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Abstract  

The minimum triangulation of a convex polyhe- 
dron is a triangulation that contains the minimum 
number of tetrahedra over all its possible trian- 
gulations. Since finding the minimum triangula- 
tion of convex polyhedra was recently shown to be 
NP-hard, it becomes significant to find algorithms 
that give good approximation. In this paper, we 
give a new triangulation algorithm with an im- 

1 proved approximation ratio 2 - f l ( ~ ) .  We also 
show that this is best possible for algorithms that 
only consider the combinatorial structure of the 
polyhedra. 

1 I n t r o d u c t i o n  

Triangulation is the subdivision of d- 
dimensional polyhedron into simplices. In 
this paper we are concerned with triangula- 
tions of 3-dimensional convex polyhedra with 
vertices in general position. Triangulation has 
important  applications in computer-aided de- 
sign, computer  graphics, finite element anal- 
ysis, etc. 

Triangulation in 3-D has many interesting 
properties. Convex polyhedra can always be 
triangulated, but  non-convex polyhedra may 
not: the SchSnhardt polyhedron [8] is such 
an example. It is even NP-complete to de- 
termine whether  a given non-convex polyhe- 
dron can be tr iangulated [7]. Different tri- 
angulations of convex polyhedra may result 
in different numbers of tetrahedra,  and find- 
ing the minimum triangulation was recently 

*This work is supported by I~GC grant HKU 7019/00E. 
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shown to be NP-hard  [2], [3]. Thus design- 
ing good approximation algorithms for this 
problem becomes significant. We modified a 
well-known tr iangulat ion heuristic to obtain 
a bet ter  bound of 2 - ~ ( ~ )  on the approxi- 

mat ion ratio in Section 3. On the other hand, 
it is shown in [1] that  the min imum triangu- 
lation of polyhedra  is not an invariant of the 
face lattice. In Section 4 we extend this to 
show that  any algori thm that  only considers 
the combinatorial  s t ructure  of polyhedra  can- 
not give an approximation ratio bet ter  than  
2 - O( 1 ) Thus our algori thm is best possi- 

ble in this sense. 

We begin with a few definitions. A dome 
of a vertex v in a polyhedron P is the region 
between P and the convex hull (CH) of 
P - v. An edge in a t r iangulat ion is called 
an interior edge if it does not  lie on the 
surface of the polyhedron.  A 3-cycle is a 
closed path  of three edges on the surface 
graph of a polyhedron such tha t  each side 
of the cYCle contains at least one vertex 
not on the cycle. Throughout  this paper, 
let n denote the number  of vertices of a 
given polyhedron, ei the min imum number  of 
interior edges required in any tr iangulat ion of 
the polyhedron, and A the max imum degree 
on the surface graph. For any polyhedron,  the 
number  of interior edges e in a t r iangulat ion is 
directly related to the number  of te t rahedra  t 
by the formula t = e ÷ n - 3 [5]. This implies 
a lower bound of n - 3 t e t rahedra  for any 
triangulation. 

One way to tr iangulate a convex polyhe- 
dron P is to remove the dome of a vertex v 
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qo (which can easily be tr iangulated) to get a 
smaller polyhedron C H ( P  - v), and then to 
iterate this process for C H ( P -  v). This is 
known as 'peeling' [5]. Peeling a vertex of de- 
gree d gives d -  2 tetrahedra.  It can be shown 
that  peeling yields an approximation ratio of 
3- f~(~) .  'Fanning'  (also called 'coning', 'star- 
ring' or 'emission') is another  well-known ap- 
proach. Fanning picks a vertex of the poly- 
hedron and uses it to form te t rahedra  with 
every non-adjacent tr iangular facets, produc- 
ing 2n - 4 - A < 2n - 7 tetrahedra,  which, 
considering the n - 3 lower bound, gives an 
approximation ratio of 2 - f l(~).  

As finding the minimum triangulation of 
convex polyhedra is shown to be NP-hard,  we 
wish to firtd bet ter  approximation algorithms 
for this problem. However, it is shown in [9] 
that  there exist polyhedra requiring as many 
as 2n - 10 te t rahedra  for any triangulation. 
For n > 12, A >_ 6 and the fanning heuristic 
gives no more than 2n - 10 tetrahedra.  Thus 
the fanning heuristic is worst-case optimal, in 
terms of the absolute number of te t rahedra  
produced. This motivates us to analyse the 
approximation ratio of the fanning heuristic. 

