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Abstract 

Traditionally, the construction of game playing agents relies on using pre-programmed heuristics 

and architectures tailored for a specific game. General Game Playing (GGP) provides a challenging 

alternative to this approach, with the aim being to construct players that are able to play any 

game, given just the rules. This thesis describes the construction of a General Game Player that is 

able to learn and build knowledge about the game in a multi-agent setup using cultural coevolution 

and reinforcement learning. We also describe how this knowledge can be used to complement UCT 

search, a Monte-Carlo tree search that has already been used successfully in GGP. Experiments are 

conducted to test the effectiveness of the knowledge by playing several games between our player 

and a player using random moves, and also a player using standard UCT search. The results show 

a marked improvement in performance when using the knowledge. 
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Chapter 1 

Introduction 

This thesis addresses the challenge of building intelligent General Game Playing agents. The field 

of General Game Playing (GGP) is relatively new in the field of Artificial Intelligence (AI) research, 

and provides an important leap in the direction and approach of the construction of intelligent agent 

systems. In the past, much of the emphasis in the creation of intelligent systems was on their ability 

to be proficient only for tasks they were constructed to perform. As an example, the IBM Deep Blue 

computer had been constructed specifically for being good and intelligent at playing chess. However, 

if any other game was given to it, it would be unable to play it as a result of its specialisation. GGP 

systems, as the name implies, are far more general. They are able to accept descriptions of any 

game, and are able to play them, either by making legal random moves, or legal moves made in an 

intelligent manner, depending on their construction. 

The importance of this research lies in the fact that GGP systems provide a step from intelligent 

systems giving an illusion of intelligence to intelligent systems that act in an intelligent manner. 

This difference is clear from the distinction made above between systems like Deep Blue and GGP 

systems. GGP systems demonstrate their intelligence in being able to successfully play any game, 

given only the rules of the game. One must delve into the areas of machine learning, knowledge 

representation and pattern recognition in order to be able to construct a proficient player. 

A brief overview of previous work done in the area of GGP and details of the work being 

done based on the foundations laid down by Stanford University, in context of their annual GGP 

competition, is now provided. 

1.1 Previous work in General Game Playing 

Though pure General Game Playing capabilities have not entirely been implemented, systems have 

been designed which display a general behaviour with respect to a specific class of games. One 

class of games where general game playing has been investigated are positional games. These type 
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of games were formalised by [18]. Some examples of position games include Tic-Tac-Toe, Hex. the 

Shannon switching games. 

A position game can be defined by three sets, P, A, B. Set P is a set of positions: with set A and 

B both containing subsets of P In other words, sets A and B represent a collection of subsets of P. 

with each subset representing a specific positional situation of the game. The game is played with 

two players, with each player alternating in moves, which consist of choosing an element from P 

The chosen element cannot be chosen again. The aim for the first player is to construct one of the 

sets belonging to A. whereas the aim for the second player is to construct one of the sets belonging 

to B. 

Programs that are capable of accepting rules of positional games, and. with practice, learn how to 

play the game have been developed. Koffman constructed a program that is able to learn important 

board configurations in a 4 x 4 x 4 Tic-Tac-Toe game. This program plays about 12 times before it 

learns and is effectively able to play and start defeating opponents. A set of board configurations 

are described by means of a weighted graph. 

1.2 The Stanford University G G P Project 

The annual General Game Playing Competition [15] organised by Stanford University has been 

instrumental in bringing about renewed interest in GGP. The rules of the games are written in 

Game Description Language (GDL) [14], which is syntactically similar to prefix KIF [16]. As a 

consequence, most of the current research in GGP is based on the foundations laid down by the 

Stanford Group. The tournaments are controlled by the Game Manager (GM) which relays the game 

information to each Game Player (GP) and checks for legality of moves and termination of the game. 

Communication between players and the GM takes place in the form of HTTP messages. A more 

detailed description of the architecture and game rules can be found at [1]. Successful players have 

mostly focused on automatically generating heuristics based on certain generic features identified 

in the game. Cluneplayer [7] was the winner of the first GGP competition, followed by Fluxplayer 

[26]. Both these players, along with UTexas Larg [4] use automatic feature extraction. Evaluation 

functions are created as a combination of these features and are updated in real-time to adapt to the 

game. Another approach that has been taken is in [5], where transfer of knowledge extracted from 

one game to another is explored by means of a TD(A) based reinforcement learner. CADIA-Player 

[6] was the first General Game Player to use a simulation based approach, using UCT [17] to search 

for solutions, and was the winner of the last GGP Competition. [27] also explored a Monte-Carlo 

approach in which random simulations were generated and the move with the highest win rate was 

selected. To improve the nature of these simulations, patterns in the sequences were extracted and 

used to generate new sequences. [22] have discussed a co-evolutionary approach using NEAT [31], 
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an algorithm for automatically evolving neural networks using an evolutionary approach, for GGP 

1.3 Thesis Contribution 

The major contributions thesis can be enumerated as follows: 

1. This work represents, what is to the best of our knowledge, the first attempt at using machine 

learning techniques for GGP 

2. We use cultural coevolution to learn knowledge in two player, zero-sum. perfect information 

deterministic games in the total absence of any prior knowledge or information about the game. 

3. We demonstrate that effectiveness of this knowledge by playing various games for which the 

knowledge is learnt using our approach against a standard random player. The matches are 

against a random player because the current GGP format does not support learning players. 

4. We combine the knowledge with UCT search, and demonstrate that this combination improves 

the performance of UCT for general games. 

There is a growing interest in the academic community at starting new GGP competitions that 

will allow learning players to compete. As a result, there is a great scope for future work in the area 

that looks into developing architecture and description languages that will suit learning players. The 

work presented in this thesis is based on the format developed at Stanford, which is not conducive 

to learning players. However, the principles and algorithms presented here can be used with any 

game description language that allows for a random game to be played and state descriptions to be 

stored and recognised. Future work which develops languages and architetures for learning players 

will further complement the ideas presented in this work. 

1.4 Organisation 

This dissertation is organised as follows: Chapter 2 provides an overview of the GGP framework as 

laid down by Stanford University, including the Game Description Language. We use this framework 

as a testbed for our work. Chapters 3 and 4 provide brief introductions to Reinforcement Learning 

and the Evolutionary methods that we use in our work. Chapter 5 gives the basic structure of the 

player and also describes how the knowledge is represented. Chapters 6 discusses how RL can be 

used in GGP. Chapters 7 to 9 discuss using complementing the RL architecture with coevolution, 

ant colonies and cultural algorithms respectively. In Chapter 10 we describe how the knowledge 

learnt can be used with UCT search. Finally, Chapter 11 gives the various directions for future work 

in learning for GGP. 
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Chapter 2 

The General Game Playing 

Architecture 

In this chapter, we first review a formal description of what a game is. We then look into the syntax 

and semantics of the Game Description Language (GDL). The game of Tic-Tac-Toe is chosen to 

provide an example on how the GDL is written and interpreted. Then, we describe the basic 

communication mechanisms between the Game Manager (GM), and the Game Player (GP). We 

discuss the types of messages involved in the communication, and detail out a sequence of message 

exchanges between the GM and the GP for a small game. Much of the details of this chapter are 

based on [14, 15]. 

2.1 Formal Game Description 

The games considered in GGP can be considered to be finite, synchronous games. The game runs 

in an environment which consists of a finite number of game states. A single state is designated 

as the start state. The game also consists of one or more terminal states. The number of players 

playing the game is a fixed, finite number. Whenever a player is in a game state, the player has a 

finite number of actions possible from that state. All players make moves on all steps. Whether or 

not they move from one state to another, or stay in the same state, is dependent on the move made, 

and the state of the game at that time. The environment updates the game state only when players 

make moves. 

From the above description of a game, it is clear that we can view a game to be a finite state 

machine. Below, we list the various components of the machine: 
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S : A set of game states 

'"li f"2, • • • • rn : The various roles, or players of an ra-player game 

Ai,A2,--- ,An : Sets of actions for each player. A set At corre

sponds to the actions possible by player rt 

h- h, • • - 'n : Legal actions from a particular state. Each lt can 

be considered to be a subset of Ak x S 

u : An update function from one state to another 

based on all the moves made 

u : Ai x A2 x • • • x An x S —> S 

si : The start state 

Pi>92, • • • ,9n • Each gt C S x 1, • • • , 100. The value of a game 

outcome for a player. For player r t , the value for 

a terminal state s is given to be gt(s, value) 

T : The set of terminal states. T QS 

2.2 Game Description Language: GDL 

A Game Description Language (GDL) is a language that can be used to describe games of complete 

or partial information. It is a logical language, using logical sentences to describe rules of a game. 

Syntactically, it is similar to LISP in infix notation. As we will later describe, it is relatively easy 

to parse this into an equivalent form based on predicate calculus. In this section, we examine the 

nature of GDL, using Tic-Tac-Toe as an example to explain it. 

As a game can be viewed as a finite state machine, each game has a start state. For Tic-Tac-Toe, 

the start state is a 3 x 3 gird in which each cell is blank. Therefore, we can initialise each cell to 

be blank by using the init keyword of GDL in the following way (the example below illustrates only 

the first row): 

i n i t ( c e l l ( l , l . b ) ) 

i n i t ( c e l l ( l , 2 , b ) ) 

i n i t ( c e l l ( l , 3 , b ) ) 

ce l l (x , y, z) implies that the cell in row x and column y is initialised, or set, to z. In the case 

above, z is b, implying blank. 

Since the game is a two-player game, we have to give the control of the play to the first player. 
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This can be done b\ the following statement: 

i n i t ( con t ro l (wh i t e ) ) 

Player one has been given the name white, and the control relation takes the players name as 

the argument, and gives that player the ability to make the move. 

