
Improved Algorithms for Machine Allocation in Manufacturing Systems

Hans Frenk; Martine Labbé; Mario van Vliet; Shuzhong Zhang

Operations Research, Vol. 42, No. 3. (May - Jun., 1994), pp. 523-530.

Stable URL:

http://links.jstor.org/sici?sici=0030-364X%28199405%2F06%2942%3A3%3C523%3AIAFMAI%3E2.0.CO%3B2-G

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Mar 19 06:54:29 2008

http://links.jstor.org/sici?sici=0030-364X%28199405%2F06%2942%3A3%3C523%3AIAFMAI%3E2.0.CO%3B2-G
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/informs.html

IMPROVED ALGORITHMS FOR MACHINE ALLOCATION IN

MANUFACTURING SYSTEMS

HANS FRENK
Erasmus University, Rotterdam, The Netherlands

MARTINE LABBE
University of Brussels, Brussels, Belgium

MARIO VAN VLlET
Erasmus University, Rotterdam, The Netherlands

SHUZHONG ZHANG
Erasmus University, Rotterdam, The Netherlands

(Received June 1991; revisions received June, October 1992; accepted November 1992)

In this paper we present two algorithms for a machine allocation problem occurring in manufacturing systems. For the
two algorithms presented we prove worst-case performance ratios of 2 and 312, respectively. The machlne allocat~on
problem we consider is a general convex resource allocation problem, which makes the algorithms applicable to a varlety
of resource allocation problems. Numerical results are presented for two real-life manufacturing systems.

An
concerns

important design problem in manufacturing
the optima1 allocation of machines

(servers) to workstations within a manufacturing sys-
tem. One can think, for example, of the problem of
allocating a fixed number of machines among different
workstations such that the performance of the system
(e.g., in terms of work-in-process or lead times of
products) is optimal. Another problem concerns the
minimum cost allocation of machines such that the per-
formance of the system meets a certain target. The
latter problem is the subject of this paper.

The production process we consider can be
modeled as an open network of queues with different
product classes. This means that the production pro-
cess consists of workstations through which each
product follows its own deterministic route. A work-
station consists of several parallel identical machines
(servers). In the sequel we assume that product rout-
ings, the amount of traffic offered, the location of
machines, and technology (e.g., processing times) are
specified.

Several authors have considered server allocation
problems in manufacturing queueing networks. For
closed queueing networks, which are a popular means

to model a flexible manufacturing system (FMS),
Vinod and Solberg (1985), Dallery and Frein (1986),
Shanthikumar and Yao (1987, 1988), and Dallery and
Stecke (1990) considered various server allocation
problems. The server allocation issues addressed in
these papers differ according to the optimization
problem treated, the kind of manufacturing system
analyzed, and the queueing network used for model-
ing. Boxma et al. (1990) and Van Vliet and Rinnooy
Kan (1991) trezted server allocation problems in open
queueing networks in which each workstation is
modeled as an MIMIm and a GIIGlm queue, respec-
tively. Boxma et al. present the so-called sewer allo-
cation problem. For this problem they propose a
greedy algorithm which generates undominated solu-
tions. Furthermore, their algorithm provides bounds
to check how close the heuristic solution is to the
optimal one.

In this paper, we study the same problem setting.
The algorithms we present are improved versions of
the greedy algorithm presented in Boxma et al.
Whereas Boxma et al. do not give any worst-case
analysis of their algorithm, we prove our algorithms
to have worst-case ratio performances of 2 and 312,

Subject classifications: Manufacturing: allocation of machines in an FMS. Manufacturing, performance/productivity: optimization of steady-state
performance. Queues, networks: optimization of queueing networks.

Area of review: OPTIMJZATION.

Operations Research 0030-364x19414203-0523 $01.25
Vol. 42, No. 3, May-June 1994 % 1994 Operations Research Society of America

respectively. Although the problem is treated here in
the context of server allocation, it represents a gen-
eral class of resource allocation problems. Therefore,
the algorithms are applicable to a wider class of
problems.

In Section 1 we describe the underlying queueing
network and the server allocation problem treated. In
Section 2 we discuss the algorithms and their theo-
retical analysis. Numerical results of the algorithms
applied to two real-life manufacturing systems are
presented in Section 3. Conclusions and suggestions
for further research are stated in Section 4.

