82,559 research outputs found

    Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology

    Get PDF
    The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved

    Recent developments in the rapid analysis of plants and tracking their bioactive constituents

    Get PDF
    Natural products chemistry has witnessed many new developments in the last 5 years like extractions with subcritical water and ionic liquids, LC/HRMS and LC/SPE/cryo-NMR, UHPLC, TLC/MS, MS-based preparative HPLC, comprehensive chromatography (GC × GC, LC × LC), high-throughput screening, introduction of monolithic columns, miniaturisation, and automated structure identification. Nevertheless identifying bioactive constituents in complex plant extracts remains a tedious process. The classical approach of bioassay guided fractionation is time-consuming while off-line screening of extracts does not provide information on individual compounds and sometimes suffers from false positives or negatives. One way out of this is by coupling chromatography with chemical or biochemical assays, so called high resolution screening. An example is the development of HPLC on-line assays for antioxidants. By the post-column addition of a relatively stable coloured radical like DPPH¿ or ABTS¿+, radical scavengers are detected as negative peaks because in a reaction coil they reduce the model radical to its reduced, non-coloured form. When combined with LC/DAD/MS and LC/SPE/NMR, reliable identification of active constituents becomes possible without the necessity of ever isolating them in a classical sense. Also for finding leads for new drugs, combining HPLC with biochemical assays is interesting but technically more difficult. Most enzymes do not work at the organic modifier concentrations commonly encountered in RP-HPLC and the reaction time is often longer requiring dilution and lengthy coils respectively. Therefore, new techniques have to be implemented to gain the required sensitivity for on-line enzyme assays. For stable analytes, high temperature LC offers a solution to the organic modifier problem. When enzymes are highly expensive, like those used in the screening for Cytochrome P450 inhibitors, miniaturisation to chip format may offer a way out. Microreactors (chips) are not only useful for miniaturising larger assays but also offer completely new prospects in phytochemical analysis. One such application is in the sample clean-up of acids and bases like alkaloids. In a lay-out of three parallel channels of 100 ¿m width with the middle one containing organic phase and the two outer ones water of high pH (feed phase) and low pH (trapping phase) such a chip replaces two classical LLE steps but is much faster and requires less solvents and less manpower input

    Carbon Dioxide, a Solvent and Synthon for Green Chemistry

    Get PDF
    Carbon dioxide is a renewable resource of carbon when we consider the reuse of existing CO2 as a carbon source for producing chemicals. The development of new applications is of major interest from the point of view of carbon dioxide sequestration and within the scope of green chemistry. For example, using CO2 instead of CO or COCl2 for chemical synthesis constitutes an attractive alternative avoiding hazardous and toxic reactants. However, it has the lowest chemical reactivity, which is a serious drawback for its transformation. Supercritical CO2 as a reaction medium offers the opportunity to replace conventional organic solvents. Its benign nature, easy handling and availability, non volatile emitting, and the relatively low critical point (Pc = 73.8 bar, Tc = 31 °C) are particularly interesting for catalytic applications in chemical synthesis, over a wide range of temperatures and pressures. The benefits of coupling catalysis and supercritical fluids are both environmental and commercial: less waste and VOCs emission, improved separation and recycling, and enhanced productivity and selectivity. The case study described in this paper concerns the reaction of carbon dioxide with alcohols to afford dialkyl carbonates with special emphasis on dimethyl carbonate. It is of significant interest because the industrial production of this class of compounds, including polycarbonates, carbamates, and polyurethanes, involves phosgene with strong concerns on environmental impact, transport, safety and waste elimination. The future of carbon dioxide in green chemistry, including supercritical applications, is highly linked to the development of basic knowledge, know-how, and tools for the design of catalyst precursors and reactors

    New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation

    Get PDF
    Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.Comment: 19 pages, 1 tabl

    New advances in photoionisation codes: How and what for?

    Full text link
    The study of photoionised gas in planetary nebulae (PNe) has played a major role in the achievement, over the years, of a better understanding of a number of physical processes, pertinent to a broader range of fields than that of PNe studies, spanning from atomic physics to stellar evolution theories. Whilst empirical techniques are routinely employed for the analysis of the emission line spectra of these objects, the accurate interpretation of the observational data often requires the solution of a set of coupled equations, via the application of a photoionisation/plasma code. A number of large-scale codes have been developed since the late sixties, using various analytical or statistical techniques for the transfer of continuum radiation, mainly under the assumption of spherical symmetry and a few in 3D. These codes have been proved to be powerful and in many cases essential tools, but a clear idea of the underlying physical processes and assumptions is necessary in order to avoid reaching misleading conclusions. A brief review of the field of photoionisation today is given here, with emphasis on the recent developments, including the expansion of the models to the 3D domain. Attention is given to the identification of new available observational constraints and how these can used to extract useful information from realistic models. (abridged)Comment: 8 pages, 3 figures, conference proceeding

    The chemistry of fluorine-bearing molecules in diffuse and dense interstellar gas clouds

    Full text link
    We present a theoretical investigation of the chemistry of fluorine-bearing molecules in diffuse and dense interstellar gas clouds. The chemistry of interstellar fluorine is qualitatively different from that of any other element, because - unlike the neutral atoms of any other element found in diffuse or dense molecular clouds - atomic fluorine undergoes an exothermic reaction with molecular hydrogen. Over a wide range of conditions attained within interstellar gas clouds, the product of that reaction - hydrogen fluoride - is predicted to be the dominant gas-phase reservoir of interstellar fluorine nuclei. Our model predicts HF column densities ~ 1.E+13 cm-2 in dark clouds and column densities as large as 1.E-11 cm-2 in diffuse interstellar gas clouds with total visual extinctions as small as 0.1 mag. Such diffuse clouds will be detectable by means of absorption line spectroscopy of the J = 1 - 0 transition at 243.2 micron using the Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Herschel Space Observatory (HSO). The CF+ ion is predicted to be the second most abundant fluorine-bearing molecule, with typical column densities a factor ~ 100 below those of HF; with its lowest two rotational transitions in the millimeter-wave spectral region, CF+ may be detectable from ground-based observatories. HF absorption in quasar spectra is a potential probe of molecular gas at high redshift, providing a possible bridge between the UV/optical observations capable of probing H2 in low column density systems and the radio/millimeter-wavelength observations that probe intervening molecular clouds of high extinction and large molecular fraction; at redshifts beyond ~ 0.3, HF is potentially detectable from ground-based submillimeter observatories in several atmospheric transmission windows.Comment: 34 pages, including 11 figures (10 color), accepted for publication in Ap
    • …
    corecore