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Abstract

The minimum triangulation of a convex polyhe-
dron is a triangulation that coniains the minimum
number of tetrahedra over all its possible trian-
gulations. Since finding the minimum triangula-
tion of convex polyhedra was recently shown to be
NP-hard, it becomes significant to find algorithms
that give good approximation. In this paper, we
give a new triangulation algorithm with an im-
proved approximation ratio 2 — Q(v,%-l) We also
show that this ig best possible for algorithms that
only consider the combinatorial structure of the
polyhedra.

1 Introduction

Triangulation is the subdivision of d-
dimensional polyhedron into simplices. In
this paper we are concerned with triangula-
tions of 3-dirensional convex polyhedra with
vertices in general position. Triangulation has
important applications in computer-aided de-
sign, computer graphics, finite element anal-
ysis, etc.

‘Triangulation in 3-D has many interesting
properties. Convex polyhedra can always be
triangulated, but non-convex polyhedra may
not: the Schonhardt polyhedron [8] is such
an example. It is even NP-complete to de-
termine whether a given non-convex polyhe-
dron can be triangulated [7]. Different tri-
angulations of convex polyhedra may result
in different numbers of tetrahedra, and find-
ing the minimum triangulation was recently
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shown to be NP-hard [2], [3]. Thus design-
ing good approximation algorithms for this
problem becomes significant. We modified a
well-known triangulation heuristic to obtain
a better bound of 2 — 9(“1,/?:) on the approxi-
ination ratio in Section 3. On the other hand,
it, is shown in [1] that the minimum triangu-
lation of polyhedra is not an invariant of the
face lattice. In Section 4 we extend this to
show that any algorithm that only considers
the combinatorial structure of polyhedra can-
not give an approximation ratio better than
2-— 0(71;). Thus our algorithin is best possi-
ble in this sense.

We begin with a few definitions. A dome
of a vertex v in a polyhedron P is the region
between P and the convex hull (CH) of
P — v. An edge in a triangulation is called
an interior edge if it does not lie on the
surface of the polyhedron. A 3-cycle is a
closed path of three edges on the surface
graph of a polyhedron such that each side
of the cycle contains at least one vertex
not on the cycle. Throughout this paper,
let n denote the number of vertices of a
given polyhedron, ¢; the minimum number of
interior edges required in any triangulation of
the polyhedron, and A the maximum degree
on the surface graph. For any polyhedron, the
number of interior edges e in a triangulation is
directly related to the number of tetrahedra ¢
by the formula t = e +n — 3 [5]. This implies
a lower bound of n — 3 tetrahedra for any
triangulation.

One way to triangulate a convex polyhe-
dron P is to remove the dome of a vertex v



(which can easily be triangulated) to get a
smaller polyhedron CH(P — v}, and then to
iterate this process for CH(P — v). This is
known as ‘peeling’ [5]. Peeling a vertex of de-
gree d gives d — 2 tetrahedra. It can be shown
that peeling yields an approximation ratio of
3—0(#). ‘Fanning’ (also called ‘coning’, ‘star-
ring’ or ‘emission’) is another well-known ap-
proach. Fanning picks a vertex of the poly-
hedron and uses it to form tetrahedra with
every non-adjacent triangular facets, produc-
ing 2n — 4 — A £ 2n — 7 tetrahedra, which,
considering the n — 3 lower bound, gives an
approximation ratio of 2 — Q(%).

As finding the minimum triangulation of
convex polyhedra is shown to be NP-hard, we
wish to find better approximation algorithms
for this problem. However, it is shown in [9]
that there exist polyhedra requiring as many
as 2n — 10 tetrahedra for any triangulation.
For n > 12, A > 6 and the fanning heuristic
gives no more than 2n — 10 tetrahedra. Thus
the fanning heuristic is worst-case optimal, in
terms of the absolute number of tetrahedra
produced. This motivates us to analyse the
approximation ratio of the fanning heuristic.

2 Vertex-Edge Chain Structure

A key structure that appeared in [1] will be
used extensively in this paper. This so-called
‘vertez-edge chain structure’ (VECS) consists
of 2m + 2 faces (a, gi, ¢i+1) and (b, g;, g;11) for
1 = (,...,m, with the additional restriction
that the line segment gogm+1 goes through
the interior of the polyhedron formed by
tetrahedra abg;q;y, for all <. This polyhedron
is called a wedge (Fig. 1). All the 2m+-2 faces
lie on its convex hull. We say this VECS has
size m, and call edge ab the main diagonal.
A tetrahedron in a triangulation is said to be
incident to a VECS if at least 3 out of its 4
vertices belong to the VECS.