A GDL should be able to define which moves are legal. In Tic-Tac-Toe. a move is legal for a 

player if it is that players turn, and the player marks a cell that has not already been marked. In 

the eventuality that neither of the conditions are true for a legal move, the player waits (the legal 

action in this case is termed a noop). This can be illustrated as shown below: 

legal(P.mark(M.N)) < = trae(cell(M.N.b)) k t rue (cont ro l (P) ) 

l ega l (vh i te .noop) < = true(cell(M.N.b)) k t rue (con t ro l (b l ack ) ) 

legal (b lack,noop) < = t rue(cel l (M. N. b)) k t rue (con t ro l (whi te ) ) 

In the above statements, the first statement implies that if the player P has the control (i.e.. it is 

player P"s turn to move), and if the cell in row M and column N is blank, then the player is allowed to 

mark that cell. Otherwise, if the control is with the other player, then the player performs a noop 

action, which is an abbreviation for no operation. 

Whenever a cell is marked with an X or an 0. the game states are updated. The update rules are 

specified by the next predicate. These are shown as follows: 

next(cell(M. N. x)) < = does(white.mark(M. N)) & true(cel l (M. N. b)) 

next(cell(M. N. o)) < = does(black,mark(M. N)) k t rue(cel l (M. N. b)) 

next(cell(M.N.W)) < = does(true(cell(M.N.W))) k d is t inct(W.b) 

next(cell(M. N. b)) < = does(W.mark(J. K)) k t rue(cel l (M. N. V)) & 

(dist inct(M. J) | d is t inct(N.K)) 

The first two statements describe that if the control is with player white or black, then, if the cell 

they are marking is blank initially, then that cell is marked with an X or an 0 respectively. The third 

statement guarantees that the cell being marked is always blank. The fourth statement is an update 

statement for a cell that is blank and is not marked. It ensures that if another cell, distinct from 

this cell, is marked, and this cell is blank, then this cell remains blank after the move is executed. 

Even- game has a set of terminal states. In Tic-Tac-Toe, these are when any single row. column 

or diagonal of the board is marked with all X"s or all 0's. or in the eventuality that the game fails to 
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achieve these conditions, i.e., a stalemate. Therefore, the terminal states can be defined as follows: 

t e rmina l < = l ine(x) 

t e rmina l < = l ine(o) 

t e rmina l < = open 

While the terminal states specify the states at which if the game is, then the game is done. 

However, it does not specify the goals of the players. For each player, each goal can be assigned a 

numerical value. The player with the highest value of the goal wins the game. In a zero-sum game 

such as Tic-Tac-Toe, there is only one winner. However, it is to be noted that not all games are 

zero-sum, and games can have multiple winners. In these cases, the players with the highest goal 

values win the game. In order to specify goals for Tic-Tac-Toe, we can define them as follows (only 

the goals for white are shown): 

goal(white , 100) < = l ine(x) 

goal(white , 50) < = l ine(x) & l ine(o) & open 

goal(white, 0) < = l ine(o) 

The goal of white is maximised when white gets a line of X's (a line in this case is either a row, 

column or diagonal). The second goal specifies an example of a draw, in which neither player is able 

to get a line of X's and X's. If the other player is able to get a line of 0's. then the goal value of white 

becomes 0, i.e., white loses the game. 

2.3 The Communication Model 

The architecture of the GGP model that will be tested for this project will consist of a Game Manager 

(GM) and the Game Player (GP). The Game Manager is the centralised server machine that holds 

the game descriptions, allows for players to communicate and maintains the state of the overall 

game. The Game Player initiates communication with the GM, during which the GM provides the 

GP with the rules, written in GDL. The GP then has a limited time to learn from those rules. 

Communication takes place in the form of HTTP messages that are passed between the GM and 

the GP. The start message, sent to the GP by the GM, has the form of: 

(START < MATCH ID > < ROLE > < GAME DESCRIPTION > < STARTCL0CK > < PLAYCLOCK >) 

Where MATCH ID is the unique identification for that particular match, the ROLE is the role of 

the player assumed by the GP, GAME DESCRIPTION is the description of the game in GDL, and 
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STARTCLOCK and PLAYCLOCK are integer values representing the move times. Game descriptions sent 

are in the prefix form of the GDL described in the previous section. 

The PLAY command takes the form: 

(PLAY < MATCH ID > (< Aj > < A2 > • • • < AD >)) 

where each < An > is the action taken by the players in the previous steps. These actions are 

well-ordered; the ordering sequence is specified by the game description axioms. The reply to the 

PLAY command is the actual move made by the GP. 

The STOP command takes the form: 

(STOP < MATCH ID > (< A,. > < A2 > • • • < An >)) 

where each < An > is the same as what is described above in the PLAY command. This message 

terminates the game. 

An example of the basic communication model that is used by the General Game Playing (GGP) 

server, Game manager, and the Game Player is illustrated below. The example used is that of the 

game of Blocks. The valid moves for the game are MOVE, DROP and GRAB. 

2.4 Implementation Details 

In this chapter we will examine in detail the steps necessary for the GGP programme to take in 

order to be able to successfully play a game, given the game description. The previous chapters 

have examined the abstract communication model and methods to build the knowledge base from 

the game rules. Now. the approach taken to facilitate the player to be able to make legal moves and 

update states is described. 

2.5 Updating States and Making Moves 

Very briefly, the task of making a legal random move can be seen as consisting of the following steps: 

1. Obtain the moves made by each player in the current turn (if the game is just starting, then 

this step is ignored). 

2. Use these moves to update the game states (if the game is just starting, then this step is 

ignored). 

3. Obtain all the legal moves that can be made in the current game state. 

4. Select a random move from this set and send that back to the GM. 
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As we have seen from the description and syntax of the GDL, the game descriptions are written 

in a logical language. Updating states and obtaining legal moves is therefore a process of inferencing 

and reasoning using the rules. As we have seen in the previous chapter, converting these rules 

into an equivalent Prolog code simplifies this task. This code, along with additional ground clauses 

and rules, make up the knowledge base of the game. We use Prolog's inbuilt inference engine to 

handle the inferencing procedures. Therefore, given all this, the task of updating states is simply 

the modification of the state clauses in the knowledge base. 

2.5.1 Updating the states 

The states are represented as ground clauses in the knowledge base. The next predicate takes 

a state description as an argument (this description represents the state valid when the moves 

communicated by the GM for all players have been executed). This argument is a valid state iff 

the next rule evaluates to true. If this the case, then we need to update the knowledge base by 

removing the current state description, and replacing it with the argument of the next rule. In 

Prolog terminology, this would imply: 

1. Retract all the current state ground clauses. 

2. Assert the state descriptions unified to the argument of the next rule after its evaluation. 

The idea of updating states can be illustrated by a simple example. Consider the following 

ground clauses and the next rule for the game of Tic-Tac-Toe: 

i n i t ( c e l l ( l , l , b ) ) 

i n i t ( c e l l ( 1 . 2 , b ) ) 

i n i t ( c e l l ( 1 . 3 , b ) ) 

next(cell(M.N,x)) < = does(white,mark(M. N)) & true(cell(M,N.b)) 

If. during game play, the player with the role white marks the cell at row 1 and column 2 with an 

X, then the ground clause does(white.mark(1.2,x)) is true. We need to assert this ground clause 

into the knowledge base so that the next rule can be evaluated. When the Prolog inference engine 

starts to evaluate the rule, the variables M and N are unified with 1 and 2 respectively. Therefore, 

the new state to be asserted is c e l l ( l , 2 . x) and the state to be retracted is ce l l (1 .2 ,b ) . 

2.5.2 Obtaining a legal move 

Moves that are legal, given the current game state, are represented by the arguments to the legal 

predicate in the knowledge base. Once the states are updated as described above, we need to evaluate 

the legal rules to obtain all possible legal moves that can be made. 
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Now the evaluation procedure to obtain a legal move is described. The legal predicate takes two 

arguments: the first argument represents the player, and the second argument represents the move 

that the player can make. The constraints under which this move can be made are represented by 

the predicates on the right hand side of the rule. If all these predicates evaluate to true, then the 

player can make the move. 

The procedure for obtaining a legal move is similar in concept to that of updating states. The 

idea is to unify the variables of the rule and use the value for the move as a legal move. Prolog 

automatically performs the unification during evaluation, and the legal moves can easily be collected 

in a list. Therefore, to obtain a set of legal moves, we simply call all the legal rules and collect the 

assignments to the argument corresponding to the move in a list. After this, it is a simple matter 

of selecting a random move and sending it to the game manager. 

Below, we illustrate an example of obtaining a legal move. Consider the following clause for 

making a legal move: 

legal(W.mark(X.Y)) < = cell(X.Y.b) k control(W) 

In the clause above, we check for two state conditions to make sure if the move represented in 

the argument to legal can be made. Consider also the following state clauses: 

c e l l ( l . l .b) 

c e l l ( 1 . 2 . c) 

c e l l ( l , 3 . b ) 

control (whi te) 

Assume that our role is that of white. We call the l e g a l predicate to provide us with possible 

legal moves. Upon running, W is unified with white (as the current state has control (whi te)) . Xow. 

X and Y are first unified with 1 and 1 respectively (from the state c e l l ( l . l .b)) . Therefore, the first 

possible legal move that we can make will be mark(l. 1). However, this is not the only move that we 

can make. Notice that following the same procedure. X and Y also get unified to 1 and 3 respectively. 

Therefore, another move that we can make is mark(1.3). Therefore, for the above descriptions, we 

can make two legal moves. In order to make a move, we randomly select one of these moves, and 

send it as a reply to the game manager as our move. 