1. SYSTEM ANALYSIS

The manufacturing system we consider consists of J
workstations. Each workstation j has m, identical
parallel servers with independent exponentially dis-
tributed service times with mean l /pJ ; N product
types are produced by the system. Products of type i
arrive at the first workstation they visit according
to a Poisson process with parameter A', and then
follow a deterministic route through a subset of work-
stations. A product may visit a workstation more than
once, but for simplicity we will not allow two succes-
sive stages of a product route to be identical. Fur-
thermore, we assume that the arrival and service
processes are independent. The assumptions that ser-
vice times are independently and exponentially dis-
tributed, and the arrival process is Poisson, allow us
to make an exact analysis of the steady-state behavior
of the queueing network. Since the focus in this paper
is on combinatorial optimization problems, rather
than on the queueing network analysis, we prefer to
model the manufacturing system as a queueing net-
work that can be analyzed exactly. However, for
some practical environments the exponential and
Poisson assumptions might not be valid. Van Vliet
(1993) shows how the algorithms presanted in this
paper can be, under mild additional assumptions, ap-
plied to general queueing networks for which the
exponential and Poisson assumptions do not hold.

For further analysis we can treat the different prod-
uct types as one aggregate product with an aggregate
arrival rate A, at each workstation j. The joint equi-
librium queue length distribution in the system has a
product form (cf. Kelly 1979, corollary 3.4). Each
workstation j behaves as an MIMIm, queue in the
steady state. This leads to the following well known
formula for the average number of products present
(in queue and in process) at workstation j (cf. 'rijms
1986, p. 332).

In the sequel we assume that the arrival and service
rates are given, while the number of servers at each
workstation are the decision variables. This means
that Lj(mj, g,, A,) can be regarded as a function of
m, only: Lj(mj). Dyer and Pro11 (1977) proved that
Lj(mj) as given by (1) is a convex decreasing func-
tion in m,.

We will measure the steady-state performance
of the system by the work-in-process (WIP) of
the system. The WIP (inventory) is the total value
of all the products that are in the system. Without
loss of generality, we make the assumption that
the value of a product at workstation j, either in
queue or in process, is independent of the type
of product and equal to vj. In other words, v,
represents the value of inventory per unit at
workstation j. For example, products waiting
at the end of the production process, i.e., the
last workstation they visit, have more added
value in terms of material and manpower than
the products waiting at the beginning of the
production process. The formulation for WIP then
becomes

Furthermore, we assume that the allocation of m,
servers at workstation j generates investment costs
of P,(m,), with Fj(mj) a convex and nondecreasing
function in mi. To prevent the system from
becoming instable, we have to require the trafic
intensity at a workstation j(= pi = A,l,mj) to
be less than one. It is easy to verify that this re-
sults in requiring that m, a mf = bjlp. + +,
where 1.1 represents the integer round-down
operation.

For convenience we use the following notation.

From the convexity of 1.;. and L j (j E (1, . . . ,J))it
follows that

AFj(mj + 1) AF,(mj)
and

ALj(mj + 1) 'AL,(m,)

The optimizatio~~ problem we consider is to allocate
servers to workstations in such a way that the WIP is
below a target WIP level W,. The configuration we
are looking for is a minimum cost configuration. The
mathematical formulation is as follows.

Problem SA

Minimize F(m)
m

subject to L(m) d WT

mi 3 mf, mj integer (j E (1, .. . ,a).
2. ALGORITHMS AND THEIR ANALYSIS

Since problem SA can be regarded as a generalization
of the knapsack problem it is NP-hard. Therefore, our
focus will be on algorithms to find approximately
optimal solutions. We will discuss two such algo-
rithms. However, to make this paper self-contained
we first briefly mention the results by Boxma et al.,
because the algorithms and results presented in their
study serve as a starting point for our analysis.

The algorithm by Boxma et al. to approximately
solve SA starts with the smallest possible allocation,
that is, mf- for each workstation j. At every iteration it
then adds a server at that workstation where the quo-
tient of the increase of the objective function and the
decrease of WIP is the smallest. The algorithm termi-
nates as soon as adding a server makes the allocation
feasible.

Algorithm SA1

STEP 1. Start with c0 where c,? = m?

STEP2. k := 1.