We now extend a lemma in [1] concerning
VECS.

Yo b
4

Qm+1

Figure 1: A VECS of size m.

LEMMA 2.1. (i) In a polyhedron containing a
VECS of size m as a substructure, if the main
diagonal is notl present in o triangulation, at
least 2m tetrahedra must be incident to the
VECS.

(i) If a polyhedron has k mutually disjoint
VECSs each of size m as substructures, all
without the main diagonal in a triangulation,
at least 2mk lelrahedra are incident to these
VECS.

Proof. (i} There are 2m+-2 faces in the VECS.
If each face is associated with a separate tetra-
hedron, then there exist at least 2m tetra-
hedra. Faces ag;g;+1 and bgig;y) cannot be
in the same tetrahedron because this will in-
duce edge ab. I ag;_1q; and aggiy, are in
the same tetrahedron, (similarly for bg;_,q;
and bg;q; 11}, ag;—1g;+1 will be a new face inci-
dent to this VECS, which determines another
incident tetrahedron. If this new face is in
the same tetrahedron with other face trian-
gle, this will in turn determine another inci-
dent tetrahedron. This process can continue
until the two faces agogy,+1 and bgogm1 ap-
pear. A simple induction argument on this
idea can show that at least 2m tetrahedra are
incident to this VECS.

(ii) Consider k mutually disjoint VECSs. A
tetrahedron incident to one VECS has at least
3 vertices in that VECS, leaving at most one
vertex not in that VECS, thug this tetra-
hedron cannot be incident to other VECSs.
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Therefore, the k¥ VECS must have 2mk dis-
tinct incident tetrahedra. O

Two VECSs ({a,b,q0,-..,9m+1)} and
(¢!, ¥, gy, s @ ) are said to be interlocked
if ab intersects faces a't/qj and a’t'q, ;, and
a'b’ intersects faces abgy and abgp,41.

LEMMA 2.2. Given k VECSs in an inter-
locked position, ot most one of the main di-
agonals can be used to iriangulate its corre-

sponding VECS, so as to reduce the number
of tetrahedra incident to that VECS.

Proof. To use a main diagonal to reduce the
number of tetrahedra incident to a particular
VECS, two triangle faces of that VECS have
to form a tetrahedra with the main diagonal
(see proof of Lemma 2.1). Thus any other
interlocked VECS’s main diagonal, if used,
will penetrate this tetrahedron, thus cannot
be used for triangulation. O

3 The Triangulation Algorithm

3.1 A restricted case. We first consider
the case when the given polyhedron has no
3-cycles. This restriction will be removed
in the next subsection. We analyse the
approximation ratio of the fanuning heuristic
in this case.

LeMMA 3.1. Let P be a conver polyhedron
that kas no 3-cycles, n > 4. Then

(1) At least one interior edge must be incident
to the dome of any vertex;

(ii) e;+ A > V2 — 1, and this is tight within
a constant factor.

Proof. (i) Consider a particular vertex vy and
its neighhors vy, vg, ..., vy where 4 < k£ < A.
Note that if k = 3, P contains a 3-cycle. The
triangle vgv v2 must belong to a tetrahedron.
If the fourth vertex v of this tetrahedron is
one from vs, v4, ..., v, then either v;v or
vov (or both}) is an interior edge (otherwise

there would be a 3-cycle). If v is not one
from vs,v4, ..., Uk, then v is not a neighbor of
vp and hence vyv is an interior edge. In either
case, an interior edge is incident to the dome
Ofvo.

(ii) Suppose we count the total number of in-
terior edges by counting the number of inte-
rior edges incident to all the n possible domes.
By (i) above, this number is greater than n.
However, each interior edge is counted more
than once; it is counted by the domes of their
two endpoints as well as the endpoints’ neigh-
bors. The total number of these domes does
not exceed 2(A + 1). Therefore each edge
is counted at most 2(A + 1} times, giving
e; X 2(A + 1) > n. Applying the Arithmetic-
Geometric-Mean inequality [10], i‘ﬂéﬂl >

vei(A+1), thuse; + A >+/2n - 1.