2 Vertex-Edge  Chain  Structure  

A key structure that  appeared in [1] will be 
used extensively in this paper. This so-called 
'vertex-edge chain structure' (VECS) consists 
of 2m + 2 faces (a, qi, qi+l ) and (b, qi, qi+l) for 
i -- 0, ..., m, with the additional restriction 
that  the line segment qoqm+l goes through 
the interior of the polyhedron formed by 
te t rahedra  abqiqi+l for all i. This polyhedron 
is called a wedge (Fig. 1). All the 2 m + 2  faces 
lie on its convex hull. We say this VECS has 
size m, and call edge ab the main diagonal. 
A tetrahedron in a tr iangulation is said to be 
incident to a VECS if at least 3 out of its 4 
vertices belong to the VECS. 

We now extend a lemma in [1] concerning 
VECS. 

a 

Figure 1: A VECS of size m. 

LEMMA 2.1. (i) In a polyhedron containing a 
VECS of size m as a substructure, if the main 
diagonal is not present in a triangulation, at 
least 2m tetrahedra must be incident to the 
VECS. 
(ii) If  a polyhedron has k mutually disjoint 
VECSs each of size m as substructures, all 
without the main diagonal in a triangulation, 
at least 2mk tetrahedra are incident to these 
VECS. 

Proof. (i) There  are 2m+2  faces in the VECS. 
If each face is associated with a separate tetra- 
hedron, then there exist at least 2m tetra,  
hedra. Faces aqiqi+l and bqiqi+l cannot be 
in the same te t rahedron because this will in- 
duce edge ab. If aqi-lqi and aqiqi+l are in 
the same tetrahedron,  (similarly for bqi-lqi 
and bqiqi+l), aqi-lqi+l will be a new face inci- 
dent to this VECS, which determines another  
incident tetrahedron.  If this new face is in 
the same te t rahedron with other face trian- 
gle, this will in tu rn  determine another  inci- 
dent tetrahedron.  This process can continue 
until the two faces aqoqm+l and bqoqm+l air- 
pear. A simple induction argument  on this 
idea can show that  at least 2m te t rahedra  are 
incident to this VECS. 
(ii) Consider k mutual ly  disjoint VECSs. A 
te t rahedron incident to one VECS has at least 
3 vertices in that  VECS, leaving at most one 
vertex not in that  VECS, thus this tetra,  
hedron cannot be incident to other  VECSs. 
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Therefore, the k VECS must have 2mk dis- 
tinct incident tetrahedra. [] 

Two VECSs (a,b, q0,...,qm+l) and 
( al, bl, q~, "-, q~m'+l) are said to be interlocked 

_ t L t  J if ab intersects faces alb~ q~ and u v qm' + l , and 
a~b ~ intersects faces abqo and abqm+l. 

LEMMA 2.2. Given k VECSs in an inter- 
locked position, at most one of the main di- 
agonals can be used to triangulate its corre- 
sponding VECS, so as to reduce the number 
of tetrahedra incident to that VECS. 

Proof. To use a main diagonal to reduce the 
number of tetrahedra incident to a particular 
VECS, two triangle faces of that  VECS have 
to form a tetrahedra with the main diagonal 
(see proof of Lemma 2.1). Thus any other 
interlocked VECS's main diagonal, if used, 
will penetrate this tetrahedron, thus cannot 
be used for triangulation. [] 

3 T h e  T r i a n g u l a t i o n  A l g o r i t h m  

3.1 A r e s t r i c t e d  case.  We first consider 
the case when the given polyhedron has no 
3-cycles. This restriction will be removed 
in the next subsection. We analyse the 
approximation ratio of the fanning heuristic 
in this case. 

LEMMA 3.1. Let P be a convex polyhedron 
that has no 3-cycles, n > 4. Then 
(i) At  least one interior edge must be incident 
to the dome of any vertex; 
(ii) ei + A _> ~ / ~  - 1, and this is tight within 
a constant factor. 