For now. we have seen how to get a list of legal moves. An important aspect of the game player 

programme will be to decide which of these moves to make. In subsequent chapters, methods on 

how to make intelligent legal moves will be explored. For an intelligent player, the main ideas of 

updating states and getting a list of possible legal moves is the same: what changes is the selection 
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process for a move to chose as the final response. 
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Game Manager (GM) Game Player (GP) 

1 3M sends start message with rules, player ID match ID, start clock and 
play dock 

2 GP sends message with body READY, indicating it is ready to play a game 

3 GM sends message with body PLAY, and the match ID, and NIL, 
indicating no moves made yet 

4 GP. after waiting for at least as much time as specified by play dock, 
calculates a move and sends it to the manager as the body of an HTTP 
message In our example, the move is MOVE 

5 GM now sends a message with the match ID and a list representing all the 
moves made in this turn In this case the list is (MOVE) 

6 GP sends a message with body MOVE as its move 

7. GM sends a message with body match ID and (MOVE) 

8 GP sends message with body GRAB as its move. 

9. GM sends message with body match ID and (GRAB) 

10 GP sends message with body MOVE, as its move 

11.GM sends a message with body match ID and (MOVE) 

12 GP sends a message with body DROP, as its move 

13. GM sends a message with body match ID and(DROP) This is the 
winning move 

14. GP sends a message with body DONE since it has finished the game 

Figure 2.1: Communication between the Game Manager (GM) and the Game Player (GP) for the 
game of Blocks. 
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Chapter 3 

Reinforcement Learning 

This chapter provides a brief introduction to Reinforcement Learning (RL). The GGP player relies 

heavily on RL, using both Temporal Difference Learning and UCT (Upper Confidence Bounds 

Applied to Trees) search. Both these topics are discussed in later sections. Much of the content of 

this chapter is derived from [32] which is the standard text for RL. 

Reinforcement learning is not a method or an algorithm. Its an approach, a problem solving idea. 

It is different from supervised learning, where an external supervisor directs the learning by telling 

the algorithm whether or not they are on the right track. What if the learning is taking place in an 

unknown environment, where there just can't be a supervisor? In such a case, the agent must learn 

from its experiences and interaction with the environment. This is where RL comes in. 

Since RL takes place in real-time, the agent needs to constantly monitor its environment, taking 

into account any unpredictable events that might happen as a result of its action, and then react 

appropriately. The goals are defined explicitly for the agent, so the agent can monitor its progress 

towards the goal as it takes actions and interacts with the environment, using the experience learnt 

to improve its performance. 

The four main features in a RL system are: 

1. Policy: Given a state, what action should be taken? In other words, a policy is a mapping 

from a state to a set of possible actions that can be taken from that state. It determines the 

agents behaviour. 

2. Reward function: Indicates what is good or bad. Defines the main goal of the reinforce

ment agent. It associates with each state or state-action pair a number, which indicates the 

intrinsic desirability of that state or pair. Consequently, it provides an immediate feedback of 

a situation. The aim of the agent is to maximise the total reward it receives in the long run. 

The agent has no control over the reward function; it can't modify it. 
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3. Value function: Tells the agent the total reward it can receive from a situation. Whereas the 

reward gives an immediate feedback, the value function gives the long-term feedback, taking 

into account the rewards from its current situation and all possible states that are likely to 

follow it. 

4. Environment Model: Gives a model of the environment in which the agent is operating. It 

tells the agent how the environment behaves, and what the agent can expect when it takes 

actions from states. 

In subsequent sections we examine the exploration-exploitation dilemma which lies at the heart 

of RL, Temporal Difference Learning and Monte-Carlo Learning methods in RL. 

3.1 The Exploration-Exploitation Dilemma 

Since action selection is a core component of RL. a natural question that arises is whether an agent 

should exploit actions based on what it already knows (i.e. it greedily selects the best action) or 

should it instead explore new actions, with the hope of possibly increasing its reward? This is known 

as the exploration-exploitation dilemma. This question also arises in the UCT algorithm described in 

later chapters, where the player needs to select a move to be made and descend down the game tree. 

Therefore, it is worth examining this in more detail. These questions are perhaps best explained in 

the literature in the form of the N-armed bandit problem. 

3.1.1 The N-Armed Bandit 

The bandit in this case is an analogy to a slot machine, with N arms, and the gambler is the 

agent. Each time the agent selects (or pulls) an arm, it gets a reward from a stationary probability 

distribution (in other words, its not a fixed reward). A probability distribution is associated with 

each arm. The goal of the agent is to maximise its total reward over a number of plays, where each 

play is the selection of an arm. 

Assume that for each arm, the agent maintains an estimate of its value. This value is the mean 

reward it has received from that arm so far (discussed in more detail below). Now. at time step k. 

what action should the agent select? The one with the highest estimate, called the greedy action 

(exploitation), or a non-greedy action (exploration)? Selecting a non-greedy action may well result 

in a better reward in the long run. or it may not. Deciding between exploration and exploitation 

depends on many things, such as the value of the estimates, the certainty with which we know these 

values and the remaining plays. 
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Estimating and Selecting Action-Values 

The actual value of the action (i.e. play of an arm) is the mean reward received from selecting it. 

However, since the distribution from which the reward comes is not known, we can only make a 

guess as to what reward we will get from it. One simple way to estimate this is by keeping track 

of all the rewards received for k selections for action o, and then taking the average of it. In other 

words, if total plays have been t, and action a has been selected ka times, then the estimated reward 

from a will be 

Qt{a) = ra+r2 + rt + ... + rka ^ 

This is called the sample average estimate for a. As the number of plays approaches infinity. 

Qt{a) will become equal to Q1 (a), which is the actual value for a. 

Now that we have estimates, how do we select actions based on these estimates? A pure greedy 

method would mean selecting a' for which Qt(a') = maxaQt{a). In other words, at time t, select 

the action which has the highest estimated value. This would, however, mean that we never explore. 

An alternative to this is selecting the greedy action most of the time, but with a small probability 

e, select an action randomly, without considering its value. This is called the e — greedy action 

selection method. For an infinite number of plays, each action will be sampled an infinite number 

of times. If the rewards are fixed for each action, then, after selecting an action once, we know the 

value. In this case, greedy action selection will work. However, most applications are non-stationary 

(the rewards change over time), and so exploration is needed. 

Another approach to selecting actions is by taking into account the action values. The probabil

ities are weighted by the value of each action. So, the probability of selecting action a £ A will be 

given by 

eQ(«0/r 
P(fl) = E AW (3"2) 

This is called the softmax selection, r is called the temperature parameter. As r —> 0. action 

selection becomes closer to greedy. 

3.2 Goals and Rewards 

As mentioned before, the agent attempts to maximise the long term reward (not the immediate 

reward). This formalisation is a key feature in R.L; providing the agent a clear learning task. 

Rewards then should be given in a clever manner, so that the agent can use them to achieve the 

goal. For example, in a path finding task, if we want the agent to find the quickest route from a 

starting point to an ending point, we can let it have a negative reward for each step it takes, and 
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a positive reward for when it reaches the ending point. Clearly, the shortest path will have the 

highest reward. Another important thing to remember is that rewards are not meant to give the 

agent knowledge on how to accomplish something; they are meant to tell it what to accomplish. 

3.3 The Markov property and Markov Decision Processes 

Is it necessary for the agent to know how it reached a state in order to make a decision? A good 

state will tell the agent all that has happened, and at the same time retain all information that 

is needed by the agent to make a decision to select an action. Such a state is said to be Markov. 

In other words, all that is needed to move on to the next state is the current state, not the entire 

sequence telling how you reached the current state. Formally, the Markov Property is defined as 

P(st+i,<h+i\st,<h-St-i,at-i,st-2,at-2, • • • ,*o,ao) = P{st+i-at+i\st.at) 

The Markov property is an important part in RL as it assumes that making decisions are a 

function of only the current state. 

Any RL task having the Markov property is a Markov Decision Processes (MDP), defined by the 

set of states, set of actions and the one-step dynamics of the environment. A stochastic M.D.P (a 

deterministic M.D.P can easily be derived from this definition) is defined as {§. A, P, E} , where S is 

the set of states, A is the set of actions, P£a, gives the probability that the next state will be s' if the 

agent takes action a in state s and R°s, is the expected reward rt+l the agent gets by transitioning 

from state s at time step t to state s' by taking action a. Clearly, P£s, and K°3, specify the one-step 

dynamics of the system. 

3.4 Value functions 

A value function simply tells how good a state (or a state-action pair) is. i.e. how much discounted 

future reward (expected return) can be received. If a state sa gives a higher return than a state st,, 

then the former has a higher value than the latter. Since a value is the expected return, which in 

turn is defined by the actions that are taken from states, which in turn are defined by the policy we 

follow (since a policy tells us what actions to take), values are related to specific policies. 

We can define a value for a state s under a policy IT as V*(s), called the state value function, and 

the value of a state-action pair (s,a) as Qn(s,a), called the action-value function. V"*(s) gives the 

expected return from state s if from s we follow (select actions) policy n. Qn(s, a) gives the expected 

return of taking action a from state s if, well, we take action a from state s and then follow policy 

IT. Usually, a is taken using some other policy. Naturally, if a was taken using 7r itself, Qw(s, a) will 

be the same as ^ ( s ) . 
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Since the values are the expected rewards starting from s or (s, a), we get 

V'(a) = E^Rtlst = s} = E„ I ^rt+1+k\at = a \ 

Q*(s,a) = Ev{Rt\st = s.at = a} = ET I ^ r t + 1 + f c | s t = s,at = a\ 
U=o J 

These values are represented in a tabular form, one for each state or state-action pair. Of course, 

this is not the best way, as if there are too many states, then we run into a problem. Function 

approximation techniques can be used to deal with this, in which the approximators take as inputs 

state parameters representing V and/or Q and output the corresponding values. 

In the next section, we discuss Temporal Difference Learning. These algorithms are amongst the 

most commonly used in RL problems. They do not need a model of the environment (the dynamics 

of the environment) and are therefore practical for most large, real-world problems. Since we use 

TD(0) for our work in this thesis, we only discuss TD(0) in the following section. 

