17 research outputs found

    Number of cliques in graphs with a forbidden subdivision

    Full text link
    We prove that for all positive integers tt, every nn-vertex graph with no KtK_t-subdivision has at most 250tn2^{50t}n cliques. We also prove that asymptotically, such graphs contain at most 2(5+o(1))tn2^{(5+o(1))t}n cliques, where o(1)o(1) tends to zero as tt tends to infinity. This strongly answers a question of D. Wood asking if the number of cliques in nn-vertex graphs with no KtK_t-minor is at most 2ctn2^{ct}n for some constant cc.Comment: 10 pages; to appear in SIAM J. Discrete Mat

    Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning

    Full text link
    The number of triangles is a computationally expensive graph statistic which is frequently used in complex network analysis (e.g., transitivity ratio), in various random graph models (e.g., exponential random graph model) and in important real world applications such as spam detection, uncovering of the hidden thematic structure of the Web and link recommendation. Counting triangles in graphs with millions and billions of edges requires algorithms which run fast, use small amount of space, provide accurate estimates of the number of triangles and preferably are parallelizable. In this paper we present an efficient triangle counting algorithm which can be adapted to the semistreaming model. The key idea of our algorithm is to combine the sampling algorithm of Tsourakakis et al. and the partitioning of the set of vertices into a high degree and a low degree subset respectively as in the Alon, Yuster and Zwick work treating each set appropriately. We obtain a running time O(m+m3/2Δlogntϵ2)O \left(m + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and an ϵ\epsilon approximation (multiplicative error), where nn is the number of vertices, mm the number of edges and Δ\Delta the maximum number of triangles an edge is contained. Furthermore, we show how this algorithm can be adapted to the semistreaming model with space usage O(m1/2logn+m3/2Δlogntϵ2)O\left(m^{1/2}\log{n} + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and a constant number of passes (three) over the graph stream. We apply our methods in various networks with several millions of edges and we obtain excellent results. Finally, we propose a random projection based method for triangle counting and provide a sufficient condition to obtain an estimate with low variance.Comment: 1) 12 pages 2) To appear in the 7th Workshop on Algorithms and Models for the Web Graph (WAW 2010

    On vertex coloring without monochromatic triangles

    Full text link
    We study a certain relaxation of the classic vertex coloring problem, namely, a coloring of vertices of undirected, simple graphs, such that there are no monochromatic triangles. We give the first classification of the problem in terms of classic and parametrized algorithms. Several computational complexity results are also presented, which improve on the previous results found in the literature. We propose the new structural parameter for undirected, simple graphs -- the triangle-free chromatic number χ3\chi_3. We bound χ3\chi_3 by other known structural parameters. We also present two classes of graphs with interesting coloring properties, that play pivotal role in proving useful observation about our problem. We give/ask several conjectures/questions throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac

    Approximation for minimum triangulation of convex polyhedra

    Get PDF
    The minimum triangulation of a convex polyhedron is a triangulation that contains the minimum number of tetrahedra over all its possible triangulations. Since finding the minimum triangulation of convex polyhedra was recently shown to be NP-hard, it becomes significant to find algorithms that give good approximation. In this paper, we give a new triangulation algorithm with an improved approximation ratio 2 - &OHgr;(l/√). We also show that this is best possible for algorithms that only consider the combinatorial structure of the polyhedra. Copyright © 2009 ACM, Inc.published_or_final_versio

    Finding Small Complete Subgraphs Efficiently

    Full text link
    (I) We revisit the algorithmic problem of finding all triangles in a graph G=(V,E)G=(V,E) with nn vertices and mm edges. According to a result of Chiba and Nishizeki (1985), this task can be achieved by a combinatorial algorithm running in O(mα)=O(m3/2)O(m \alpha) = O(m^{3/2}) time, where α=α(G)\alpha= \alpha(G) is the graph arboricity. We provide a new very simple combinatorial algorithm for finding all triangles in a graph and show that is amenable to the same running time analysis. We derive these worst-case bounds from first principles and with very simple proofs that do not rely on classic results due to Nash-Williams from the 1960s. (II) We extend our arguments to the problem of finding all small complete subgraphs of a given fixed size. We show that the dependency on mm and α\alpha in the running time O(α2m)O(\alpha^{\ell-2} \cdot m) of the algorithm of Chiba and Nishizeki for listing all copies of KK_\ell, where 3\ell \geq 3, is asymptotically tight. (III) We give improved arboricity-sensitive running times for counting and/or detection of copies of KK_\ell, for small 4\ell \geq 4. A key ingredient in our algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new algorithms are faster than all previous algorithms in certain high-range arboricity intervals for every 7\ell \geq 7.Comment: 14 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:2105.0126
    corecore