown. The actual values are omitted as they are based on the learning method

used to obtain them.

Given that states are represented as shown in Figure 5.2. extracting a list of features can be done

using the simple algorithm given in Algorithm 2.

By playing a number of random games, it is possible to extract features from each state seen

after making a move and adding it to a global feature list that can be used for learning. It is possible

to do this online (during learning) or offline (prior to learning).

5.3 Recognising games independent of game rules

Since the lexicon for games written in GDL can change, it is worth looking into recognising games

based on the underlying game logic. In order to this, we use a simple technique for recognising

aspects of the game tree itself. To do this, we first play a number of random games using the given

game rules. Every time a move is made, the following parameters are recorded and stored in a file:

27

ce l ld 1. X)

cell(l , 2 X)

cell(l 3, X)

ceU(2. 1 X)

cell(2, 2, X)

cell(2. 3, X)

ceU(3. 1, X)

cell(3, 2, X)

ceU(3 3, X)

ce l ld 1, O)

ce l ld 2 O)

celld 3 O)

cell(2. 1 O)

cell(2, 2 O)

mark(l, 3, X)

Figure 5 3 An example of knowledge representation and use while making a move m Tic-Tac-Toe

Algorithm 2 ExtractFeatures(startState)

initialise featureList
currentState <— startState
while numberOf Games < totalGam.es do

while currentState ^ terminalState do
legalMovesList <— all legal moves possible from currentState
make a legal move m £ legalMovesList randomly
observe newState reached by making m
for all feature € newState do

if feature £ featureList then
add feature to featureList

end if
end for

end while
numberOf Games + +

1 The number of children at the given node This means keeping track of the total number of

possible legal moves that can be made from the current state in the game at each step

2 The child selected to descend down the tree This is the position of the move in the list of all

28

http://totalGam.es

legal moves that was pla\ed

3 The final outcome of the game

For each random game played the first two items will be stored for every move made and the

third item will be stored for the whole game Therefore a single record is created for each random

game which stores all information about the path taken in the game tree to pla\ the game

When the game rules are received and the lexicon is different then we use the aforementioned

data to plaj random games using these game rules A game is pla\ed successfulh if by checking

the number of possible legal moves at each step (item 1), we select the mo\e indicated b\ the data

(item 2), and bj doing so play a game that results in the same outcome as given in the data (item

3) If this can be done for all records then the game defined bv the rules can be identified and its

corresponding knowledge can be received

This entire procedure is summarised in Algorithm 3 (for creating the records) and Algorithm 4

for recognising a game It is important to note that because we use Prolog as an inference engine

for the game rules, the ordering of the legal moves at each step m the game will alw a\ s be the same,

assuming the logic of the game is the same

Algorithm 3 CreateRecords(startState)

1 currentState <— startState
2 while numberOf Games < totalGames do
3 create a new gameRecord
4 gameState *— 0
5 while currentState ^ terminalState do
6 legalMovesList <— all legal moves possible from currentState
7 gameRecord gameSteps[gameStep] numChildren <— legal MovesList size
8 make a legal move m € legalMovesList randomly
9 gameRecord gameSteps[gameStep] selectedChild <— legalMoiesList indexOf(m)

10 observe newState reached by making m
11 end while
12 gameRecord outcome <— result of this game
13 numberOf Games + +
14 write gameRecord to a file
15 end while

5.4 Conclusions

This section introduced the basics of the learning module and knowledge architecture In the fol

lowing chapters, we will use different learning methodologies in the learning module to learn and

generate knowledge We start by discussing how Temporal Difference Learmng is used m a smgle

agent setup of the learmng environment We then use the same idea in a multi-agent coevolutionan

setup Communication between the agents is then allowed b\ using the Ant Colom model Finalh

29

Algorithm 4 RecogniseGame(starrS£a£e)

1 currentState <— startState
2 for all gameRecord € records file do
3 while currentState ^ terminalState do
4 legalMovesList <— all legal moves possible from currentState
5 if legalMovesList size ^ gameRecord gameSteps[gameStep] numChildren t h e n
6 return false
7 end if
8 make legal move gameRecord gameSteps[gameStep] selectedChild
9 observe neu State reached by making the move

10 if newState is not a valid state then
11 return false
12 end if
13 end while
14 if gameRecord outcome =fi result of this game then
15 return false
16 end if
17 end for
18 return true

belief space knowledge is created by introducing a basic form of cultural knowledge We then use the

knowledge learnt to enhance the playing capabilities of a UCT-based player. Each of the learning

methodologies will be evaluated based on the pla\ ing performance of the game player in a number

of games.

30

Chapter 6

Using Reinforcement Learning for

General Games

Previous chapters have laid the foundations for the theory behind the learning algorithms that will

be used and the basic learning architecture employed to learn game knowledge from them. This and

subsequent chapters discusses the techniques and results of using these aforementioned algorithms

with the architecture. In this chapter we explore how TD(0) learning is used to learn values for

features used to represent states. We only consider a single learning agent in this chapter, as opposed

to the population model described in Chapter 5. We will return to the latter in later chapters when

we introduce evolutionary learning. The work discussed in thie chapter has been presented in [29].