STEP 3. Set ck := ck-I + e,, where e, is the ith

unit vector, and

AF,(~:-' + 1)
i = Arg min

j W , . . . , J } AL,(c!-l + 1)

STEP 4. 1f L (c ~) < WT,cSA1:= ck, stop; else k :=
k + 1, go to Step 3.

Definition 1. An allocation x is called undominated
(efficient) jcf. Fox 1966) if for ally E S :

Boxma et al. prove the following results on algorithm
SA1.

Lemma 1. Allocations generated by algorithm SA1
are undominated.

Lemma 2. If cO, ... , cP are the allocations gener-
ated by algorithm SAl and c * is an optimal allocation
for SA, then it holds that F(cP-') < F(c*) d F(cP).

Concerning the complexity of SA1, the following
can be shown. Let the maximum number of servers
among all undominated allocations be m, then the
total number of operations needed by SA1 is B(mJ).

Lemma 2 shows that the solution generated by SA1
provides bounds to check whether the allocation found
by SA1 is sufficiently close to the optimal allocation.
The difference (if any) between the heuristic and the
optimal solution is created by the server which is added
to a workstation (j', say) in the final step of the algo-
rithm. If this 'final server' causes the 'final WIP' to be
substantially larger than W,, the heuristic solution
might be far from the optimal one. If, however, the final
WIP is very close to W,, chances are high that the
heuristic solution cannot be much improved upon.

The following algorithm tries to improve upon the
allocation generated by algorithm SA1 by making use
of the above observation. Algorithm SA2 generates J
allocations. The first allocation is as given by SA1. To
get the second allocation, SA2 takes the number of
servers at each workstation equal to those as given
in the first allocation, except for workstationj', where
the number of servers is decreased by one. Note that
this allocation is not feasible. Given this allocation,
servers are added in the same greedy manner as in
SA1. The procedure stops as soon as a feasibie allo-
cation is found. The resulting allocation is the second
of the J allocations. The number of servers a t j ' is now
kept fixed in all the following steps of the algorithm.
The third allocation is found by the same procedure,
with j' now equal to the workstation at which the last
server was added to get the previous allocation. This

procedure is repeated until J allocations have been
generated. The allocation with the lowest objective
function value is the heuristic allocation as given by
SA2.This procedure can be stated as follows.

Algorithm SA2
(Initialization) Set cH1 := cSA1;C := {cH1);A :=
{I, ... ,J}; k := 1.

STEP 1. Let j, be the index of the workstation at
which a server is added in the final iteration to obtain
heuristic allocation H,.

'4 :=A\{j,);

cHk+l= (c?, .. . ,cHk- 1, ... ,c p) ; k := k + 1.

l k

STEP 2. Set cHk := cHk+ e,, where ei is the ith
unit vector and

A F ~ (C ~
i = Arg min

+ 1)

J'EA A L , (C ~+ I)

STEP 3. If L (cHk)a W,

then C := C U {cHk). If k = J go to Step 4, else
go to Step 1.

else go to Step 2.

STEP 4. Choose cSA2 := Arg minc~c F(c).

Before presenting the worst-case analysis for SA2,
note that the complexity of SA2 is 6(mJ2) (cf. the
complexity of algorithm SA1 presented before).

We can now prove the following theorem.

Theorem 1. Let c * be the optimal allocation for SA,
then it holds that

and this bound is tight.

Proof. We relabel the indices such that i equals the
index ji of the last workstation at which a server is
added to obtain the heuristic solution cH1, i E
{I, . . . ,J).Note that C? = C? - 1 for i = 1, .. . ,
J - 1. Furthermore, (c y , .. . , cy?,, c? - 1) is
infeasible with regard to SA.Hence, there exists at
least one index j for which c,* 2 c p . Let d be the
smallest index for which this is satisfied, i.e., c z 2
c P a n d c ; < c F f o r j = 1, ... , d - 1.