3.5 Temporal Difference Learning 

Temporal Difference (TD) Learning algorithms are a family of RL algorithms that learn through 

errors in the value functions at each temporal step in the state sequence. The simplest algorithm is 

TD(0), which updates the value function for a state s using the error (difference) between the value 

function of s, V(s), and the value function of the successor state s', V(s'). This update is shown as 

V{s)i-V(s)+a[ r + -yV(s') -V(s)] (3.3) 
" v ' 

target for TD(0) 

a is called the learning rate, and usually decreases over time, r is the reward received after tran

sitioning from s to s' The update can be thought of as moving the previous value function for s 

towards the value given by the target. The update shown in Equation (3.3) is used to learn state 

value functions. Algorithms such as SARSA [32] and Q-Learning [34] are used to learn action-value 

functions. 

Value functions are typically represented as tables, with one entry for each state or state-action 

pair. However, in problems with large state spaces, this is not practical. In such cases, function 

approximation techniques are used with parameterised functional forms of states, using a parameter 

vector 9. State values are therefore calculated entirely from this vector, and changes are made to the 

parameters instead of each individual state. The representation of the parameter vector depends on 

the problem formulation. 

One of the most famous applications of TD Learning to games is TD-Gammon [33]. a backgam-
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mon player, which uses TD(A). a TD Learning algorithm. Neural Networks (NN) are used to 

approximate the value functions of states, with each node in the NN corresponding to a single pa

rameter. Using a number of simulated self-play games, TD gammon was able to reach the level of 

grandmasters in backgammon. 

In the next section, we describe the UCT algorithm, which uses RL to search a tree and therefore 

can be used effectively for searching game trees. We also discuss how this algorithm can be used in 

the GGP framework. 

3.6 UCT: Upper Confidence Bound Applied to Trees 

UCT [17] is an extension of the UCB1 algorithm [3], and stands for Upper Confidence Bounds 

applied to Trees. The UCB1 Algorithm aims at obtaining a fair balance between exploration and 

exploitation in an N-Armed bandit problem, in which the player is given the option of selecting one 

of K arms of a slot machine (i.e. the bandit). This has been discussed in a previous section. 

The selection of arms is directly proportional to the total number of plays and inversely propor

tional to the number of plays of each arm. This is seen in the selection formula 

The arm maximising (3.4) is selected. Xj is the average return of arm j after n plays, and Tj(n) is the 

number of times it has been selected. C controls the balance between exploration and exploitation 

of the tree. This formula is used in our player. 

UCT extends UCB1 to trees. A single simulation consists of selecting nodes to descend down 

the tree using and using (3.4) and random simulations to assign values to nodes that are being seen 

for the first time. CADIA-Player [6] was the first General Game Player to use a simulation based 

approach, using UCT to search for solutions, and was the winner of the last GGP Competition. 

UCT has also been used in the game of Go, and the current computer world champion, Mo-Go [13]. 

uses UCT along with prior game knowledge. [27] also used simulations to build a basic knowledge 

base of move sequence patterns in a multi-agent General Game Player. Selection of moves was done 

based on the average returns, and mutation between move sequence patterns was done to facilitate 

exploration. An advantage of a simulation based approach to General Game Playing is that for any 

game, generating a number of random game sequences does not consume a lot of time, since no effort 

is made in selecting a good move. UCT is able to guide these random playoffs and start delivering 

near-optimal moves. However, even with UCT. lack of game knowledge can be a significant obstacle 

in more complex games. This is because in the absence of any knowledge to guide the playoffs, it 

takes a large number of runs of the UCT algorithm to converge upon reasonably good moves. 
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3.6.1 UCT applied to General Games 

In order to make a move the current state is set as the root node of a tree w hich is used bv LCT 

To allow for adequate exploration the algorithm ensures that each child is visited at least once To 

manage memory, even node that is visited at least once is added to a visited table Once a node 

is reached which is not in the table a random simulation is carried on from that node till the end 

of the game The reward received is backed up from that node to the root Algorithm 1 shows the 

basic method of UCT and the update of values in a 2 plaver zero-sum game A number of such 

simulations are carried out each starting from the root and building the tree asymmetricallv 

Algorithm 1 UCTSearch(root) 

1 node = root 
2 while visitedTable contains(node) do 
3 if node is leaf then 
4 return value of node 
5 else 
6 if node children size == 0 then 
7 node createChildrenQ 
8 end if 
9 selectedChild = LCTSelect(node) 

10 node = selectedChild 
11 end if 
12 end while 
13 visitedTable add(node) 
14 outcome = RandomSimulation(node) 
15 while node parent / null do 
16 node visits = node visits + 1 
17 node wins = node wins + outcome 
18 outcome = 1 — outcome 
19 node = node parent 
20 end while 

The value of each node is expressed as the ratio of the number of vv inning sequences through it 

to the total number of times it has been selected In order to select the final move to be made the 

algorithm returns the child of the root having the best value 

3.7 Conclusions 

This chapter provided a basic introduction to Reinforcement Learning (RL) It is beyond the scope 

of this dissertation to provide a comprehensive overview of RL, however the reader is directed to 

[32] for a more thorough mtroduction to the fundamentals of RL Indeed the material of this chapter 

is adapted from this book This introduction to RL is sufficient to understand the concepts of RL 

that have been used m this work 

In the next chapter we will provide a brief overview of the evolutionan methods used for GGP 
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namely coevolution, ant colony optimisation and cultural algorithms. 

\ 
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Chapter 4 

Evolutionary Methods 

In this chapter we will provide a brief overview of several evolutionary methods that have been 

used in our work for generating knowledge in GGP. We start by introducing coevolution and then 

proceed to discuss ant colony optimisation (ACO) methods and cultural algorithms. The details of 

how these are used in our work will be clearer in subsequent chapters. 

4.1 Coevolution 

The principle of coevolution1 can be best explained with the help of an example. Consider the 

complex relationships that exist between herbivores and plants. To prevent themselves from being 

eaten, plants evolve to develop defense mechanisms such as toxic leaves, thick foliage, size and thorns. 

To overcome this, herbivores evolve, for example, long tongues and thick lips to overcome the foliage 

and thorns and special dietary habits such as eating clay to neutralise the toxins in the leaves. Both 

plants and herbivores in this case represent competing populations, each one trying to get an edge 

over the other. This is the principle of coevolution; using random variation and selection to evolve 

and learn strategies that will enable individuals to gain this edge that they need to survive. 

A successful example of coevolution is the checkers player Blondie24 [10]. Each player is repre

sented as a neural network which accepts as input a vector representing a checkers board position 

and outputs a number in the range [—1.1] to indicate its estimation of a moves' quality. A popu

lation of such players play against each other, alternating between roles (red or black). The top 15 

individuals are selected to spawn a new generation. The best evolved network at the end of this 

coevolutionary process is selected to play the game against opponents. At www.zone.com, a free 

checkers game website, Blondie24 was ranked amongst the top 500 of the 120,000 registered players. 

[20] and [11] also discuss the use of coevolution in evolving strategies for games such as checkers 

and tic-tac-toe. The population model uses Particle Swarms. The particles are vectors of weights 

'We consider competitive coevolution here. 
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of a neural network, and it is these weights that are trained using coevolution and Particle Swarm 

Optimisation. 

4.2 Ant Colony Optimisation Algorithms 

Ant Colony Optimisation Algorithms (ACO) were developed by [8]. They take inspiration from the 

behaviour of ants in nature. In nature, ants wander randomly, searching for food. Once they have 

found food, they return to their colony while laying down pheromone trails These act as a guide for 

other ants in the future. When other ants find such a path, instead of wandering around randomly, 

they are more likely to follow the trail and further reinforce it by their pheromone deposits if they are 

successful. Since pheromone evaporates over time, shorter paths are more likely to have a stronger 

concentration of deposits. As a consequence, over time, short paths get favoured by more and more 

ants. This approach is applied in computer science to solve optimisation and path finding problems, 

such as in [9], using multiple agents (the ants) that move around in the problem space in search for 

the desired solutions. 

Two key parameters that determine the state transitions are the desirability (or attractiveness), 

77,j, and the pheromone level, TtJ of the path (or arc) between the two states i and j . rjtj is usually 

represented by a predefined heuristic, and therefore indicates an a priori fitness of the path. On the 

other hand, r y indicated the past success of the move, and therefore represents a posteriori fitness 

of the path. The update for T13 take place once all the ants have finished foraging. Given these two 

parameters, the probability of selecting a path ptJ between states i and j is given by (4.1) 

B _ (^aW) 
P,J - £Ke„(^)(^) (41) 

a and (3 are user-defined parameters that determine how much influence should be given to the trail 

strength and desirability respectively. M is the set of all legal moves that can be made from state i. 

Once all the ants have finished foraging through the state space, the trails are updated as 

r,_, (i) = prl3 (t - 1) + A r y (4.2) 

ATV, is the cumulative accumulation of pheromone by each ant that has passed between i and j and 

t represents the time step, p is called the evaporation parameter, and determines by what value 

the previous trail level decreases. This gradual evaporation prevents the ants from converging to a 

locally optimal solution. More resources on Ant Colony Optimisation can be found at [2]. 
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4.3 Cultural Algorithms 

Cultural Algorithms simulate cultural evolution, bringing about a more comprehensive learning and 

evolution than simple biological evolution. They can be used in both static and dynamic environ

ments, and in complex multi-agent systems to provide effective simulations of learning procedures 

[23]. Evolution takes place at both the cultural level (the belief space) and the population level 

(for each individual). The belief space is the knowledge that is shared amongst the agents in the 

population. This model of dual-inheritance is the key feature of Cultural Algorithms, as it allows 

for a two-way system of learning and adaptation to take place. In a dual-inheritance system, the fit 

population members, as selected by an acceptance function on the basis of a fitness value, add their 

knowledge and experience to the belief space, thereby sharing it with all other agents in the environ

ment. The belief space knowledge in turn helps guide the agents in the population by means of an 

influence function. Other evolutionary approaches, such as Genetic Algorithms, allow for evolution 

to take place only at the individual (or population) level, i.e., they do not support a dual-inheritance 

system. 

[24] showed that cultural learning takes place using three distinct phases of problem solving. 