[19] and [30].

6.1 Using TD-Learning

We have already seen how knowledge is represented as a set of features in a previous chapter. In

literature, such a manner of representing state values using a set of features instead of a table is

called function approximation. It is indeed an approximation because the value of the state given

by using a set of features is only an approximation, an estimate, of the actual value. For example,

given a state s represented by a feature vector 0, the value of the state is given as

V(a) = a (5 >) (6.1)

where the sigmoid function, a special form of the logistic function, is defined as

" W = ^ (6.2)

31

The sigmoid function squashes the value of the summation to be between 0 and 1. as shown

in Figure 6.1. As a result, it becomes natural to consider the value of a state as the probability

of winning from that state. The approximation described is linear, as the function is linear with

respect to the parameters.

Figure 6.1: The graph of the sigmoid function.

6.2 Temporal Segmentation of Features

Consider the effect of using a single set of all the features for the entire state space. Since a single

feature may be shared by many states, a change in the \Blue of a single feature affects the value of

all the states that share that feature. In most cases, the change improves the value of some states

(a positive effect), while degrading the value of other states (a negative effect). Given the linear

representation, it is impossible for all states to be classified accurately by the features. The best

we can do is try to minimise the negative effects of changes in feature values. This is done by not

using a single set of features for the entire state space, but using a set of features to represent states

at a unique temporal level Each temporal level in the context of games is a turn the player is in.

Figure 6.2 illustrates this idea. A temporal level is associated with each level of the afterstates in the

game tree. Also, given this temporal representation, TD(0) learning can be delayed till the entire

game is played, since the changes in feature values using TD(O) in preceding temporal levels has no

effect on the values of states given by features at future levels.

This form of representation best works in games where the states are always unique to a level.

An example of such a game is Tic-Tac-Toe. where a state at depth n will always have n — 1 markers

on the board in any number of legal combinations. However, experiments showed this temporal

32

file:///Blue

Player's turn
Resulting
afters tates

/ I \ V ZJ
Features
taken from
these levels

Figure 6.2: Temporal segmentation of features. Circular nodes are nodes from which the player
makes moves. Square nodes are the states that occur as a result of these moves (the afterstates).

segmentation to improve the results of games that do not follow this pattern as well. Though

the improvement exists, it is worth considering other ways of improving the accuracy of linear

approximation. These ideas will be discussed in the chapter detailing directions for future work.

6.3 TD(O) Update

We now consider the update of value functions of states using TD(0) learning. The update of the

value function is in essence the update of a set of features. Given a state si at temporal level I and

a state si> at the next temporal level /', the update for feature value r s of each feature 9S present

in s is done as shown in Equation (6.3). Note that 7 is set to 1 and r is defined as 0 for each step,

except at the final time step when it is equal to the final outcome of the game. V(sj») becomes 0 if

Sf a terminal state. |s;| is the number of features in |s; | .

r + V{s,.)-V{si)

M
vs = vs + a6

(6.3)

This update is done once a game has been played. Moves are selected based on the afterstate

(state resulting from a move) which has the highest value, e — greedy selection is used to select

moves, with the afterstate having the best value being selected with probability 1 — e, and with a

random move being selected with probability e.

33

Table 6.1: Random Games
Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 1

Win

57.84

23.44

54.7

51.3

41.8

Loss

30.28

15.48

45.3

48.7

41.6

Draw

11.88

61.08

0

0

16.6

Player 2

Win

30.28

15.48

45.3

48.7

41.6

Loss

57.84

23.44

54.7

51.3

41.8

Draw

11.88

61.08

0

0

16.6

6.4 Experiments

In order to test the general quality of the knowledge learnt via TD(0) learning, 1000 matches

of several games are played between a player using the knowledge and a uniform random player

(player makes moves randomly with a uniform distribution). To compare the effectiveness, we also

present results of 2500 matches of the same games against two uniform random players. The games

played are standard 3-by-3 Tic-Tac-Toe (3 T-T-T), large 5-by-5 Tic-Tac-Toe (5 T-T-T). Connect-4.

Breakthrough and Checkers. The results are divided by role, with knowledge being used by each

player. Player 1 refers to the player who makes the first move at the start of the game.

The players were all written in Java. The game rules in GDL are converted to Prolog, and

YProlog [35]. a Prolog inference engine in Java, is used. The learning rate was set to 0.99, and was

decreased by a factor of 0.01 after each game. The total number of simulations for training was set

to 2000.

Table 6.1 shows the results of 2500 games when both players play randomly. A large number of

games is used so as to get a fairly accurate distribution of outcomes between the two players. The

results are expressed as a percentage.

Now we consider the results when knowledge is being used. Table 6.2 shows the results when

Player 1 uses knowledge and Player 2 plays randomly. Table 6.3 shows the results when Player 2

uses knowledge and Player 1 plays randomly. The results are expressed as a percentage. Players

using the knowledge select moves greedily.