Proof. (i) Consider a particular vertex v0 and 
its neighbors vl, v2, ..., vk where 4 < k < A. 
Note that if k : 3, P contains a 3-cycle. The 
triangle vovlv2 must belong to a tetrahedron. 
If the fourth vertex v of this tetrahedron is 
one from v3, v4, ..., Vk, then either vlv  or 
v2v (or both) is an interior edge (otherwise 

there would be a 3-cycle). If v is not one 
from va,v4, ...,Vk, then v is not a neighbor of 
v0 and hence vov is an interior edge. Ill either 
case, an interior edge is incident to the dome 
of v0. 
(ii) Suppose we count the total number of in- 
terior edges by counting the number of inte- 
rior edges incident to all the n possible domes. 
By (i) above, this number is greater than n. 
However, each interior edge is counted more 
than once; it is counted by the domes of their 
two endpoints as well as the endpoints '  neigh- 
bors. The total number  of these domes does 
not exceed 2(A + 1). Therefore each edge 
is counted at most 2(A + 1) times, giving 
ei x 2(A + 1) >_ n. Applying the Arithmetic- 
Geometric-Mean inequality [10], e~+(a+l) > 2 
x/e i (A + 1), thus ei + A _> ~ / ~  - 1. 

We construct a convex polyhedron (Fig. 
2) to show this inequality is tight up to con- 
stant factor. The polyhedron consists of a 
prism with top and bo t tom faces being a con- 
vex m-gon. Then  on each rectangular side 
faces we attach a VECS of size m. The struc- 
tures are placed in such a way that  their main 
diagonals are compatible with a triangulation 
of the prism. They are also made fiat enough 
so that  the resulting polyhedron remains con- 
vex. This polyhedron has O(m 2) vertices; 
the maximum hull degree A is O(m); and 
the interior edges are those needed to trian- 
gulate the prism, which is O(m) since there 
are only O(m) vertices in the prism. These 
edges will automatically triangulate the at- 
tached VECSs. It can also be easily seen 
that  this is the min imum triangulation. Thus 
ei + A = O(m) = O(~/n). [] 

The approximation ratio of the fanning 
heuristic under the no-3-cycle restriction is 
shown in the lemma below. 

LEMMA 3.2. Using the fanning heuristic, the 
approximation ratio r is bounded above by 
2n--~/~--2 

n - 2  
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Figure 2: Tight example for Lemma 3.1(ii). 

Proof. The approximation ratio is bounded 
by 2n-4-6 Hence by Lemma 3.1(ii) n-3+ei " 

r_< 
- 4 - ( - 1 - ) 

n -  3+ei  

n -  2 + (ei - 1) 

2n - ~/'ffn - 2 < 
- n - 2  ' 

since ei _> 1 by Lemma 3.1(i). [] 

3.2 T h e  genera l  case. We now deal 
with the general case for polyhedra having 
3-cycles. We first find all 3-cycles by using 
algorithms such as those in [6] and [4]. Then 
we cut along all 3-cycles to produce sub- 
polyhedra, each is free of 3-cycles. Finally 
we apply the fanning heuristic to each sub- 
polyhedra. The algorithm is shown below. 

ALGORITHM 3.1. CutFan(P) 
Input: A convex polyhedron P with n 
vertices. 
Output: T, a set of tetrahedra that triangu- 
lates P. 

/* partition the polyhedron into 3-cycle-free 
components */ 
79~0 
C +- Enumerate-triangles(P) /* finds all 
3-cycles, but also include faces of P */ 

79 ~-- polyhedra obtained by cutting P 
through all 3-cycles in C 
/* apply farming to each subpolyhedron */ 
T ~ 0  
for each polyhedron Q in 7 9 

pick a vertex v of highest degree in Q 
T ~-- TU { the set of tetrahedra of Q 

farmed from v } 
E n d .  

LEMMA 3.3. Algorithm 3.1 takes O(n) time. 

Proof. We need to describe the algorithm 
in more detail in order to prove the time 
complexity. Finding all 3-cycles takes linear 
time [6], [4]. The process of cutting is as 
follows. Each cycle divides the surface graph 
into an interior part and an exterior part. We 
select an edge and use breadth first search 
to find all vertices inside the cycle, without 
crossing other cycles. If the edge selected is 
on some other cycles nested inside, we process 
them recursively first. The set of vertices 
reached determines a sub-polyhedron. We 
remove the edges traversed. Since the search 
and removal takes time proportional to the 
size of the components, and each edge is 
processed a constant number of times only, 
they take O(n) time in total. Finally, picking 
maximum degree vertices and farming also 
take O(n) time for all subpolyhedra. [] 

LEMMA 3.4. Let P be a convex polyhedron 
with maximum degree A and having a 8-cycle. 
Suppose we cut through the 3-cycle to produce 
two polyhedra Pi and P2, having maximum 
degrees A1 and A2 respectively. Then A < 
Ai + A 2  - 2. 