In the proof we use the two relations:

When applying SA2,servers are successively added
to the workstations in a nondecreasing order of the
ratio AFJ(mJ)/ALJ(mJ). Hence, (2) and the fact that
d is the index of the last workstation at which a server
is added to obtain cgd imply that

A F , (i) A F ~(cFd)

a,(i) 'A L ~(c p)

for j = 1, . . . ,J and i = 1, . . . , c y (4)

We know that

Furthermore, (4) implies that

Now, since (c?, . . . , c:!~, CP- 1, cyi1, . . . ,
c,H,') is not feasible with regard to SA we get

Moreover, since the optimal solution c * is feasible,
we obtain

cPd

- C, C ALj(i)
j:c,!d<c; ~ = m , & + l

j*d

cr "

j:~,!'d <c; i = c P +l
j f d

Using (8) and (9) in (7) we obtain

where the second inequality follows from the defini-
tion of d which implies that (5) holds fo rd and for all
j such that C? > c;.

Finally, substituting (10) in (6) yields

To prove that the above bound is tight we use a similar
example as in Csirik et al. (1990), where the same
bound was proven for a similar algorithm for the 0-1
min-knapsack problem.

Take the problem instance:

J = 3

~ (m ~)
- WT= C + 1

L
F,(m,) = 0 (j= 1, 2, 3)

ALl(mf + 1) = AFl(mf + 1) = 1

It is easy to verify that cSA2 = (m? + 1, m i + 1,
m i + 1) and c* = (mf + 1, m i + 1, m i) with
F (c ' ~ ~)= 2C + E and F (c *) = C + 1 + E . This
implies that

which can be arbitrarily close to 2 for large C and
small E.

From Theorem 1 it follows that S A 2 has a worst-
case performance ratio of 2. To improve upon this
performance ratio, we introduce the following algo-
rithm, which is again an improvement algorithm that
uses allocations from the set of possible allocations,
generated by algorithm S A 2 , as initial allocations. For
each of the J allocations cHk (k E (1, ... ,J }) , as
generated by SA2, S A 3 creates one new problem SA,
by introducing the additional restriction that the work-
stationk (which is the last workstation to which a server
has been added to obtain cHk) has at least c p servers.
Then, S A 2 is applied to each such new problem S&,
(k E (1, .. . ,J}) to generate new feasible solutions.
The heuristic solution returned by SA3 is the alloca-
tion generated by S A 2 when applied to S A or S& (k E
(1, ... ,a) , which minimizes the objective function.

Algorithm SA3

STEP I . Apply S A 2 and denote the set of possible
allocations by C = (cH1,. . . , cHJ).

STEP 2. For k := 1 to J construct the following
problem.

Problem SA,

Minimize 2 Fj (mj)
m,] = I

subject to
I

m, 3 mf, mj integer (j E (1, .. . ,a\\(})
mk 3 C P , mk integer.

Apply algorithm S A 2 to problem S A , and denote the
heuristic solutions by zHk= (~ 7 ,. . . ,CJW*).

STEP 3. Let C = (CH1,. . . ,CHJ). Choose

cSA3= Arg min F(c) .
CECUC

Note that the complexity of SA3 is 6 (m ~ ~) (cf. the
complexities of SA1 and SA2 discussed before).

Theorem 2. Let c * be the optimal allocation for S 4
then it holds that

Proof. We use the same notation as in the proof of
Theorem 1. So, let d be the index such that c*, 2 c p
and c; < c? f o r j = 1, ... , d - 1.

We now distinguish between two cases.

Case a

In this case it follows directly from (11) that

F(cSA2)- F(mL, a 3/2 (F(c*j - F(m L)),

and the result follows from F (c " ~ ~) < F(c"~').

Case b

Let C* denote the optimal allocation of problem SA,.
We then have

F(C SA3) - F(m L,

< F (C ~ ~)- ~ (mL,

r

jtd

+ F ~ (c ~)mi)-

The second inequality is obtained by applying
Theorem 1 to problem SA, and the third inequality
follows from the fact that c * is feasible to SAd given
the definition of SA,.

Note that the situation in which AF,(c,~") >
l /2(F(c*) - F(mL)) is only likely to occur when the
number of workstations is small. In most practical

environments the number of workstations is fairly
large (J 3 4), which may well imply that AFd(cP) a
1/2(F(c*) - F(mL)) for all d E J. In this case, it
follows from the above that SA2 also has a worst-case
performance ratio of 312. In Section 3 we show that
the numerical results obtained for the practical set-
tings we considered are similar for SA2 and SA3. The
above observation, together with the numerical re.
sults, strongly suggzsts that rhe average performance
of SA2 and SA3 will be very similar.