6.5 Discussion

As can be clearly seen, the knowledge results in a huge improvements in the playing abilities of the

player using it. It is also interesting to note from Table 6.1 that learning can be biased for each

player depending on which player makes the first move, as the percentage of winning sequences is

not (relatively) evenly distributed for each player in all games.

Is it possible to improve the performance? In subsequent chapters, we attempt to do just this by

34

Table 6.2: Player 1 uses knowledge
Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 1

Win

68.3

42.4

67.9

71.1

44.4

Loss

21.9

18.6

32.1

28.9

37.6

Draw

9.8

39

0

0

18

Table 6.3: Player 2 uses knowledge
Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 2

Win

51.9

39.1

66.7

70.9

43.6

Loss

34.7

19.9

33.3

29.1

41.4

Draw

13.4

41

0

0

15

enhancing TD(0) learning by using coevolution and adding a communication model based on Ant

Colony Optimisation.

35

Chapter 7

Using Coevolution

This chapter discusses the extension of the single agent TD(0) learning model discussed in the

previous chapter to include coevolution. In Chapter 5 we discussed the method for representing the

learning module of the player as a population of competing agents. This forms the basis for adding

coevolution and other evolutionary learning methods to TD(0) learning. We start be describing in

greater detail the population structure and the details of coevolution. including how to calculate the

fitness of individuals in the population. We then present, the algorithm for learning which uses both

coevolution and TD(0) learning. This learning model is then evaluated using the same games and

criteria as in the previous chapter. The work described in this chapter has been presented in [30].

7.1 Population Model

The population is split into two competing species, each of which represents a single role of the

game. For example, in chess, one species would correspond to the role of white (i.e. moving white

pieces) and the other species would be for black. Each individual (player) from a population plays

a game against a number of individuals from the opponent population. Each individual maintains

its own knowledge which it learns using TD(0) learning as described in the previous chapter. Thus,

the single agent TD(0) learning is extended by giving each individual the ability to learn and at the

same time compete against opponents in order to evolve and improve the quality and strength of its

knowledge.

The outcomes of these games are used to assign a fitness to each player. Each Once all individuals

of the population have played such games, the bottom k% — 1 individuals are killed, and the top k%

are allowed to spawn new individuals. The spawning works by selecing the fittest individual, and

breeding it with the remaining k% — 1 individuals. This is illustrated in Algorithm (5) for a single

population. The same algorithm applies for the competing population.

Mating is done by finding a crossover point between the feature lists of the parents and creating

36

Algori thm 5 Coevolution

1 P <— all players in the population
2 for all p e P do
3 select opponent set O from opponent population Po
4 for all Opponent o G O do
5 play game between p and o
6 record outcome of game
7 end for
8 end for
9 fit <— top k% of the fittest players m P

10 kill bottom k% — 1 players in P
11 pfittest *- fittest players in fit
12 for all / 6 / i t - p / t t (e s t do
13 mate(p/ t t t e s t /)
14 end for

a new feature list by a standard crossover operation With a fixed mutation probability, the value of

a random feature in the new list is reset to 0 The new individual thus shares the values of a subset

of features from one parent and the values of the remaining features from the other parent

7.1.1 Fitness calculations

The fitness each player gets for each opponent is based on how many players in its own species were

able to beat that opponent This allows players that are able to beat opponents that few others in

their own species could beat to have a higher fitness In other words, if P0 is the set of all players

were able to beat opponent o, then the fitness for a player p G P0 is given as

/(P) = E F (71)

where O is the set of all opponents that the players faced Based on this fitness, players are selected

to mate in order to create new offspring

7.2 Experiments

We test the knowledge using the same experimental setup as in the previous chapter The learning

rate was set to 0 99, and was decreased by a factor of 0 01 after each game The top 25% of the

population were selected for mating All in all, 20 players per species were created, which played

150 games in total Each player played against 5 randomly selected opponents Mating was done

after each player had played 3 games The fittest player from each population is then selected to

play against the random player

Table 7 1 shows the results when Player 1 uses knowledge and Player 2 plays randomly Table 7 2

shows the results when Player 2 uses knowledge and Player 1 plays randomly The results are

37

Table 7.1: Player 1 uses knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 1

Win

79.4

49.6

78.2

84.2

47.9

Loss

15.2

22.4

21.8

15.8

30.6

Draw

5.4

28

0

0

18

Table 7.2: Player 2 uses knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 2

Win

59.3

44

71

88

46.3

Loss

29.4

18

20

12

33.8

Draw

11.3

38

0

0

19.9

expressed as a percentage. Players using the knowledge select moves greedily.

7.3 Discussion

Coevolution results in competition between various individuals in the population. This arms race

hastens learning, as weaker individuals are killed off, and the knowledge of the strongest players is

used to create new individuals in the population, thereby complementing TD(0) learning. In the

next chapter, we use a communication model based on Ant Colony Optimisation. This allows the

players to communicate their experiences to each other.