Proof. Clearly, 3 < A1 < A, 3 < A2 < A. We 
apply a case-by-case analysis. 
Case 1. A is not on the 3-cycle being cut. 
Then it is at one side (or both) of P1 and P2, 
say A1 = A. Then A 1 + A 2 - 2  _> A + 3 - 2  > 
A. 
Case 2. A is on the 3-cycle being cut. Let dl, 
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d2 be the new degrees in P1, P2 respectively 
at the original maximum-degree  vertex. Then  
A = dl + d 2  - 2. There  are two subcases to 
consider: 
(i) Al = d l ,A2  = d2. Then  A = A l + A 2 - 2 .  
(ii) At  > dl, As > d2, and the two equalities 
do not hold at the same time. Then  A < 
A1 + A s  - 2 .  
In all cases the inequality holds. Equal i ty  
only holds for case 2(i). [] 

LEMMA 3.5. Let P, P1 and P2 be the same 
polyhedra as defined in Lemma 3.4, with 
n, nl, n2 vertices respectively. Let F, F1 and 
F2 be the number of tetrahedra produced by 
the fanning heuristic applied to P, P1 and P2 
respectively. Then F > F1 + F2. 

Proof. Note tha t  F = 2 n - 4 - A ,  F1 = 
2nl - 4 - A1, and F2 = 2n2 - 4 - A2. Thus  

Ft + F 2  = 2 ( n l + n 2 ) - 8 - ( A l + A 2 )  

= 2 ( n + 3 ) - 8 - ( A l + A s )  

= 2 n - 4 - ( A l + A s - 2 )  

< 2 n - 4 - A = F .  

The  last inequali ty follows from Lemma 3.4. 
D 

The  above lemma shows tha t  cut t ing  
along a 3-cycle will not increase the number  of 
te t rahedra  using the fanning heuristic. Note 
also tha t  any cut will not create new 3-cycles 
since no new surface edge is created, and two 
3-cycles will never 'cross' each other (i.e. ver- 
tices of a cycle Cl will not be on different sides 
of another  cycle C2). Therefore the l emma is 
also true for mult iple  cuts. The  following the- 
orem gives the analysis of the approximat ion  
ratio of our algori thm. 

THEOREM 3.1. Algorithm 3.1 always gives 
an approximation ratio bounded above by 2 - 

1 

Proof. Suppose there are k 3-cycles in P ,  and 
we apply k cuts to par t i t ion  P into k ÷ l  parts,  
each is free of 3-cycles. Consider  the following 
two cases: 
(i) k = o(n). Since each 3-cycle contains 
exactly 3 vertices, there are at least n -  
3k = O(n) vertices tha t  do not  lie on any 
3-cycle. Since they do not lie on any 3- 
cycle, by the same a rgument  as in Lemma  
3.10) ' each of these O(n)  vertices has an 
interior edge incident  to their  corresponding 
domes in any t r iangulat ion,  unless they are 
of degree 3. However, the number  of such 
degree-3 vertices mus t  be sub-linear. It  is 
because each of t hem mus t  de termine  a cycle, 
so its number  mus t  not  be more  than  k~ 
by our assumpt ion.  Thus  there is still a 
linear number  of vertices each has interior 
edges incident  to their  corresponding domes.  
Similar to the  proof  of L e m m a  3.1 (ii), we have 
2ei(A + 1) > O(n) ,  giving e~ + A _> O(v /n  ). 
Using a proof  similar to tha t  of L e m m a  3.2, 

w e  have 

2n - 4 -  A 1 
r< <2-aCT) 

- e i + n - 3  - 

This means even if we apply the fanning 
heurist ic directly to the original po lyhedron  
(without  cut t ing),  we still have a bound  of 
2 - f~(~n)" By L e m m a  3.5, d ividing the poly- 
hedron along all 3-cycles before fanning will 
not increase the number  of te t rahedra .  Thus  

1 our a lgor i thm gives a bound  of 2 - f l ( ~ ) .  