They defined them as coarse-grained, fine-grained and backtracking. They also discovered five types 

of knowledge, namely normative (ranges of acceptable values), topographic (representing spatial 

patterns), situational (successful and unsuccessful instances), historic (temporal patterns) and do

main (relationships and interactions between domain objects) knowledge. Each of the phases has a 

dominance of one type of knowledge over the other. 

Recent work done by [23] uses cultural algorithms to simulate the early Anasazi settlements 

and answer questions regarding their disappearance from the Mesa Verde region, and is discussed 

in chapter 3. This work is an example of the use of Cultural Learning in a complex multi-agent 

system, in which many different factors affect the manner in which the population evolves. 

To get an idea of how cultural evolution can complement coevolution, consider the following 

example: assume a large herd of wilderbeests are constantly being eaten by lions. Soon, a few them 

come up with a way to evade this unfortunate fate. In normal coevolution, this information would 

not be shared by other members of the herd. Instead, future generations would most likely inherit 

it, and so the knowledge would be passed on. However, when cultural evolution comes into play, 

this knowledge of evasion is put into the herds' "belief space', and thus can be shared by other 

wilderbeasts. It is the same as the clever wilderbeests going to their herd members and passing this 

knowledge on to them. From a gaming perspective, players that are come up with strong strategies 

are able to share them with other players, thereby allowing for faster learning and the emergence of 

stronger strategies amongst the weaker players. 
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4.4 Conclusions 

This chapter gave an overview of the evolutionary- methods that will be used in our work. Subsequent 

chapters will build upon the methods introduced in this and preceding chapters and explain how 

these are used to generate knowledge for GGP 
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Chapter 5 

Learning and Knowledge 

Representation Architecture 

This chapter describes the basic architecture of the multi-agent coevolutionary environment that is 

used by the game player to generate game knowledge. The knowledge representation structure is 

also described in detail. The terminology used in this chapter will be in context of the terminology 

used in evolutionary computation. Given that in the Stanford GGP system, the lexicon of the game 

rules can be changed while the underlying game logic remains the same, a way to recognise games 

is also described at the end. 

5.1 Player Architecture 

Upon receiving the game rules, the player first calls upon the learning module to use the game 

rules to learn knowledge about the game. Once the knowledge is learnt, moves are simply made by 

consulting the knowledge and making the move which results in the state having the highest value 

(this is explained in more detail in the next section). This is illustrated in Figure 5.1. 

The learning module consists of a population of agents. Each of these agents can play the game 

based on the game rules. The population is divided into a number of sub-populations, where the 

number of such sub-populations is the same as the number of roles in the game. For example, Chess 

has two roles, Black and White. Therefore, the number of sub-populations for Chess would be two. 

These populations play against each other in a coevolutionary setup and generate knowledge for 

their respective roles. The knowledge is stored and saved so that it can be used later when the game 

is played again, thereby eliminating the need for learning the game from scratch. 
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Figure 5.1: The architecture for a general game player for learning. 

5.2 Knowledge Representation Scheme 

The knowledge relates directly to the states of the game (i.e. the nodes of the game tree). The 

knowledge is used to evaluate state that results from making a move, and then select the move that 

gives the state with the highest value. These values are learnt using the learning module. 

Since the number of states in most games is extremely large, using a table with an entry for a 

value function of each state is impractical. Therefore, we approximate the state representations by 

using features 1 to represent each state. In the context of the game descriptions given in GDL, this 

can be done as follows. States in GDL are represented as a set of ordered tuples, each of which 

specifies a certain feature of the state. For example, in Tic-Tac-Toe. mark(l, 1,X) specifies that the 

cell in row 1 and column 1 is marked with an X. Therefore, a state in Tic-tac-Toe is represented as 

a set of 9 such tuples, each specifying whether a cell is blank or contains an X or an O. Figure 5.2 

given as example of a state in Tic-Tac-Toe and the corresponding features associated with it. Xote 

that the elements of the feature vector in Figure 5.2 are represented as strings for clarity. In reality, 

each element 8 of the vector can be viewed as a 2-tuple (<;. v). consisting of the string <; representing 

' I t would perhaps be more technically accurate to use the term atomic properties. However, in this dissertation 
we will use the term feature instead of atomic property. 
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o 
X 

X 

0 = {cell(l, 3, X), ceU(2, 2, X), cell(3, 1, O)} 

Figure 5.2: Features in a state of Tic-Tac-Toe. The vector 9 represents the vector of features. 

the feature and its corresponding value v € 9?. From now on, whenever we talk about features, 

whether we are referring to the string or the value will be clear depending on the context. In GGP, 

the lexicon of the game can change, but the underlying logic remains the same. Consequently, the 

learning that occurs is not based on the actual strings but the values that are learnt for them. 

These features are stored in a table, with entries for the various values for each feature. These 

values for each feature are learnt by using the various learning algorithms that will be described in 

the next chapter. To obtain the value of a state, the features present in the state are matched to the 

features in the tables, and their values are then used to calculate the state value. This is illustrated 

in Figure 5.3. For simplicity, only a part of the table and one possible move that can be made from 

the given state is shown. The actual values are omitted as they are based on the learning method 

used to obtain them. 

Given that states are represented as shown in Figure 5.2. extracting a list of features can be done 

using the simple algorithm given in Algorithm 2. 

By playing a number of random games, it is possible to extract features from each state seen 

after making a move and adding it to a global feature list that can be used for learning. It is possible 

to do this online (during learning) or offline (prior to learning). 

5.3 Recognising games independent of game rules 

Since the lexicon for games written in GDL can change, it is worth looking into recognising games 

based on the underlying game logic. In order to this, we use a simple technique for recognising 

aspects of the game tree itself. To do this, we first play a number of random games using the given 

game rules. Every time a move is made, the following parameters are recorded and stored in a file: 
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ce l ld 1. X) 

cell(l , 2 X) 

cell(l 3, X) 

ceU(2. 1 X) 

cell(2, 2, X) 

cell(2. 3, X) 

ceU(3. 1, X) 

cell(3, 2, X) 

ceU(3 3, X) 

ce l ld 1, O) 

ce l ld 2 O) 

celld 3 O) 

cell(2. 1 O) 

cell(2, 2 O) 

mark(l, 3, X) 

Figure 5 3 An example of knowledge representation and use while making a move m Tic-Tac-Toe 

Algorithm 2 ExtractFeatures(startState) 

initialise featureList 
currentState <— startState 
while numberOf Games < totalGam.es do 

while currentState ^ terminalState do 
legalMovesList <— all legal moves possible from currentState 
make a legal move m £ legalMovesList randomly 
observe newState reached by making m 
for all feature € newState do 

if feature £ featureList then 
add feature to featureList 

end if 
end for 

end while 
numberOf Games + + 

1 The number of children at the given node This means keeping track of the total number of 

possible legal moves that can be made from the current state in the game at each step 

2 The child selected to descend down the tree This is the position of the move in the list of all 
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legal moves that was pla\ed 

3 The final outcome of the game 

For each random game played the first two items will be stored for every move made and the 

third item will be stored for the whole game Therefore a single record is created for each random 

game which stores all information about the path taken in the game tree to pla\ the game 

When the game rules are received and the lexicon is different then we use the aforementioned 

data to plaj random games using these game rules A game is pla\ed successfulh if by checking 

the number of possible legal moves at each step (item 1), we select the mo\e indicated b\ the data 

(item 2), and bj doing so play a game that results in the same outcome as given in the data (item 

3) If this can be done for all records then the game defined bv the rules can be identified and its 

corresponding knowledge can be received 

This entire procedure is summarised in Algorithm 3 (for creating the records) and Algorithm 4 

for recognising a game It is important to note that because we use Prolog as an inference engine 

for the game rules, the ordering of the legal moves at each step m the game will alw a\ s be the same, 

assuming the logic of the game is the same 

Algorithm 3 CreateRecords(startState) 

1 currentState <— startState 
2 while numberOf Games < totalGames do 
3 create a new gameRecord 
4 gameState *— 0 
5 while currentState ^ terminalState do 
6 legalMovesList <— all legal moves possible from currentState 
7 gameRecord gameSteps[gameStep] numChildren <— legal MovesList size 
8 make a legal move m € legalMovesList randomly 
9 gameRecord gameSteps[gameStep] selectedChild <— legalMoiesList indexOf(m) 

10 observe newState reached by making m 
11 end while 
12 gameRecord outcome <— result of this game 
13 numberOf Games + + 
14 write gameRecord to a file 
15 end while 

5.4 Conclusions 

This section introduced the basics of the learning module and knowledge architecture In the fol

lowing chapters, we will use different learning methodologies in the learning module to learn and 

generate knowledge We start by discussing how Temporal Difference Learmng is used m a smgle 

agent setup of the learmng environment We then use the same idea in a multi-agent coevolutionan 

setup Communication between the agents is then allowed b\ using the Ant Colom model Finalh 
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Algorithm 4 RecogniseGame(starrS£a£e) 

1 currentState <— startState 
2 for all gameRecord € records file do 
3 while currentState ^ terminalState do 
4 legalMovesList <— all legal moves possible from currentState 
5 if legalMovesList size ^ gameRecord gameSteps[gameStep] numChildren t h e n 
6 return false 
7 end if 
8 make legal move gameRecord gameSteps[gameStep] selectedChild 
9 observe neu State reached by making the move 

10 if newState is not a valid state then 
11 return false 
12 end if 
13 end while 
14 if gameRecord outcome =fi result of this game then 
15 return false 
16 end if 
17 end for 
18 return true 

belief space knowledge is created by introducing a basic form of cultural knowledge We then use the 

knowledge learnt to enhance the playing capabilities of a UCT-based player. Each of the learning 

methodologies will be evaluated based on the pla\ ing performance of the game player in a number 

of games. 
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Chapter 6 

Using Reinforcement Learning for 

General Games 

Previous chapters have laid the foundations for the theory behind the learning algorithms that will 

be used and the basic learning architecture employed to learn game knowledge from them. This and 

subsequent chapters discusses the techniques and results of using these aforementioned algorithms 

with the architecture. In this chapter we explore how TD(0) learning is used to learn values for 

features used to represent states. We only consider a single learning agent in this chapter, as opposed 

to the population model described in Chapter 5. We will return to the latter in later chapters when 

we introduce evolutionary learning. The work discussed in thie chapter has been presented in [29]. 