38

Chapter 8

Ant Colony Optimisation

In this chapter we add a communication model between the individuals of each population. As a

result of this, each individual can communicate its own experience of playing the game to other

members of its species. This communication is created by using the principles of Ant Colony Op

timisation, i.e. pheromone and desirability deposits along the paths of each game. We start by

describing the new way of viewing the population as a colony ants. We then describe how the

communication landscape is created and modified. We conclude by playing various games against a

random player to test the effect of this model on top of the model developed in the previous chapter.

The work described in this chapter has been presented in [28j. |30] and [19]

8.1 GGP using Ant Colonies

Each ant1 in the Ant Colony is a player that is assigned a unique role as per the rules of the game.

Each ant maintains its local knowledge which it learns using TD(0) learning and coevolution as

described in the previous chapter. Apart from this, each population has a global landscape on

which each ant deposits pheromone between paths. The path in this case is simply the sequence

of states and the moves the ant has made from these states. Therefore, it is each of these state-

move combinations that have an associated pheromone deposit and desirability value. This basic

idea is illustrated for the game of Tic-Tac-Toe in Fig. 8.1. However, since maintaining state-move

combinations is impractical in most games, we use feature-move combinations instead. In other

words, pheromone is deposited and desirability updated for all the features that are present in the

state resulting from making a move in the game.

This global landscape acts as the communication medium, and is illustrated in Fig. 8.2. Players

now make moves based not only on their local knowledge but also the pheromone and desirability

values in the global landscape.

1 Henceforth we will use the terms ant. player and individual interchangeably.

39

Move using knowledge
and deposit pheromone on

the way back

Move randomly or / r f
query opponent ant —/££•

J* j6£- Antplayi

Ant playing O

%

Figure 8.1: The forage of Antx through the Tic-Tac-Toe landscape. The presence of Anto besides
the hollow arrows indicates that Antx has the option of asking Anto for a move, though it is not
necessary to do so. Pheromone is deposited along the squiggly arrow once a series of forages has
been completed.

Game Landscape updated using
Ant Colony Optimisation techniques

Deposit Pheromone Update Desirability

• • • •
Learn feature

values by
TD(0)

/ /

£

4?

Figure 8.2: The Ant Colony GGP Architecture.

40

8.2 Communication via Pheromone and Desirabilities

As we have discussed before, ants transition from one state to the next based on the pheromone

levels and desirabilities of the paths between the states, along with their local knowledge. Let's see

how to calculate the pheromone and desirabilities for each state. Pheromone levels in traditional

ACO algorithms are represented as the reciprocal of the length of the path traveled. In the GGP

case, pheromone for a path (or move) m, r m , is represented as the average score attained through m.

Pheromone is not just associated with a move, but with all the features in the afterstate resulting

from that move. The overall calculation of the pheromone deposit for both features and move after

a series of forages (plays) has been made is shown in Equation (8.1)

Y, *°
aeAntm

"m (8-1)

2^ x°
re =

Antm is the set of all ants a that went foraging and made move m. \s is the final score associated

with each game sequence that includes m. Nm and Ng are the number of times during a forage the

move and feature were seen. 8^s is the set of features in state (more specifically, the afterstate) s

at temporal level L. Pheromone evaporation follows the formula in Equation (4.2).

The desirability of a move m and feature 0 is simply the historic average score. It is similar to

the way pheromone is represented, but while the pheromone is calculated as the average score per

forage set, the desirability is the average score accumulated throughout the learning.

In order to calculate the pheromone and desirability during action selection for learning, the

average of the pheromone and desirability values for the action and the features of the resulting

afterstate is taken.

Moves are now selected using the product of the afterstate's value based on the local knowledge

along with the pheromone and desirability values.

8.3 Experiments

The pheromone and desirability influence factors were set to 0.6 and 0.8 respectively. The rest of

the parameters are the same as before.

Table 8.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 8.2

shows the results when Player 2 uses knowledge and Player 1 plays randomly. The results are

expressed as a percentage. Players using the knowledge select moves greedily.

Consider now the results when coevolutionary learning is complemented by cultural evolution.

41

Table 8.1: Player 1 uses revolutionary knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 1

Win

83.5

62

91

98.5

56

Loss

10.5

7.5

9

1.5

21.5

Draw

6

30.5

0

0

22.5

Table 8.2: Player 2 uses coevolutionary knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 2

Win

60.5

54

75

96.6

58.7

Loss

31

11

25

3.4

30.3

Draw

8.5

35

0

0

11

Table 7.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 7.2

shows the results when Player 2 uses knowledge and Player 1 plays randomly.

8.4 Discussion

The addition of the communication model speeds up the learning, as more agents are able to com

municate their own experiences, thereby allowing agents to learn from the experience of others. In

the next chapter we add the final embellishment to our learning module, i.e. the cultural component.