(ii) k = fl(n).  By Lemmas  3.4 and 3.5, 
apart  from Case 20) ' each cut  will reduce the 
number  of t e t rahedra  by at  least 1. If  Case 
2(i) occurs only sub-l inear number  of times, 
the other  cases will occur a linear number  of 
times, thus reducing a linear number  of tetra- 
hedra. Therefore the  approx imat ion  ratio 

r_< 
2 n - 4 - A - c n  

e i ÷ n - 3  
< 2 -  c < 2 -  f ~ ( ~ n )  

for some constant  c > 0. If Case 2(i) occurs 
a linear number  of t imes, t ha t  means the 
m a x i m u m  degree is cut  a linear number  of 
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times. Each cut reduce A by at least 1. Thus 
A must be linear. Therefore 

r_< 2 n  - 4 - c ' n  < 2 - c ' < 2 - f l ( - ~ = )  
e ~ + n - 3  -  /nn 

for constant c ~ > 0. [] 

Note that  although cutt ing 3-cycles is an 
important  step in our algorithm, it does not 
always produce minimum triangulations. A 
counterexample can be constructed using a 
'cupola' [3], that is 3 VECSs of size m at- 
tached to a SchSnhardt polyhedron. We add 
a vertex joining to the triangular bot tom face 
of the cupola, making sure that it is inside 
the visibility cone of the top face, and the 
whole polyhedron remains convex (Fig. 3). 
Now the original bot tom face becomes a 3- 
cycle. The polyhedron has 3m + 7 vertices. 
If we cut through the 3-cycle, the 3 main 
diagonals cannot be used together, because 
then the SchSnhardt polyhedron cannot be 
triangulated. Hence at least 1 main diago- 
nal cannot be used, and therefore the cupola 
needs at least 4m tetrahedra to triangulate. 
On the other hand, since the new vertex can 
see all non-convex facets of the SchSnhardt 
polyhedron from inside, we can triangulate 
the whole polyhedron by 'fanning' from the 
added vertex, while the 3 VECSs are trian- 
gulated using their own main diagonals. This 
gives only 3m + 10 tetrahedra. Therefore cut- 
ting 3-cycles does not always produce mini- 
mum triangulations. 

Note also that  finding 3-cycles, cutting 
them, and fanning the resulting polyhedra, 
are all combinatorially invariant. In other 
words, they only require the surface graph 
of the polyhedron to be given. The next 
section shows that this restriction implies a 
lower bound of approximability. 

4 Lower B o u n d  of  Approximat ion  

The combinatorial structure of a polyhedron 
is completely determined by its surface graph, 

Figure 3: A cupola with a 3-cycle. 

or equivalently by its . f ace  l a t t i c e  [11]. Two 
combinatorially equivalent polyhedra can still 
have different geometric properties, e.g. hav- 
ing different vertex coordinates. It is shown 
in [1] that the minimum triangulation of con- 
vex polyhedra is not an invariant of the face 
lattice. We shall extend this idea to show 
that the difference in the minimum numbers 
of tetrahedra for two different convex polyhe- 
dra with the same face lattice can be linear 
in the number of vertices. As a major result, 
we show that,  given only the face lattice but 
without the vertex coordinates, no approxi- 
mation algorithms for finding minimum tri- 
angulation of convex polyhedra can have an 
approximation ratio better than 2 - O ( ~ ) .  

The idea for our proof is to construct two 
polyhedra, P1 and P2, such that  they have 
the same surface graph, but  their minimum 
triangulations differ by a linear number of 
tetrahedra. Both polyhedra consist of m thin 
wedges, each wedge being a VECS of size 
m. Both polyhedra have the same number 
of vertices n where n = m 2 + 4m. In P1 the 
m VECSs interlock each other, thus only one 
of the m main diagonals can be present in a 
triangulation, resulting in a greater number 
of tetrahedra. P2 is constructed similarly but 
the wedges do not interlock each other, and 
thus all m the main diagonals can be present 
in a triangulation, resulting in much smaller 
number of tetrahedra. 
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Figure 4: The placement of 3 wedges, qi's axe not shown. 