[19] and [30]. 

6.1 Using TD-Learning 

We have already seen how knowledge is represented as a set of features in a previous chapter. In 

literature, such a manner of representing state values using a set of features instead of a table is 

called function approximation. It is indeed an approximation because the value of the state given 

by using a set of features is only an approximation, an estimate, of the actual value. For example, 

given a state s represented by a feature vector 0, the value of the state is given as 

V(a) = a ( 5 > ) (6.1) 

where the sigmoid function, a special form of the logistic function, is defined as 

" W = ^ (6.2) 
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The sigmoid function squashes the value of the summation to be between 0 and 1. as shown 

in Figure 6.1. As a result, it becomes natural to consider the value of a state as the probability 

of winning from that state. The approximation described is linear, as the function is linear with 

respect to the parameters. 

Figure 6.1: The graph of the sigmoid function. 

6.2 Temporal Segmentation of Features 

Consider the effect of using a single set of all the features for the entire state space. Since a single 

feature may be shared by many states, a change in the \Blue of a single feature affects the value of 

all the states that share that feature. In most cases, the change improves the value of some states 

(a positive effect), while degrading the value of other states (a negative effect). Given the linear 

representation, it is impossible for all states to be classified accurately by the features. The best 

we can do is try to minimise the negative effects of changes in feature values. This is done by not 

using a single set of features for the entire state space, but using a set of features to represent states 

at a unique temporal level Each temporal level in the context of games is a turn the player is in. 

Figure 6.2 illustrates this idea. A temporal level is associated with each level of the afterstates in the 

game tree. Also, given this temporal representation, TD(0) learning can be delayed till the entire 

game is played, since the changes in feature values using TD(O) in preceding temporal levels has no 

effect on the values of states given by features at future levels. 

This form of representation best works in games where the states are always unique to a level. 

An example of such a game is Tic-Tac-Toe. where a state at depth n will always have n — 1 markers 

on the board in any number of legal combinations. However, experiments showed this temporal 
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Figure 6.2: Temporal segmentation of features. Circular nodes are nodes from which the player 
makes moves. Square nodes are the states that occur as a result of these moves (the afterstates). 

segmentation to improve the results of games that do not follow this pattern as well. Though 

the improvement exists, it is worth considering other ways of improving the accuracy of linear 

approximation. These ideas will be discussed in the chapter detailing directions for future work. 

6.3 TD(O) Update 

We now consider the update of value functions of states using TD(0) learning. The update of the 

value function is in essence the update of a set of features. Given a state si at temporal level I and 

a state si> at the next temporal level /', the update for feature value r s of each feature 9S present 

in s is done as shown in Equation (6.3). Note that 7 is set to 1 and r is defined as 0 for each step, 

except at the final time step when it is equal to the final outcome of the game. V(sj») becomes 0 if 

Sf a terminal state. |s;| is the number of features in |s; | . 

r + V{s,.)-V{si) 

M 
vs = vs + a6 

(6.3) 

This update is done once a game has been played. Moves are selected based on the afterstate 

(state resulting from a move) which has the highest value, e — greedy selection is used to select 

moves, with the afterstate having the best value being selected with probability 1 — e, and with a 

random move being selected with probability e. 
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Table 6.1: Random Games 
Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 1 

Win 

57.84 

23.44 

54.7 

51.3 

41.8 

Loss 

30.28 

15.48 

45.3 

48.7 

41.6 

Draw 

11.88 

61.08 

0 

0 

16.6 

Player 2 

Win 

30.28 

15.48 

45.3 

48.7 

41.6 

Loss 

57.84 

23.44 

54.7 

51.3 

41.8 

Draw 

11.88 

61.08 

0 

0 

16.6 

6.4 Experiments 

In order to test the general quality of the knowledge learnt via TD(0) learning, 1000 matches 

of several games are played between a player using the knowledge and a uniform random player 

(player makes moves randomly with a uniform distribution). To compare the effectiveness, we also 

present results of 2500 matches of the same games against two uniform random players. The games 

played are standard 3-by-3 Tic-Tac-Toe (3 T-T-T), large 5-by-5 Tic-Tac-Toe (5 T-T-T). Connect-4. 

Breakthrough and Checkers. The results are divided by role, with knowledge being used by each 

player. Player 1 refers to the player who makes the first move at the start of the game. 

The players were all written in Java. The game rules in GDL are converted to Prolog, and 

YProlog [35]. a Prolog inference engine in Java, is used. The learning rate was set to 0.99, and was 

decreased by a factor of 0.01 after each game. The total number of simulations for training was set 

to 2000. 

Table 6.1 shows the results of 2500 games when both players play randomly. A large number of 

games is used so as to get a fairly accurate distribution of outcomes between the two players. The 

results are expressed as a percentage. 

Now we consider the results when knowledge is being used. Table 6.2 shows the results when 

Player 1 uses knowledge and Player 2 plays randomly. Table 6.3 shows the results when Player 2 

uses knowledge and Player 1 plays randomly. The results are expressed as a percentage. Players 

using the knowledge select moves greedily. 

6.5 Discussion 

As can be clearly seen, the knowledge results in a huge improvements in the playing abilities of the 

player using it. It is also interesting to note from Table 6.1 that learning can be biased for each 

player depending on which player makes the first move, as the percentage of winning sequences is 

not (relatively) evenly distributed for each player in all games. 

Is it possible to improve the performance? In subsequent chapters, we attempt to do just this by 
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Table 6.2: Player 1 uses knowledge 
Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 1 

Win 

68.3 

42.4 

67.9 

71.1 

44.4 

Loss 

21.9 

18.6 

32.1 

28.9 

37.6 

Draw 

9.8 

39 

0 

0 

18 

Table 6.3: Player 2 uses knowledge 
Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 2 

Win 

51.9 

39.1 

66.7 

70.9 

43.6 

Loss 

34.7 

19.9 

33.3 

29.1 

41.4 

Draw 

13.4 

41 

0 

0 

15 

enhancing TD(0) learning by using coevolution and adding a communication model based on Ant 

Colony Optimisation. 
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Chapter 7 

Using Coevolution 

This chapter discusses the extension of the single agent TD(0) learning model discussed in the 

previous chapter to include coevolution. In Chapter 5 we discussed the method for representing the 

learning module of the player as a population of competing agents. This forms the basis for adding 

coevolution and other evolutionary learning methods to TD(0) learning. We start be describing in 

greater detail the population structure and the details of coevolution. including how to calculate the 

fitness of individuals in the population. We then present, the algorithm for learning which uses both 

coevolution and TD(0) learning. This learning model is then evaluated using the same games and 

criteria as in the previous chapter. The work described in this chapter has been presented in [30]. 

7.1 Population Model 

The population is split into two competing species, each of which represents a single role of the 

game. For example, in chess, one species would correspond to the role of white (i.e. moving white 

pieces) and the other species would be for black. Each individual (player) from a population plays 

a game against a number of individuals from the opponent population. Each individual maintains 

its own knowledge which it learns using TD(0) learning as described in the previous chapter. Thus, 

the single agent TD(0) learning is extended by giving each individual the ability to learn and at the 

same time compete against opponents in order to evolve and improve the quality and strength of its 

knowledge. 

The outcomes of these games are used to assign a fitness to each player. Each Once all individuals 

of the population have played such games, the bottom k% — 1 individuals are killed, and the top k% 

are allowed to spawn new individuals. The spawning works by selecing the fittest individual, and 

breeding it with the remaining k% — 1 individuals. This is illustrated in Algorithm (5) for a single 

population. The same algorithm applies for the competing population. 

Mating is done by finding a crossover point between the feature lists of the parents and creating 
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Algori thm 5 Coevolution 

1 P <— all players in the population 
2 for all p e P do 
3 select opponent set O from opponent population Po 
4 for all Opponent o G O do 
5 play game between p and o 
6 record outcome of game 
7 end for 
8 end for 
9 fit <— top k% of the fittest players m P 

10 kill bottom k% — 1 players in P 
11 pfittest *- fittest players in fit 
12 for all / 6 / i t - p / t t ( e s t do 
13 mate(p/ t t t e s t / ) 
14 end for 

a new feature list by a standard crossover operation With a fixed mutation probability, the value of 

a random feature in the new list is reset to 0 The new individual thus shares the values of a subset 

of features from one parent and the values of the remaining features from the other parent 

7.1.1 Fitness calculations 

The fitness each player gets for each opponent is based on how many players in its own species were 

able to beat that opponent This allows players that are able to beat opponents that few others in 

their own species could beat to have a higher fitness In other words, if P0 is the set of all players 

were able to beat opponent o, then the fitness for a player p G P0 is given as 

/(P) = E F (71) 

where O is the set of all opponents that the players faced Based on this fitness, players are selected 

to mate in order to create new offspring 

7.2 Experiments 

We test the knowledge using the same experimental setup as in the previous chapter The learning 

rate was set to 0 99, and was decreased by a factor of 0 01 after each game The top 25% of the 

population were selected for mating All in all, 20 players per species were created, which played 

150 games in total Each player played against 5 randomly selected opponents Mating was done 

after each player had played 3 games The fittest player from each population is then selected to 

play against the random player 

Table 7 1 shows the results when Player 1 uses knowledge and Player 2 plays randomly Table 7 2 

shows the results when Player 2 uses knowledge and Player 1 plays randomly The results are 
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Table 7.1: Player 1 uses knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 1 

Win 

79.4 

49.6 

78.2 

84.2 

47.9 

Loss 

15.2 

22.4 

21.8 

15.8 

30.6 

Draw 

5.4 

28 

0 

0 

18 

Table 7.2: Player 2 uses knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 2 

Win 

59.3 

44 

71 

88 

46.3 

Loss 

29.4 

18 

20 

12 

33.8 

Draw 

11.3 

38 

0 

0 

19.9 

expressed as a percentage. Players using the knowledge select moves greedily. 