42

Chapter 9

Adding Cultural Knowledge

In this chapter we add belief space knowledge as used in cultural algorithms. The belief space

knowledge consists of the experiences of the strongest players, and is used to guide future generations

and also the current generation. This is different from the communication model as the belief space

is only updated by the strongest players. Also, as we shall see. the representation is different as it

consists of actual states. The work discussed in this chapter has been presented in [30].

9.1 Representing the Belief Space

The belief space basically contains a number of afterstates (states reached by a player after making

a move) that have been part of the game sequences of the fittest players. Each of these afterstates

has a belief value associated with it which depends on the average score of each player chosen to

influence the belief space, that has used the afterstate, and its own historic average score. Consider

that a number of players p & P have used afterstate 5, each having an average score of ap. Let As

be the historic average score associated with S. Then, the belief of S is given as

Belief {S) = AS + \P\ [] ap (9.1)

Note that the set of players P are all players that were accepted to modify the belief space, i.e. the

fittest individuals of each generation. The historic score is updated by both these players and by

other members who use these states during the course of game play. Intuitively, afterstates that

have performed well by leading players to a win in the population, and that have had a large number

of the fittest players influence them, have higher belief values. Algorithm (6) provides an overview

of belief space creation, gseq is the set of all game sequences (i.e. sequence of afterstates) played by

the player up till the point of updating the belief space. It is reset to the empty list after updating.

Since it is impossible to store all possible states, a limit is placed on how many states can be

43

Algorithm 6 Belief Space Creation

P <— top c% fit players
for all p € P do

for all GameSequence gseq G GameSequences do
for all GameState gstate £ pseq do

if gstate not in beliefSapce then
addToBeliefSpace(p. gstate. gseq.outcome)

else if gstate in beliefSapce then
updateState(p, gstate. gseq.outcome)

end if
end for

end for
end for

present in the belief space. If that limit is crossed, a fixed r% of the lowest states, ranked by Ekjuation

(9.1). are removed and new ones are added.

9.2 Putting it all together

Figure 9.1 shows the entire architecture of the game playing system for a single role (in a 2-player

game, an identical system exists for the opponent). Pi are the various players, and S, are the

afterstates. The players play games against players from the competing species, and use TD(0)

learning to update their feature values during each game. Once all players have finished playing

these matches (i.e. after a single forage), pheromone and desirabilities are updated for the features

and moves seen during these games. After a fixed number of forages, the fittest individuals so far

are selected to mate and update the belief space. Algorithm (7) details the way the various players

are controlled, c is the number of forages completed before mating and updating the belief space,

and opponentSet is a randomly selected set of a pre-determined number of opponents. Algorithm

(8) details how an ant (player) plays a game. Note that a random move is made based on a fixed

probability for the opponent in order to ensure sufficient exploration of the game state space. Mating

is done by selecting a crossover point between the feature vectors of the two parent players, and

creating a new offspring by standard crossover operations using the same point at each temporal

level. The new player then has part of the feature vectors from its father and part from its mother

at each temporal level.

Moves are made using e-greedy selection. With probability e, a random move is selected, Other

wise, the move which maximises V(s) x T(s m) x r/(Si7n) is selected, where V(s). T(s m) and »7(s,m) are

the state value, pheromone and desirability values respectively for afterstate s reached by making

move m. However, if an afterstate exists in the belief space that matches any of the afterstates

resulting by making move m. then the move resulting in the afterstate with the highest belief value

is chosen instead.

44

£
c

Game Landscape updated using
Ant Colony Optimisation techniques

Deposit Phtromone t Update DeswoMfty

p, p,

A A
/ /

[/\
J/ 1/ ,

• • • •
Learn ftaturt

values by
TD(0)

t

Figure 9.1: The architecture for a single role using coevolution and cultural evolution.

A l g o r i t h m 7 Controller

whi le numberOf Forages < totalForages do
for all Player ant € Ants do

playGame(ant. opponent Set)
end for
update pheromone and desirabilities
if forageCount % k = 0 t h e n

mate()
updateBeliefSpace ()

end if
end while

9.3 Experiments

The experiments follow the same pattern as before. 25% of the strongest players were selected for

updating the belief space and mating. All in all, 20 players per species were created, which went

collectively into 100 forages. Each player played against 5 randomly selected opponents. Mating

and belief space updates were done after every 3 forage runs, and the maximum number of states

permitted in the belief space was limited to 100. with 259c of the weakest states being removed

whenever the limit was crossed.

Table 9.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 9.2

shows the results when Player 2 uses knowledge and Player 1 plays randomly. The results are

expressed as a percentage. Players using the knowledge select moves greedily.