4.1 T h e  d e t a i l e d  c o n s t r u c t i o n .  Fig.4 
shows a rough idea of the construction of 
P1. We first arrange m wedges in an xyz- 
coordinate system. Wedge Wk (1 < k < m) 
has vertices ak, bk, ck,d k where akb k is the 
main diagonal. All faces akCkdk lie on the 
vertical plane y = - 1  and all faces bkCkdk 
lie on the horizontal plane z = 1. W1 is 
at a:(0, -1 ,  -1) ,  bl(0, 1, 1), c:(0, -1 ,  1), 
d l ( -0 .1  , -1 ,  1). Assuming wedges Wi to Wk 
have been constructed, Wk+l is constructed 
as follows (Fig.4 also shows a top view from 
the positive z-axis): pick al:+l so that  its 
x-coordinate is smaller than that  of dk and 
z-coordinate larger than ak, and such that  
al,a2,...,ak,ak+ 1 form a convex chain w.r.t. 

the point (0, - 1 ,  -c~) .  bk+l is uniquely 
determined on the z = 1 plane such that  
ak+lbk+l passes through the origin (0, 0, 0). 
Find a point Ck+l such that  bk+lCk+l does 
not intersect all previous wedge faces on the 
horizontal plane, dk+l is placed slightly to 
the 'left' (negative x direction) of ck+l. 

The following two facts are not difficult to 
be established: 
1. bk+l has larger y-coordinate than bk. 
2. Vertices bl, b2,..., bk, bk+l form a convex 
chain w.r.t, the point  (cx~, 0, 1). 

Moreover, m points 1 2 m qk, qk, "", qk axe cre- 
ated between each interval (ck, dk) and edges 
akq~,bkq~ axe added so that  they form a 
VECS of size m. 
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This construction puts all the vertices on 
two planes. It is not difficult to see that 
this degeneracy can be removed by slightly 
bending the horizontal and vertical planes so 
that the polyhedron is convex, while keeping 
the orientations of all the main diagonals 
unchanged. 

Finally, we move the wedges slightly 
along the positive x-axis: the k-th wedge 
Wk is moved by a distance of k6 where 

> 0 is a small constant, so that any two 
wedges are in an interlocked position. It is 
easy to see that small enough perturbations 
will not change the surface graph of the 
polyhedron. P1 is formed by taking the 
convex hull of all the wedges, i.e. having 
the edges akCk, akdk,bkck, bkdk(1 < k <_ m); 
dkak+l, dk+tCk, bkCk+l, akak+l, bkbk+ 1 (1 < 
k < m -  1); atak,blbk(3 < k < m); 
clbm, albm,aldm; qiqi+l 1 k .k ,q.kCk,q~ndk( 1 <-- i < 
m - - l , 1  < k < m ) ; q ~ a k , q ~ b k ( l < i < m , l _ <  
k < m ) .  

The construction of P2 is almost identical 
to that of P1, except that the wedges do not 
move but shrink. We draw a vertical line 
passing through each vertex Ck and intersect 
edge dkak at a~. We shrink the wedge Wk 
from akbkckd k to a~bkckd k. Then the chain 
at (= al),  aS, ..., aim is still convex. Clearly, 
the surface graph will not be changed by 
this transformation, and all wedges do not 
intersect. Thus we have the following. 

CLAIM 4.1. P1 and PP have the following 
properties. 
(i) Both P1 and PP are convex. 
(ii) P1 and PP have the same surface graph. 
(iii) All VECS faces akq~q~ +1 and bkq~q~ +1 
are on the surface of P1 and PP. 
(iv) For P1, all wedges interlock one another. 
For PP, all wedges do not intersect one an- 
other. 

4.2 Size o f  t h e  t r i a n g u l a t i o n s .  We next 
show that the minimum triangulation of P1 

contains a much greater number of tetrahedra 
than that  of P2. 

LEMMA 4.1. The minimum triangulation of 
P1 contains at least 2m 2 - m + 1 tetrahedra. 

Proof. Among the m interlocked main diag- 
onals, only one can be present in any trian- 
gulation of P1 (Lemma 2.2). Note that  all m 
VECSs are disjoint in our construction, then 
by Lemma 2.1, at least (m - 1)(2m) tetrahe- 
dra must incident to these m - 1 VECSs not 
using their main diagonals. The VECS with 
the main diagonal creates m + 1 tetrahedra. 
Thus, a total of at least (m - 1)(2m) + (m + 
1) = 2m 2 - m + 1 tetrahedra must appear in 
any triangulation. [] 

LEMMA 4.2. The minimum triangulation of 
PP contains at most m 2 + 8m - 8 tetrahedra. 