7.3 Discussion 

Coevolution results in competition between various individuals in the population. This arms race 

hastens learning, as weaker individuals are killed off, and the knowledge of the strongest players is 

used to create new individuals in the population, thereby complementing TD(0) learning. In the 

next chapter, we use a communication model based on Ant Colony Optimisation. This allows the 

players to communicate their experiences to each other. 

38 



Chapter 8 

Ant Colony Optimisation 

In this chapter we add a communication model between the individuals of each population. As a 

result of this, each individual can communicate its own experience of playing the game to other 

members of its species. This communication is created by using the principles of Ant Colony Op

timisation, i.e. pheromone and desirability deposits along the paths of each game. We start by 

describing the new way of viewing the population as a colony ants. We then describe how the 

communication landscape is created and modified. We conclude by playing various games against a 

random player to test the effect of this model on top of the model developed in the previous chapter. 

The work described in this chapter has been presented in [28j. |30] and [19] 

8.1 GGP using Ant Colonies 

Each ant1 in the Ant Colony is a player that is assigned a unique role as per the rules of the game. 

Each ant maintains its local knowledge which it learns using TD(0) learning and coevolution as 

described in the previous chapter. Apart from this, each population has a global landscape on 

which each ant deposits pheromone between paths. The path in this case is simply the sequence 

of states and the moves the ant has made from these states. Therefore, it is each of these state-

move combinations that have an associated pheromone deposit and desirability value. This basic 

idea is illustrated for the game of Tic-Tac-Toe in Fig. 8.1. However, since maintaining state-move 

combinations is impractical in most games, we use feature-move combinations instead. In other 

words, pheromone is deposited and desirability updated for all the features that are present in the 

state resulting from making a move in the game. 

This global landscape acts as the communication medium, and is illustrated in Fig. 8.2. Players 

now make moves based not only on their local knowledge but also the pheromone and desirability 

values in the global landscape. 

1 Henceforth we will use the terms ant. player and individual interchangeably. 
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Figure 8.1: The forage of Antx through the Tic-Tac-Toe landscape. The presence of Anto besides 
the hollow arrows indicates that Antx has the option of asking Anto for a move, though it is not 
necessary to do so. Pheromone is deposited along the squiggly arrow once a series of forages has 
been completed. 
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Figure 8.2: The Ant Colony GGP Architecture. 
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8.2 Communication via Pheromone and Desirabilities 

As we have discussed before, ants transition from one state to the next based on the pheromone 

levels and desirabilities of the paths between the states, along with their local knowledge. Let's see 

how to calculate the pheromone and desirabilities for each state. Pheromone levels in traditional 

ACO algorithms are represented as the reciprocal of the length of the path traveled. In the GGP 

case, pheromone for a path (or move) m, r m , is represented as the average score attained through m. 

Pheromone is not just associated with a move, but with all the features in the afterstate resulting 

from that move. The overall calculation of the pheromone deposit for both features and move after 

a series of forages (plays) has been made is shown in Equation (8.1) 

Y, *° 
aeAntm 

"m (8-1) 

2^ x° 
re = 

Antm is the set of all ants a that went foraging and made move m. \s is the final score associated 

with each game sequence that includes m. Nm and Ng are the number of times during a forage the 

move and feature were seen. 8^s is the set of features in state (more specifically, the afterstate) s 

at temporal level L. Pheromone evaporation follows the formula in Equation (4.2). 

The desirability of a move m and feature 0 is simply the historic average score. It is similar to 

the way pheromone is represented, but while the pheromone is calculated as the average score per 

forage set, the desirability is the average score accumulated throughout the learning. 

In order to calculate the pheromone and desirability during action selection for learning, the 

average of the pheromone and desirability values for the action and the features of the resulting 

afterstate is taken. 

Moves are now selected using the product of the afterstate's value based on the local knowledge 

along with the pheromone and desirability values. 

8.3 Experiments 

The pheromone and desirability influence factors were set to 0.6 and 0.8 respectively. The rest of 

the parameters are the same as before. 

Table 8.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 8.2 

shows the results when Player 2 uses knowledge and Player 1 plays randomly. The results are 

expressed as a percentage. Players using the knowledge select moves greedily. 

Consider now the results when coevolutionary learning is complemented by cultural evolution. 
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Table 8.1: Player 1 uses revolutionary knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 1 

Win 

83.5 

62 

91 

98.5 

56 

Loss 

10.5 

7.5 

9 

1.5 

21.5 

Draw 

6 

30.5 

0 

0 

22.5 

Table 8.2: Player 2 uses coevolutionary knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 2 

Win 

60.5 

54 

75 

96.6 

58.7 

Loss 

31 

11 

25 

3.4 

30.3 

Draw 

8.5 

35 

0 

0 

11 

Table 7.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 7.2 

shows the results when Player 2 uses knowledge and Player 1 plays randomly. 

8.4 Discussion 

The addition of the communication model speeds up the learning, as more agents are able to com

municate their own experiences, thereby allowing agents to learn from the experience of others. In 

the next chapter we add the final embellishment to our learning module, i.e. the cultural component. 
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Chapter 9 

Adding Cultural Knowledge 

In this chapter we add belief space knowledge as used in cultural algorithms. The belief space 

knowledge consists of the experiences of the strongest players, and is used to guide future generations 

and also the current generation. This is different from the communication model as the belief space 

is only updated by the strongest players. Also, as we shall see. the representation is different as it 

consists of actual states. The work discussed in this chapter has been presented in [30]. 

9.1 Representing the Belief Space 

The belief space basically contains a number of afterstates (states reached by a player after making 

a move) that have been part of the game sequences of the fittest players. Each of these afterstates 

has a belief value associated with it which depends on the average score of each player chosen to 

influence the belief space, that has used the afterstate, and its own historic average score. Consider 

that a number of players p & P have used afterstate 5, each having an average score of ap. Let As 

be the historic average score associated with S. Then, the belief of S is given as 

Belief {S) = AS + \P\ [ ] ap (9.1) 

Note that the set of players P are all players that were accepted to modify the belief space, i.e. the 

fittest individuals of each generation. The historic score is updated by both these players and by 

other members who use these states during the course of game play. Intuitively, afterstates that 

have performed well by leading players to a win in the population, and that have had a large number 

of the fittest players influence them, have higher belief values. Algorithm (6) provides an overview 

of belief space creation, gseq is the set of all game sequences (i.e. sequence of afterstates) played by 

the player up till the point of updating the belief space. It is reset to the empty list after updating. 

Since it is impossible to store all possible states, a limit is placed on how many states can be 
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Algorithm 6 Belief Space Creation 

P <— top c% fit players 
for all p € P do 

for all GameSequence gseq G GameSequences do 
for all GameState gstate £ pseq do 

if gstate not in beliefSapce then 
addToBeliefSpace(p. gstate. gseq.outcome) 

else if gstate in beliefSapce then 
updateState(p, gstate. gseq.outcome) 

end if 
end for 

end for 
end for 

present in the belief space. If that limit is crossed, a fixed r% of the lowest states, ranked by Ekjuation 

(9.1). are removed and new ones are added. 

9.2 Putting it all together 

Figure 9.1 shows the entire architecture of the game playing system for a single role (in a 2-player 

game, an identical system exists for the opponent). Pi are the various players, and S, are the 

afterstates. The players play games against players from the competing species, and use TD(0) 

learning to update their feature values during each game. Once all players have finished playing 

these matches (i.e. after a single forage), pheromone and desirabilities are updated for the features 

and moves seen during these games. After a fixed number of forages, the fittest individuals so far 

are selected to mate and update the belief space. Algorithm (7) details the way the various players 

are controlled, c is the number of forages completed before mating and updating the belief space, 

and opponentSet is a randomly selected set of a pre-determined number of opponents. Algorithm 

(8) details how an ant (player) plays a game. Note that a random move is made based on a fixed 

probability for the opponent in order to ensure sufficient exploration of the game state space. Mating 

is done by selecting a crossover point between the feature vectors of the two parent players, and 

creating a new offspring by standard crossover operations using the same point at each temporal 

level. The new player then has part of the feature vectors from its father and part from its mother 

at each temporal level. 

Moves are made using e-greedy selection. With probability e, a random move is selected, Other

wise, the move which maximises V(s) x T(s m) x r/(Si7n) is selected, where V(s). T(s m) and »7(s,m) are 

the state value, pheromone and desirability values respectively for afterstate s reached by making 

move m. However, if an afterstate exists in the belief space that matches any of the afterstates 

resulting by making move m. then the move resulting in the afterstate with the highest belief value 

is chosen instead. 
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Figure 9.1: The architecture for a single role using coevolution and cultural evolution. 

A l g o r i t h m 7 Controller 

whi le numberOf Forages < totalForages do 
for all Player ant € Ants do 

playGame(ant. opponent Set) 
end for 
update pheromone and desirabilities 
if forageCount % k = 0 t h e n 

mate() 
updateBeliefSpace () 

end if 
end while 

9.3 Experiments 

The experiments follow the same pattern as before. 25% of the strongest players were selected for 

updating the belief space and mating. All in all, 20 players per species were created, which went 

collectively into 100 forages. Each player played against 5 randomly selected opponents. Mating 

and belief space updates were done after every 3 forage runs, and the maximum number of states 

permitted in the belief space was limited to 100. with 259c of the weakest states being removed 

whenever the limit was crossed. 