45

Algorithm 8 p\ayGame(Ant. opponent Set)

1 allGameSequences <— empty list
2 for all opp G opponentSet do
3 currentState *— current state of the game
4 gameSequence <— empty list
5 while terminal state of game is not reached do
6 if turn of opp to make move t h e n
7 make random move m or use knowledge
8 else if turn of Ant then
9 select move m using knowledge

10 end if
11- currentState <— upda.teSta.te(currentState, m)
12 gameSequence.a.dd(currentState, m)
13 end while
14 allGameSequences.add(gameSequence)
15 Perform TD(0) update on gameSequence
16 end for

Table 9.1: Player 1 uses cultural and coevolutionary knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 1

Win

100

915

99.2

100

69.2

Loss

0

0

0.8

0

12 5

Draw

0

8.5

0

0

18.3

9.4 Discussion

As seen in the results in the preceding section, when coevolution is complemented with cultural

evolution, performance of the player increases. Cultural coevolution allows the strongest players to

share their beliefs about the game with other existing players and future players. The belief space

knowledge is represented as a set of afterstates. These are states that have been seen bj most of

the strongest players and have led to wins in the majority of matches. Therefore, other pla\ers

can use these states to make moves, as these states are 'tried and tested" by the strongest players.

Such knowledge sharing speeds up learning and produces more accurate sampling of game sequences,

which in turn trains the feature values in the local knowledge via TD(0) learning more accurately.

Having established that the knowledge does indeed work, it is important to explore ways in which

it can complement other existing techniques for GGP. One such approach, which we ourselves use, is

the UCT (Upper Confidence bound applied to Trees) algorithm [17]. UCT, which is inspired from the

UCB algorithm [3], is a simulation-based algorithm which explores trees in an asymmetric manner

using Monte-Carlo sampling. It has proven to be extremely effective for games, as the current world

46

Table 9.2: Player 2 uses cultural and coevolutionary knowledge

Games

3 T-T-T

5 T-T-T

Connect-4

Breakthrough

Checkers

Player 2

Win

91.3

88.1

98.9

99.6

72.4

Loss

0

0

1.1

0.4

16.2

Draw

8.7

11.9

0

0

11.4

computer Go champion Mo-Go [13] and the winner of the last GGP competition CADIA-Player

[6], both use UCT in the their respective frameworks. CADIA-Player actually uses basic knowledge

in the form of a move-history heuristic [25] in its simulations. We have explored how to use game

knowledge with UCT in [19, 29] with some success. In the next chapter, we continue that work

by examining how knowledge learnt with cultural coevolution can be used with UCT to create an

effective General Game Player.

47

Chapter 10

Using the model with UCT

UCT has been discussed in Chapter 3, along with its role in General Game Playing In this chapter

we focus are attention on using the knowledge learnt via cultural coevolution to complement UCT

search The work discussed in this chapter has been presented in [29] and [19] This knowledge can

be used in two ways

1 To select unvisited nodes

2 To produce more accurate random simulations when assigning/updating node values

The value of a node will be give as V(s) which is the value of the afterstate using the feature

values In order to select nodes that have not been selected previously (not in the visitedTable of

Algorithm 1), UCT normally selects all nodes randomlv, with equal probability However using the

knowledge learnt it is possible to bias this selection in favour of nodes with higher values Therefore,

we assign these nodes an initial value based on V(S) This is similar to the approach taken in [12]

An experience of e is given to this value, which implies that UCT search would have fun for at least

e times through this node in order to come up with its value as V(s) Node selection is then done

using the standard UCT formula of (3 4) with X} being replaced by V(s) (for the initial case onlv)

N value and N visits are updated as given in (1)

Random simulations use this knowledge by using e—greedy selection, with a relatively high value

of e (this is done to prevent the simulations from becoming too deterministic) x

10.1 Experiments

In order to test the effectiveness of using knowledge with UCT we played matches between a player

using standard UCT, UCTs, and a player using knowledge for simulations, UCTK The experience

1 [12] presents an interesting discussion on the effect of different types of simulations in UCT search

48

Table 10.1: Number of wins for UCTs and UCTK over 100 matches per game
Game

Tic-Tac-Toe (small)
Tic-Tac-Toe (large)

Connect-4
Breakthrough

Checkers

Wins for UCTS

8
3

41
29
38

Wins for UCTK

18
10
59
81
62

Total Draws
74
87
0
0
0

given was that of 10. and greedy selection was done with probability 0.6. The rest of the setup is

similar as in the previous experiments

10.2 Discussion

The addition of knowledge during random simulations results in corresponding player winning the

majority of matches (with the exception of the Tic-Tac-Toe based games, as their very nature results

in UCT-based players getting a large number of draws). This can be attributed to the fact that UCT

search spends less time trying to stabalise values for the nodes; by initialising them, we save UCT

search some time. An interesting area to look into is the effect continuous evolution of knowledge

in future experiments, i.e. learning in the same manner as in the previous chapter during UCT

simulations, since each simulation is in effect a single game being played.

In the next chapter we provide the final conclusion of this dissertation, summarising the ideas

presented here, and also look into promising areas of future work.

49

Chapter 11

Final Discussion and Future Work

The major contribution of this dissertation is that it is introduces and examines a learning and

knowledge representation architecture for General Game Playing. We presented an approach to

learn game knowledge using cultural coevolution. TD(0) learning is used to learn feature values

for the local knowledge of each individual in a coevolutionary setup. ACO algorithms are used to

providing a mechanism for each individual to be able to communicate with all other individuals.