Figure 5: The space between 3 wedges. 
Thickness of each wedge is not shown. 

Proof. We triangulate each wedge by us- 
ing the main diagonal of its corresponding 
VECS, producing m + 1 tetrahedra each. 
Now we have to triangulate the remaining 
space. Consider any three consecutive wedges 
Wk, Wk+l, Wk+2 (1 < k < m - 2). We add 
the interior edges akbk+ 1 and ak+lbk+2 SO 
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that the two regions akbkdkak+lbk+lCk+l and 
ak+ibk+ldk+lak+2bk+2Ck+ 2 are convex,  a n d  

they can be tr iangulated using 4 te t rahedra  
each. Finally, the remaining space can be tri- 
angulated with 3 te t rahedra  akak+lak+2bk+2, 
bkbk+lbk+2ak, and ak+lbk+lakbk+2 (Fig.5). 
Using the above procedure, wedge Wk+l is ef- 
fectively 'shielded' and the tr iangulation can 
proceed with the remaining m -  1 wedges as if 
there is no Wk+l. We use this to triangulate 
P2 start ing from W1W2W3, then W1W3W4 
and so on until only two wedges W1 and 
Wm remain. The space beyond W1 and Wm 
can be tr iangulated by adding the tetrahe- 
dra alblClbm and ambmdraal for the two outer 
faces. 

There  are m VECSs, each giving m + 1 
tetrahedra,  each of the m - 1 convex regions 
between Wk and Wk+l gives 4 tetrahedra,  
each of the m - 2 inductive steps gives 3 more 
tetrahedra,  and the final two wedges gives 2 
more. Thus the total number  of te t rahedra  
is re(m+ 1 ) + 4 ( m -  1 ) + 3 ( m -  2) + 2  = 
m 2 + 8m -- 8. [] 

THEOREM 4.1. There exist convex polyhedra 
with the same face lattice, such that the min- 
imum number of tetrahedra required for their 
respective triangulations can vary with respect 
to their vertex coordinates. The difference can 
be linear in the number of vertices. 

Proof. This follows directly from Lemmas 4.1 
and 4.2. P1 has at least 2m 2 -  m +  1 : 
2n - O(vf~ ) te t rahedra  while P2 has at most 
m 2 + 8m - 8 = n + O(v/n  ) tetrahedra.  D 

THEOREM 4.2. Any approximation algo- 
rithm for finding the minimum triangulation 
of convex polyhedra, provided with only the 
face lattice, cannot have approximation ratio 
better than 2 - O( ~n ). 

Proof. Since the minimum triangulation of 
polyhedra with the same face lattice can 

have either at least 2n - O(v /n  ) or at most 
n + @(~/~) tetrahedra,  any approximation al- 
gori thm that  considers the face lattice only 
must produce a tr iangulat ion with the worst 
case number,  i.e. 2 n - O ( ~ / ~ ) .  Otherwise, this 
algorithm would produce a tr iangulat ion with 
less than  optimal number  of te t rahedra  in 
some cases, a contradiction. Note that  there 
exists polyhedron whose min imum triangula- 
tion contains at most n + O(~/n) te t rahedra  
while any approximation algori thm can only 
give a t r iangulat ion with at least 2n - ®(~/~) 
tetrahedra.  Thus  the approximation ratio is 

bounded by r > n+e(~/~) P- 2 - 0(~). [] 

5 Conc lus ion  

In this paper, we give an algori thm for finding 
the min imum tr iangulat ion of convex poly- 

1 hedra with approximation ratio 2 - ~ ( ~ ) .  

We also show a 2 - O(7~)  bound on the ap-  

proximability of the min imum triangulation 
problem. Thus  there is no bet ter  constant- 
ratio approximation algori thm without  con- 
sidering the actual  coordinates of the vertices. 
If vertex coordinates are taken into account, 
whether  bet ter  approximation ratio can be 
achieved, or similar non-approximabil i ty re- 
sults exist, is still an open problem. When 
the max imum degree is bounded by a con- 
stant, it is also unclear whether  these bounds 
can be improved. 
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