20,195 research outputs found

    TINA as a virtual market place for telecommunication and information services: the VITAL experiment

    No full text
    The VITAL (Validation of Integrated Telecommunication Architectures for the Long-Term) project has defined, implemented and demonstrated an open distributed telecommunication architecture (ODTA) for deploying, managing and using a set of heterogeneous multimedia, multi-party, and mobility services. The architecture was based on the latest specifications released by TINA-C. The architecture was challenged in a set of trials by means of a heterogeneous set of applications. Some of the applications were developed within the project from scratch, while some others focused on integrating commercially available applications. The applications were selected in such a way as to assure full coverage of the architecture implementation and reflect a realistic use of it. The VITAL experience of refining and implementing TINA specifications and challenging the resulting platform by a heterogeneous set of services has proven the openness, flexibility and reusability of TINA. This paper describes the VITAL approach when choosing the different services and how they challenge and interact with the architecture, focusing especially on the service architecture and the Ret reference point definitions. The VITAL adjustments and enhancements to the TINA architecture are described. This paper contributes to proving that the TINA-based VITAL ODTA allows for easy and cost-effective development and deployment of advanced end-user and operator services, and can indeed act as the basis for a virtual market place for telecommunications service

    MODIS algorithm development and data visualization using ACTS

    Get PDF
    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Get PDF
    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications

    Collaboration technology and space science

    Get PDF
    A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity

    Off-line computing for experimental high-energy physics

    Get PDF
    The needs of experimental high-energy physics for large-scale computing and data handling are explained in terms of the complexity of individual collisions and the need for high statistics to study quantum mechanical processes. The prevalence of university-dominated collaborations adds a requirement for high-performance wide-area networks. The data handling and computational needs of the different types of large experiment, now running or under construction, are evaluated. Software for experimental high-energy physics is reviewed briefly with particular attention to the success of packages written within the discipline. It is argued that workstations and graphics are important in ensuring that analysis codes are correct, and the worldwide networks which support the involvement of remote physicists are described. Computing and data handling are reviewed showing how workstations and RISC processors are rising in importance but have not supplanted traditional mainframe processing. Examples of computing systems constructed within high-energy physics are examined and evaluated

    Improved algorithms for machine allocation in manufacturing systems

    Get PDF
    In this paper we present two algorithms for a machine allocation problem occurring in manufacturing systems. For thetwo algorithms presented we prove worst-case performance ratios of 2 and 312, respectively. The machlne allocat~onproblem we consider is a general convex resource allocation problem, which makes the algorithms applicable to a varletyof resource allocation problems. Numerical results are presented for two real-life manufacturing systems.networks;manufacturing;allocation of machines;performance/productivity;queues

    Worldnet

    Get PDF
    The expanding use of powerful workstations coupled to ubiquitous networks is transforming scientific and engineering research and the the ways organizations around the world do business. By the year 2000, few enterprises will be able to succeed without mastery of this technology, which will be embodied in an information infrastructure based on a worldwide network. A recurring theme in all the discussions of what might be possible within the emerging Worldnet is people and machines working together in new ways across distance and time. A review is presented of the basic concepts on which the architecture of Worldnet must be built: coordination of action, authentication, privacy, and naming. Worldnet must provide additional functions to support the ongoing processes of suppliers and consumers: help services, aids for designing and producing subsystems, spinning off new machines, and resistance to attack. This discussion begins to reveal the constituent elements of a theory for Worldnet, a theory focused on what people will do with computers rather than on what computers do
    corecore