Finally, The fittest players are selected from each species to update the belief space knowledge,

which is used guide players in the same and future generations. The results of the matches against

a random player show a significant increase in performance of the player using the the cultural

coevolutionary knowledge. This is attributed to the fact that cultural coevolution allows knowledge

learnt by the strongest players to influence, via the belief space, all the players.

11.1 Discussion of Results

Reinforcement Learning (RL) has been successfully used in games, the most famous example being

that of TD-Gammon [33]. RL allows for the learning of value functions that are theoretically proven

to converge to the optimal value functions. We do not claim that our work here allows for the

learning of optimal value functions, but the experiments show the the value function learnt for

states is an efficient approximation of the optimal one.

Coevolution has also been used in games, with Blondie24 being a prime example of its success [10].

Whereas we use RL for single agent learning, introducing a population based model that coevolves

allows for the knowledge learnt by each individual using RL to refine more quickly as the populations

enter an arms race. However, there is still no communication between individuals of a population.

Ant Colony Optimisation methods allow for an easy way to allow the individuals to communicate

their knowledge of a game sequence to other individuals by means of pheromone deposits and

desirability values. Finally, adding belief space knowledge allows for the strongest members of the

50

population to share their knowledge about the entire game with the current and future generations.

The effectiveness of the addition of each of the aforementioned learning components is evident in the

results presented in this paper, as each new enhancement increases the winning rate of the player.

We do not claim that the knowledge learnt represents a near-optimal player. However, we believe

that the knowledge learnt can be used to enhance already proven methods for game playing. One

such method we investigate is UCT search. UCT search has been very successful in various games

such as Go. Othello and even GGP. However, convergence times in UCT search are very high if

the game trees are large. This can be resolved by using game knowledge to bias node selection

and improve random simulations. In GGP, using game dependent knowledge is impossible given

the premise of the challenge Therefore, we use the knowledge learnt by our methods to compare

their effectiveness with UCT search. Results show that there is a considerable improvement to UCT

search when using this knowledge.

11.2 Future Work

An assumption made during our experiments is that sufficient time is given to generate the knowl

edge. However, simulation-based approaches, like the one used to generate knowledge in our ap

proach, are easy to parallelise. [6] was parallelised during the final GGP matches in the last com

petition, and won the tournament. Therefore, another important direction in our work will involve

looking into ways to parallelise the knowledge generation algorithm. Time taken during training can

also be significantly reduced by using hashing for feature and state retrieval. It is important to note

that the current GGP competition held at Stanford University is not at all conducive to learning-

based players. The competition focuses on the ability of the player to use the logical structure of the

game description itself to play the game. This focus has prevented much research in using machine

learning for GGP, and, through various discussions with people in the field, has frustrated those

who would wish to explore learning for GGP. However, it is our hope that this focus will change

over time. Indeed, efforts are underway to start new GGP competitions that would allow sufficient

time for players to learn the game. An obvious advantage to learning is that the knowledge can be

stored and over time and after many games, be refined and perfected. This prevents re-learning the

game from scratch every time.

Another important direction in our future work is to explore different function approximation

techniques. Basic linear approximation is limited in its ability to accurately classify a large number

of different states, as discussed in Section 4. An alternative to the linear representation presented

in this paper is to use a non-linear function approximator, such as neural networks, and use neuro-

evolution to learn an appropriate network structure for the game. Another approach is to use

CMAC (tile coding) [21, 32], which is a linear approximation technique that groups the state space

51

into various tiles. The width and shape of the tiles are used to control the level of generalisation

in approximation. Regarding population models, it is possible to represent the population using a

different model, such as a PSO-based model or an Evolutionary Programming model. Future work

will investigate the effects of different population representations, and also explore different ways of

representing the belief space knowledge.

Through discussions with various researchers in the area of Artificial Intelligence and Games, it

has been realised that there is much that needs to be done to improve the standards of the current

General Game Playing architecture and competition. The development of a new Game Description

Language, one that, for instance, facilitates learning of state evaluation functions, is an issue that

has been raised time and time again during these discussions and is a critical part of the evolution

of General Game Playing into a more robust framework for research.

52

Bibliography

[1] h t t p : / / g a m e s . s t a n f o r d . e d u .

[2] h t t p : / / w w w . a c o - m e t a h e u r i s t i c . o r g / .

[3] P. Auer. N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multi-armed bandit

problem. Machine Learning, vol. ^7. no. 2/3, pages 235-256. 2002.

[4j B. Banerjee, G. Kuhlmami. and P. Stone. Value function transfer for general game playing. In

ICML Workshop on Structural Knowledge Transfer for ML. 2006.

[5] B. Banerjee and P. Stone. General game playing using knowledge transfer. In The 20th Inter

national Joint Conference on Artificial Intelligence, pages 672-777. 2007.

[6] Y. Bjornsoon and Finnsson H. Simulation-based approach to general game playing. In Proceed

ings of the Twenty-Third AAAI Conference on Artificial Intelligence. AAAI Press, 2008.