We coustruct a convex polyhedron (Fig.
2) to show this inequality is tight up to con-
stant factor. The polyhedron consists of a
prism with top and bottom faces being a con-
vex m-gon. Then on each rectangular side
faces we attach a VECS of size m. The struc-
tures are placed in such a way that their main
diagonals are compatible with a triangulation
of the prisin. They are also made flat enough
so that the resulting polyhedron remains con-
vex. This polyhedron has ©(m?) vertices;
the maximum hull degree A is ©(m}); and
the interior edges are those needed to trian-
gulate the prism, which is ©{m) since there
are only @(m) vertices in the prism. These
edges will automatically triangulate the at-
tached VECSs. It can also be easily seen
that this is the minimum triangulation. Thus
e; + A = B(m) = O(/n). O

The approximation ratio of the fanning
heuristic under the no-3-cycle restriction is
shown in the lemma below.

LEMMA 3.2. Using the fanning heuristic, the

approzimation rotio r is bounded above by
2n—v2n-—-2
n-2 -



Figure 2: Tight example for Lemma 3.1(ii).

Proof. The approximation ratio is bounded
by Z:=4-4  Hence by Lemma 3.1(ii)

n-3-4¢€;
< 2n—4— (V2n—-1-—¢;)
- n—3+e;

C2n—+/2n-2+4(e; - 1)

- n—2+ (e —~1)
< 2n = /2n—2
—_— n-——2 ?

since ¢; > 1 by Lemma 3.1(i). O

3.2 The pgeneral case. We now deal
with the general case for polyhedra having
3-cycles. We first find all 3-cycles by using
algorithms such as those in [6] and [4]. Then
we cut along all 3-cycles to produce sub-
polyhedra, each is free of 3-cycles. Finally
we apply the fanning heuristic to each sub-
polyhedra. The algorithm is shown below.

ArcoriTaM 3.1. CutFan(P)

Input: A convex polyhedron P with =
vertices.

Output: T, a set of tetrahedra that triangu-
lates P.

/* partition the polyhedron into 3-cycle-free
components */

P10

C < Enumerate-triangles(P) /* finds all
3-cycles, but also include faces of P */

P <+« polyhedra obtained by cutting P
through all 3-cycles in
/¥ apply fanning to each subpolyhedron */
T+ 0
for each polyhedron @ in P

pick a vertex v of highest degree in @

T + TU { the set of tetrahedra of @

fanned from v }

End.

LEMMA 3.3. Algorithm 8.1 takes O(n) time.

Proof. We need to describe the algorithm
in more detail in order to prove the time
complexity. Finding all 3-cycles takes linear
time [6}, [4]. The process of cutting is as
follows. Each cycle divides the surface graph
into an interior part and an exterior part. We
select an edge and use breadth first search
to find all vertices inside the cycle, without
crossing other cycles. If the edge selected is
on same other cycles nested ingide, we process
them recursively first. The set of vertices
reached determines a sub-polyhedron. We
remove the edges traversed. Since the search
and removal takes time proportional to the
size of the components, and each edge is
processed a constant number of times only,
they take O(n) time in total. Finally, picking
maximum degree vertices and fanning also
take O(n) time for all subpolyhedra. O

LEMMA 3.4. Let P be a convez polyhedron
with mazimum degree A and having a 3-cycle.
Suppose we cut through the 3-cycle to produce
two polyhedra Py and P, having mazimum
degrees Ay and Ag respectively. Then A <
A+ Ay — 2.

Proof. Clearly, 3 < A} <A, 3< Ay <A We
apply a case-by-case analysis.

Case 1. A is not on the 3-cycle being cut.
Then it is at one side (or both) of P, and P;,
say A = A. Then A1+ A3 -2>A4+3-2>
A

Case 2. A is on the 3-cycle being cut. Let dj,
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dy be the new degrees in Py, P, respectively
at the original maximum-degree vertex. Then
A = dy + dy — 2. There are two subcases to
consider:

(i) Ay =d;, Ay =dz. Then A = A+ A2,
(1) A, > d;, Az > d2, and the two equalities
do not hold at the same timne. Then A <

A 4+ Ag -2,
In all cases the inequality holds. Equality
only holds for case 2(i). O

LEMMA 3.5. Let P, P, and P be the sume
polyhedra as defined in Lemma 3.4, with
n,ny, ne vertices respectively. Let F\ Fy and
Fy be the number of tetrahedra produced by
the fanning heuristic applied to P, P, and P
respectively. Then F > Fy + Fo.