Table 9.1 shows the results when Player 1 uses knowledge and Player 2 plays randomly. Table 9.2 

shows the results when Player 2 uses knowledge and Player 1 plays randomly. The results are 

expressed as a percentage. Players using the knowledge select moves greedily. 
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Algorithm 8 p\ayGame(Ant. opponent Set) 

1 allGameSequences <— empty list 
2 for all opp G opponentSet do 
3 currentState *— current state of the game 
4 gameSequence <— empty list 
5 while terminal state of game is not reached do 
6 if turn of opp to make move t h e n 
7 make random move m or use knowledge 
8 else if turn of Ant then 
9 select move m using knowledge 

10 end if 
11- currentState <— upda.teSta.te(currentState, m) 
12 gameSequence.a.dd(currentState, m) 
13 end while 
14 allGameSequences.add(gameSequence) 
15 Perform TD(0) update on gameSequence 
16 end for 

Table 9.1: Player 1 uses cultural and coevolutionary knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 1 

Win 

100 

915 

99.2 

100 

69.2 

Loss 

0 

0 

0.8 

0 

12 5 

Draw 

0 

8.5 

0 

0 

18.3 

9.4 Discussion 

As seen in the results in the preceding section, when coevolution is complemented with cultural 

evolution, performance of the player increases. Cultural coevolution allows the strongest players to 

share their beliefs about the game with other existing players and future players. The belief space 

knowledge is represented as a set of afterstates. These are states that have been seen bj most of 

the strongest players and have led to wins in the majority of matches. Therefore, other pla\ers 

can use these states to make moves, as these states are 'tried and tested" by the strongest players. 

Such knowledge sharing speeds up learning and produces more accurate sampling of game sequences, 

which in turn trains the feature values in the local knowledge via TD(0) learning more accurately. 

Having established that the knowledge does indeed work, it is important to explore ways in which 

it can complement other existing techniques for GGP. One such approach, which we ourselves use, is 

the UCT (Upper Confidence bound applied to Trees) algorithm [17]. UCT, which is inspired from the 

UCB algorithm [3], is a simulation-based algorithm which explores trees in an asymmetric manner 

using Monte-Carlo sampling. It has proven to be extremely effective for games, as the current world 
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Table 9.2: Player 2 uses cultural and coevolutionary knowledge 

Games 

3 T-T-T 

5 T-T-T 

Connect-4 

Breakthrough 

Checkers 

Player 2 

Win 

91.3 

88.1 

98.9 

99.6 

72.4 

Loss 

0 

0 

1.1 

0.4 

16.2 

Draw 

8.7 

11.9 

0 

0 

11.4 

computer Go champion Mo-Go [13] and the winner of the last GGP competition CADIA-Player 

[6], both use UCT in the their respective frameworks. CADIA-Player actually uses basic knowledge 

in the form of a move-history heuristic [25] in its simulations. We have explored how to use game 

knowledge with UCT in [19, 29] with some success. In the next chapter, we continue that work 

by examining how knowledge learnt with cultural coevolution can be used with UCT to create an 

effective General Game Player. 
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Chapter 10 

Using the model with UCT 

UCT has been discussed in Chapter 3, along with its role in General Game Playing In this chapter 

we focus are attention on using the knowledge learnt via cultural coevolution to complement UCT 

search The work discussed in this chapter has been presented in [29] and [19] This knowledge can 

be used in two ways 

1 To select unvisited nodes 

2 To produce more accurate random simulations when assigning/updating node values 

The value of a node will be give as V(s) which is the value of the afterstate using the feature 

values In order to select nodes that have not been selected previously (not in the visitedTable of 

Algorithm 1), UCT normally selects all nodes randomlv, with equal probability However using the 

knowledge learnt it is possible to bias this selection in favour of nodes with higher values Therefore, 

we assign these nodes an initial value based on V(S) This is similar to the approach taken in [12] 

An experience of e is given to this value, which implies that UCT search would have fun for at least 

e times through this node in order to come up with its value as V(s) Node selection is then done 

using the standard UCT formula of (3 4) with X} being replaced by V(s) (for the initial case onlv) 

N value and N visits are updated as given in (1) 

Random simulations use this knowledge by using e—greedy selection, with a relatively high value 

of e (this is done to prevent the simulations from becoming too deterministic) x 

10.1 Experiments 

In order to test the effectiveness of using knowledge with UCT we played matches between a player 

using standard UCT, UCTs, and a player using knowledge for simulations, UCTK The experience 

1 [12] presents an interesting discussion on the effect of different types of simulations in UCT search 
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Table 10.1: Number of wins for UCTs and UCTK over 100 matches per game 
Game 

Tic-Tac-Toe (small) 
Tic-Tac-Toe (large) 

Connect-4 
Breakthrough 

Checkers 

Wins for UCTS 

8 
3 

41 
29 
38 

Wins for UCTK 

18 
10 
59 
81 
62 

Total Draws 
74 
87 
0 
0 
0 

given was that of 10. and greedy selection was done with probability 0.6. The rest of the setup is 

similar as in the previous experiments 

10.2 Discussion 

The addition of knowledge during random simulations results in corresponding player winning the 

majority of matches (with the exception of the Tic-Tac-Toe based games, as their very nature results 

in UCT-based players getting a large number of draws). This can be attributed to the fact that UCT 

search spends less time trying to stabalise values for the nodes; by initialising them, we save UCT 

search some time. An interesting area to look into is the effect continuous evolution of knowledge 

in future experiments, i.e. learning in the same manner as in the previous chapter during UCT 

simulations, since each simulation is in effect a single game being played. 

In the next chapter we provide the final conclusion of this dissertation, summarising the ideas 

presented here, and also look into promising areas of future work. 
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Chapter 11 

Final Discussion and Future Work 

The major contribution of this dissertation is that it is introduces and examines a learning and 

knowledge representation architecture for General Game Playing. We presented an approach to 

learn game knowledge using cultural coevolution. TD(0) learning is used to learn feature values 

for the local knowledge of each individual in a coevolutionary setup. ACO algorithms are used to 

providing a mechanism for each individual to be able to communicate with all other individuals. 

Finally, The fittest players are selected from each species to update the belief space knowledge, 

which is used guide players in the same and future generations. The results of the matches against 

a random player show a significant increase in performance of the player using the the cultural 

coevolutionary knowledge. This is attributed to the fact that cultural coevolution allows knowledge 

learnt by the strongest players to influence, via the belief space, all the players. 

11.1 Discussion of Results 

Reinforcement Learning (RL) has been successfully used in games, the most famous example being 

that of TD-Gammon [33]. RL allows for the learning of value functions that are theoretically proven 

to converge to the optimal value functions. We do not claim that our work here allows for the 

learning of optimal value functions, but the experiments show the the value function learnt for 

states is an efficient approximation of the optimal one. 

Coevolution has also been used in games, with Blondie24 being a prime example of its success [10]. 

Whereas we use RL for single agent learning, introducing a population based model that coevolves 

allows for the knowledge learnt by each individual using RL to refine more quickly as the populations 

enter an arms race. However, there is still no communication between individuals of a population. 

Ant Colony Optimisation methods allow for an easy way to allow the individuals to communicate 

their knowledge of a game sequence to other individuals by means of pheromone deposits and 

desirability values. Finally, adding belief space knowledge allows for the strongest members of the 
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population to share their knowledge about the entire game with the current and future generations. 

The effectiveness of the addition of each of the aforementioned learning components is evident in the 

results presented in this paper, as each new enhancement increases the winning rate of the player. 

We do not claim that the knowledge learnt represents a near-optimal player. However, we believe 

that the knowledge learnt can be used to enhance already proven methods for game playing. One 

such method we investigate is UCT search. UCT search has been very successful in various games 

such as Go. Othello and even GGP. However, convergence times in UCT search are very high if 

the game trees are large. This can be resolved by using game knowledge to bias node selection 

and improve random simulations. In GGP, using game dependent knowledge is impossible given 

the premise of the challenge Therefore, we use the knowledge learnt by our methods to compare 

their effectiveness with UCT search. Results show that there is a considerable improvement to UCT 

search when using this knowledge. 

11.2 Future Work 

An assumption made during our experiments is that sufficient time is given to generate the knowl

edge. However, simulation-based approaches, like the one used to generate knowledge in our ap

proach, are easy to parallelise. [6] was parallelised during the final GGP matches in the last com

petition, and won the tournament. Therefore, another important direction in our work will involve 

looking into ways to parallelise the knowledge generation algorithm. Time taken during training can 

also be significantly reduced by using hashing for feature and state retrieval. It is important to note 

that the current GGP competition held at Stanford University is not at all conducive to learning-

based players. The competition focuses on the ability of the player to use the logical structure of the 

game description itself to play the game. This focus has prevented much research in using machine 

learning for GGP, and, through various discussions with people in the field, has frustrated those 

who would wish to explore learning for GGP. However, it is our hope that this focus will change 

over time. Indeed, efforts are underway to start new GGP competitions that would allow sufficient 

time for players to learn the game. An obvious advantage to learning is that the knowledge can be 

stored and over time and after many games, be refined and perfected. This prevents re-learning the 

game from scratch every time. 

Another important direction in our future work is to explore different function approximation 

techniques. Basic linear approximation is limited in its ability to accurately classify a large number 

of different states, as discussed in Section 4. An alternative to the linear representation presented 

in this paper is to use a non-linear function approximator, such as neural networks, and use neuro-

evolution to learn an appropriate network structure for the game. Another approach is to use 

CMAC (tile coding) [21, 32], which is a linear approximation technique that groups the state space 
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into various tiles. The width and shape of the tiles are used to control the level of generalisation 

in approximation. Regarding population models, it is possible to represent the population using a 

different model, such as a PSO-based model or an Evolutionary Programming model. Future work 

will investigate the effects of different population representations, and also explore different ways of 

representing the belief space knowledge. 

Through discussions with various researchers in the area of Artificial Intelligence and Games, it 

has been realised that there is much that needs to be done to improve the standards of the current 

General Game Playing architecture and competition. The development of a new Game Description 

Language, one that, for instance, facilitates learning of state evaluation functions, is an issue that 

has been raised time and time again during these discussions and is a critical part of the evolution 

of General Game Playing into a more robust framework for research. 
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