[7] J. Clune. Heuristic evaluation functions for general game playing. In Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence, 2007.

[8] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis. Politecnico di Milano,

Italy, 1992.

[9] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the

travelling salesman problem. IEEE Transactions on Evolutionary Computation, pages 53-66,

1997.

[10] D. B. Fogel. Blondie24: Playing At The Edge Of AI. Morgan Kaufmann, 2002.

[11] C. J Franken. PSO-Based Coevolutionary Game Learning. PhD thesis. University of Pretoria,

South Africa, 2004.

[12] S. Gelly. A Contribution to Reinforcement Learning; Application to Computer-Go. PhD thesis,

University of Paris South, 2007.

53

http://games.stanford.edu
http://www.aco-metaheuristic.org/

[13] S. Gelly and Y. Wang. Modifications of uct and sequence-like simulations for monte-carlo go.

In IEEE Symposium on Computational Intelligence and Games, Honolulu, Hawaii, 2007.

[14] M. Genesereth and N. Love. General game playing: Game description language specification,

h t t p : / /games . s tandf ord . edu.

[15] M. Genesereth and N. Love. General game playing: Overview of the aaai competition. AI

Magazine (Spring 2005), 2005.

[16] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0 reference manual.

Technical report logic-92-1, Stanford University.

[17] L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. In European Conference on

Machine Learning (ECML), pages 282-293, 2006.

[18] E. Koffman. Learning through pattern recognition applied to a class of games. In IEEE Trans,

on Systems, Man and Cybernetics, Vol SSC-4, 1968.

[19] S. Sharma, Z. Kobti and S. Goodwin. Learning and knowledge generation in general games. In

IEEE Symposium on Computational Intelligence and Games, Perth, Australia, 2008. (in press).

[20] L. Messerschmidt. Using Particle Swarm Optimization to Evolve Two-Player Game Agents.

PhD thesis, University of Pretoria, South Africa, 2005.

[21] W.T. Miller, F.H. Glanz, and L.G. Kraft. Cmac: an associative neural network alternative to

backpropagation. In Proceedings of the IEEE, volume 78 of Issue 10, pages 1561-1567, 1990.

[22] J. Reisinger, E. Bahcyeci, I. Karpov, and R. Miikkulainen. Coevolving strategies for gen

eral game playing. In IEEE Symposium on Computational Intelligence and Games, Honolulu,

Hawaii, 2007.

[23] R. G. Reynolds, Z. Kobti, T. A. Kohler, and L. Y. L. Yap. Unraveling ancient mysteries:

reimagining the past using evolutionary computation in a complex gaming environment, 2005.

[24] R. G. Reynolds and S. Saleem. pages ppl-10, 2003.

[25] J. Schaeffer. The history heuristic and alpha-beta search enhancements in practice. IEEE

Transaction on Pattern Analysis and Machine Intelligence, pages 1203-1212, 1989.

[26] S. Schiffel and M. Thielscher. Fluxplayer: A successful general game player. In Proceedings of

the Twenty-Second AAAI Conference on Artificial Intelligence, pages 1191-1196, 2007.

[27] S. Sharma and Z. Kobti. A multi-agent architecture for general game playing. In IEEE Sym

posium on Computational Intelligence and Games, Honolulu, Hawaii, 2007.

54

[28] S. Sharma, Z. Kobti, and S. Goodwin. General game playing with ants. In The Seventh Inter

national Conference on Simulated Evolution And Learning (SEAL'08), Melbourne, Australia,

2008. (in press).

[29] S. Sharma, Z. Kobti, and S. Goodwin. Knowledge generation for improving simulations in uct

for general game playing. In 21st Australasian Joint Conference on Artificial Intelligence, 2008.

(in press).

[30] S. Sharma, Z. Kobti, and S. Goodwin. Coevolving intelligent game players in a cultural frame

work. In 2009 IEEE Congress on Evolutionary Computation (IEEE CEC 2009), Trondheim,

Norway, 2009. (submitted).

[31] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies,

2002.

[32] R. Sutton and A. Barto. Reinforcement Learning, An Introduction. MIT Press, 1998.

[33] G. J. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM,

pages 58-68, 1995.

[34] C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, Cam

bridge, England, 1989.

[35] M. Winikoff. h t tp : / /www3.cs .u twen te .n l / - s choo ten /yp ro log .

55

http://www3.cs.utwente.nl/-schooten/yprolog

VITA AUCTORIS

Shiven Sharma was born in Ludhiana, Punjab, India in 1984. He recieved his schooling from Air

Force Bal Bharti School in New Delhi. From there he moved to Windsor, Ontario, Canada in 2002

where he pursued his Bacher of Science (Honours) degree with specialisation in Artificial Intelligence,

graduating with distinction in 2006. He started his Master of Science degree in the same year.

56

	Using Cultural Coevolution for Learning in General Game Playing
	Recommended Citation

	tmp.1579797270.pdf.kt51q