Proof. Note that F = 2n —4 - A F| =
2711—4—A1,a]1dF2=27L2—4—A2. Thus

i+ F = 2n+n2) —8-(A1+42)
2(n+3) ~ 8 - (A + Ap)
2n—4- (A +A4A3-2)

< 2n—4-A=PF.

i

The last inequality follows from Lemma 3.4.
a

The above lemma shows that cutting
along a 3-cycle will nat increase the number of
tetrahedra using the fanning heuristic. Note
also that any cut will not create new 3-cycles
since no new surface edge is created, and two
3-cycles will never ‘cross’ each other (i.e. ver-
tices of a cycle Cy will not be on different sides
of another cycle Cy). Therefore the lemma is
also true for multiple cuts. The following the-
orem gives the analysis of the approximation
ratio of our algorithm.

THECOREM 3.1. Algorithm 3.1 always gives
an approrimation ratio bounded above by 2 —

Q(L).

Proof. Suppose there are k& 3-cycles in P, and
we apply k cuts to partition P into k+1 parts,
each is free of 3-cycles. Consider the following
two cases:

(i) & = o(n). Since each 3-cycle contains
exactly 3 vertices, there are at least n —
3k = ©(n) vertices that do not lie on any
3-cycle. Since they do not lie on any J-
cycle, by the same argument as in Lemma
3.1(i), each of these O(n) vertices has an
interior edge incident to their corresponding
domes in any triangulation, unless they are
of degree 3. However, the number of such
degree-3 vertices must be sub-linear. It is
because each of themn must determine a cycle,
80 its number must not be more than &,
by our assumption. Thus there is still a
linear number of vertices each has interior
edges incident to their corresponding domes.
Similar to the proof of Lemma 3.1(ii), we have
2ei(A + 1) > O(n), giving ¢; + A > O(y/n).
Using a proof similar to that of Lemmma 3.2,
we have

2n—-4-A 1
< iT Z o
T e+n—-3

This means even if we apply the fanning
heuristic directly to the original polyhedron
(without cutting), we still have a bound of
2- Q(T/Lﬁ) By Lemma 3.5, dividing the poly-
hedron along all 3-cycles before fanning will
not increase the number of tetrahedra. Thus
our algorithm gives a bound of 2 — Q(V,Lﬁ).
(ii) £ = Q@(n). By Lemmas 3.4 and 3.5,
apart from Case 2(i), each cut will reduce the
number of tetrahedra by at least 1. If Case
2(i) occurs only sub-iinear mumber of times,
the other cases will occur a linear number of
times, thus reducing a linear number of tetra-
hedra. Therefore the approximation ratio

2n-4—-A—-cn
r <
- e;+n—3

52—4:52—9(%)

for some constant ¢ > 0. If Case 2(i) occurs
a linear number of times, that means the
maximum degree is cut a linear number of



times. Each cut reduce A by at least 1. Thus
A must be linear. Therefore

2n—-4-dcn ) 1
—_— <2 <2 - —=
r= eg+n—3 ~ €= (\/‘T_L)
for constant ¢ > 0. 0

Note that although cutting 3-cycles is an
important step in our algorithm, it does not
always produce minimum triangulations. A
counterexample can be constructed using a
‘cupola’ [3], that is 3 VECSs of size m at-
tached to a Schénhardt polyhedron. We add
a vertex joining to the triangular bottom face
of the cupola, making sure that it is inside
the visibility cone of the top face, and the
whole polyhedron remains convex (Fig. 3).
Now the original bottom face becomes a 3-
cycle. The polyhedron has 3m + 7 vertices.
If we cut through the 3-cycle, the 3 main
diagonals cannot be used together, because
then the Schonhardt polyhedron cannot be
triangulated. Hence at least 1 main diago-
nal cannot be used, and therefore the cupola
needs at least 4m tetrahedra to triangulate.
On the other hand, since the new vertex can
see all non-convex facets of the Schénhardt
polyhedron from inside, we can triangulate
the whole polyhedron by ‘fanning’ from the
added vertex, while the 3 VECSs are trian-
gulated using their own main diagonals. This
gives only 3m -+ 10 tetrahedra. Therefore cut-
ting 3-cycles does not always produce mini-
murn triangulations.

Note also that finding 3-cycles, cutting
them, and fanning the resulting polyhedra,
are all comubinatorially invariant. In other
words, they only require the surface graph
of the polyhedron to be given. The next
section shows that this restriction implies a
lower bound of approximability.

4 Lower Bound of Approximation

The combinatorial structure of a polyhedron
is cornpletely determined by its surface graph,

4+ Additional vertex

Figure 3: A cupola with a 3-cycle.

or equivalently by its face lattice [11]. Two
combinatorially equivalent polyhedra can still
have different geometric properties, e.g. hav-
ing different vertex coordinates. It is shown
in [1] that the minimum triangulation of con-
vex polyhedra is not an invariant of the face
lattice. We shall extend this idea to show
that the difference in the minimum numbers
of tetrahedra for two different convex polyhe-
dra with the same face lattice can be linear
in the number of vertices. As a major result,
we show that, given only the face lattice but
without the vertex coordinates, no approxi-
mation algorithms for finding minimum tri-
angulation of convex polyhedra can have an
approximation ratio better than 2 — O(—j—ﬁ).

The idea for our proof is to construct two
polyhedra, P1 and P2, such that they have
the same surface graph, but their minimum
triangulations differ by a linear number of
tetrahedra. Both polyhedra consist of m thin
wedges, each wedge being a VECS of size
m. Both polyhedra have the same number
of vertices n where » = m? + 4m. In P1 the
m VECSs interlock each other, thus only one
of the m main diagonals can be present in a
triangulation, resulting in a greater number
of tetrahedra. P2 is constructed similarly but
the wedges do not interlock each other, and
thus all m the main diagonals can be present
in a triangulation, resulting in much smaller
number of tetrahedra.
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)/ i
C;le 3}
]

d3 C3 /] d_“
a3

Z

(top view)

Figure 4: The placement of 3 wedges. ¢*’s are not shown.

4.1 The detailed construction. Fig4
shows a rough idea of the construction of
P1l. We first arrange m wedges in an zyz-
coordinate system. Wedge Wi (1 < k < m)
has vertices ag,lbg,cr,dr where apby is the
main diagonal. All faces apcpdy lie on the
vertical plane y = —1 and all faces bycydy
lie on the horizontal plane z = 1. W is
at 21(0, —1, —1), 5:(0, 1, 1), ¢ (0, -1, 1),
di(—0.1 ,—1, 1). Assuming wedges W to W}
have been constructed, Wy is constructed
as follows (Fig.4 also shows a top view from
the positive z-axis): pick ag4; so that its
z-coordinate is smaller than that of dy and
z-coordinate larger than ag, and such that
ap, az, ..., a, @41 form a convex chain w.r.t.

the point (0, —1, —o0). b4y is umiquely
determined on the z = 1 plane such that
ax+1bg+1 passes through the origin (0, 0, 0).
Find a point cgy; such that bgyycx4 does
not intersect all previous wedge faces on the
horizontal plane. di4y is placed slightly to
the ‘left’ (negative z direction) of ¢x;.

The following two facts are not difficult to
be established:
1. bg+1 has larger y-coordinate than by.
2. Vertices by, b, ..., b, bg41 form a convex
chain w.r.t. the point (oo, 0, 1).

Moreover, m points gi, gz, ...,¢I" are cre-
ated between each interval (¢, dy) and edges
orgL, bk, are added so that they form a
VECS of size m.



This construction puts all the vertices on
two planes. It is not difficult to see that
this degeneracy can be removed by slightly
bending the horizontal and vertical planes so
that the polyhedron is convex, while keeping
the orientations of all the main diagonals
unchanged.

Finally, we move the wedges slightly
along the positive z-axis: the k-th wedge
W}y 8 moved by a distance of ki where
d > 0 is a small constant, so that any two
wedges are in an interlocked position. It is
eagy to see that small enough perturbations
will not change the surface graph of the
polyhedron. Pl is formed by taking the
convex hull of all the wedges, i.e. having
the edges arck, apdy, bick, brdi(1 < &k < m);
drGr1, Gxp1Ck, DECrirs GkOE 41, brbr (1 <
k< m—1); aagbhb(3 < k& < m)
e1bym, 010, @1dm; GharT, ghck, grda(l < i <
m—1,1<k<m); giar,ggbe(l <i<m,1 <
k < m).

The construction of P2 is almost identical
to that of P1, except that the wedges do not
move but shrink. We draw a vertical line
passing through each vertex ¢; and intersect
edge dyag at ay. We shrink the wedge Wi
from apbrcrdi to albrcrdi. Then the chain
ai(= a1),ah,...,al, is still convex. Clearly,
the surface graph will not be changed by
this transformation, and all wedges do not
intersect. Thus we have the following.

CraMm 4.1. Pi and P2 have the following
properties.

(i) Both PI and P2 are convez.

(i) P1 and P2 have the same surface graph.
(iii) All VECS faces axgiqi’" and bygigt
are on the surface of P1 and P2.

(iv) For P1, all wedges interlock one another.
For P2, all wedges do not intersect one an-
other.

4.2 Size of the triangulations. We next
show that the minimum triangulation of P1

contains a much greater number of tetrahedra
than that of P2.

LeEMMA 4.1. The minimum triangulation of
P1 contains ot least 2m? — m + 1 tetrahedra.

Proof. Among the m interlocked main diag-
onals, only one can be present in any trian-
gulation of P1 (Lemma 2.2). Note that all m
VECSs are disjoint in our construction, then
by Lemma, 2.1, at least (m — 1)(2m) tetrahe-
dra must incident to these m — 1 VECSs not
using their main diagonals. The VECS with
the main diagonal creates m + 1 tetrahedra.
Thus, a total of at least (m — 1)(2m) + (m +
1) = 2m® — m + 1 tetrahedra must appear in
any triangulation. ]

LEMMA 4.2. The minimum iriangulation of
P2 contains at most m? + 8m — 8 telrahedra.

Figure 5: 'The space between 3 wedges.
Thickness of each wedge is not shown.

Proof. We triangulate each wedge by us-
ing the main diagonal of its corresponding
VECS, producing m + 1 tetrahedra each.
Now we have to triangulate the remaining
space. Consider any three consecutive wedges
Wk,Wk+1,Wk+2 (1 < k <m-— 2) We add
the interior edges apby.; and g4 by SO
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that the two regions agbydiag 1bgr10541 and
Ok+10k+1dk+10k+2bp+2Ck4+2 are convex, and
they can be triangulated using 4 tetrahedra
each. Finally, the remaining space can be tri-
angulated with 3 tetrahedra axapyi0k4+2bpy2,
bibryibetoak, and ogiibgiiagbess (Fig.5).
Using the above procedure, wedge Wy is ef-
fectively ‘shielded’ and the triangulation can
proceed with the remaining m — 1 wedges as if
there is no Wi ;. We use this to triangulate
P2 starting from W,W,;W;3, then W \W3W,
and so on until only two wedges W; and
W,, remain. The space beyond Wi and W,
can be triangulated by adding the tetrahe-
dra a1b;c1 by and embmdimay for the two outer
faces.

There are m VECSs, each giving m + 1
tetrahedra, each of the m — 1 convex regions
between W} and Wy, gives 4 tetrahedra,
each of the mm — 2 inductive steps gives 3 more
tetrahedra, and the final two wedges gives 2
more. Thus the total number of tetrahedra
smm+1)+4m-1)+3(m-2)+2 =
m? + 8m — 8. a

THEOREM 4.1. There exist conver polyhedra
with the same face lattice, such that the min-
imum number of telrahedra required for their
respective triangulations can vary with respect
to their vertex coordinates. The difference can
be linear in the number of vertices.

Proof. This follows directly from Lemnmas 4.1
and 4.2. P1 has at least 2m? - m 4+ 1 =
2n — ©(y/n) tetrahedra while P2 has at most
m? + 8m — 8 = n + ©(,/n) tetrahedra. O

THEOREM 4.2. Any approzimmation algo-
rithm for finding the minimnum triangulation
of conver polyhedra, provided with only the
face lattice, cannot have approximation ratio

better than 2 — ()(\/Lﬁ)

Proof. Since the minimum triangulation of
polyhedra with the same face lattice can

have either at least 2n — @(y/n) or at most
n +©(y/n) tetrahedra, any approximation al-
gorithm that considers the face lattice only
must produce a triangulation with the worst
case number, i.e. 2n—0(y/n). Otherwise, this
algorithm would produce a triangulation with
less than optimal number of tetrahedra in
some cases, a contradiction. Note that there
exists polyhedron whose minimum triangula-
tion contains at most n + ©(y/n) tetrahedra
while any approximation algorithm can only
give a triangulation with at least 2n — ©(y/n}
tetrahedra. Thus the approximation ratio is
bounded by r > %\%l >2-0(%). O
5 Conclusion

In this paper, we give an algorithm for finding
the minimum triangulation of convex poly-
hedra with approximation ratio 2 — Q(\_}E)

We also show a 2 — O(ﬁ-) bound on the ap-
proximability of the minimum triangulation
problem. Thus there is no better constant-
ratio approximation algorithm without con-
sidering the actual coordinates of the vertices.
If vertex coordinates are taken into account,
whether better approximation ratio can be
achieved, or similar non-approximability re-
sults exist, is still an open problem. When
the maximum degree is bounded by a con-
stant, it is also unclear whether these bounds
can be improved.
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