3. NUMERICAL RESULTS

We applied the algorithms to two manufacturing sys-
tems which were taken from Van Vliet and Rinnooy
Kan (1991). The first system is a manufacturing sys-
tem producing semiconductor devices and consists of
13 workstations. Up to 10 different semiconductor
devices (product types) are produced. The second
system consists of 11 workstations and produces 2
product types.

The two manufacturing systems were modeled in
Van Vliet and Rinnooy Kan as queueing networks
with independent GIIG1m queues. Since we focus on
the nonlinear optimization problems rather than
on the queueing network aspects, we model each
workstation as an M!M/m queue. This makes the
queueing network analysis exact (see Section 1). For
how to apply the above optimization problems to
(more realistic) non-Markovian queueing networks
we refer to Van Vliet and Rinnooy Kan.

To compare the performance of heuristics SA1,
SA2, and SA3 we use a relative error indicator. For
each heuristic SAi we use the upperbound (UB,) and
the lowerbound (LB,) as given by the algorithms. The
relative error is then calculated by:

UBi - LBi
Relative error of SAi =

UB, + LB; '

We performed the heuristics for a wide range of
WIP values. It appeared that the results for SA2 and
SA3 did not differ for the two manufacturing systems
we examined. This means that SA2 provides a solu-
tion that has a WIP value which is extremely close to
the target value. Hence, there is no space left for any
improvement when the additional steps of SA3 are
performed. This might indicate that for the two man-
ufacturing systems examined, SA2 provides an opti-
mal solution in most cases. Note that SA3 has a
complexity which is a factor J higher than SA2.
Therefore, in practice, SA2 would be the preferred
algorithm. However, in some special cases (see the

discussion at the end of Section 2), SA3 can indeed
provide better solutions than SA2. Figures 1 and 2
show the results of heuristics SA1, SA2, and SA3 for
system 1.

From Figures 1 and 2 we see that the relative errors
decrease substantially when the improved algorithms
SA2 and SA3 are used. Especially when SA1 produces
large relative errors (up to 30%), the improved algo-
rithms are able to cut the relative errors substantially.
Heuristic SA1 produces large relative errors when the
last 'greedy' server added by the algorithm increases
the WIP by a large amount (relative to the existing
difference with W,). If this is the case, the improved
algorithms have a lot of 'space' between W , and the
WIP produced by SA1 to find improvements. This
is not the case when the relative errors produced by
SA1 are small. In most cases, where SA1 produced
small relative errors (<2%), SA2 produced the same
solution.

Another improvement of SA2 and SA3 over SA1 is
the monotonic behavior of the relative errors. Al-
though the general trend of (12) for SA1 is decreasing
when WTdecreases (this is to be expected because
the constraints get tighter because of the convex

Relative Error (%)

Target Work-In-Process (thousands)

-Algorithm SA1

Figure 1. Relative error algorithm SA1 for system 1.

Relative Error (%)

3596r

"m

19 2 4 2 9 3 4 3 9 4 4 4 9 5 4 5 9
Target Work-In-Process (thousands)

-Algorithm SA2 B SA3

Figure 2. Relative error algorithms SA2 and SA3 for
system 1.

Table I

Behavior of Heuristics for Systems 1 and 2

Average
Relative

Error Standard
Heuristic (%) Deviation

System 1
SA1 7.44 0.064
SA2 & SA3 2.13 0.014

System 2
SA1 4.71 0.028
SA2 & SA3 1.61 0.006

behavior of L (m)) ,the specific behavior of (12) for
SA1 is unpredictable. The relative errors produced by
SA2 and SA3, however, show an almost monotonic
decreasing behavior. Hence, when WT decreases,
SA2 and SA3 are almost surely to give a better solu-
tion. Table I shows the average relative errors over all
target WIP values and the corresponding standard
deviations for the heuristics. We see that SA2 and SA3
improve the quality of the solution by a considerable
amount. The results for system 2 (see Figures 3 and 4)
show a similar behavior of the different heuristics (see
Table I).

4. 	CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

We have presented two algorithms for approximately
solving a machine allocation problem that arises in the
area of manufacturing system design. The optimiza-
tion problem is particularly relevant within the con-
text of flexible manufacturing, where the issue of
optimal capacity allocation is important and preva-
lent. The optimization problem formulated is a gen-
eral resource allocation problem in which both the
objective function and the constraint functions are not
linear and the decision variables show a discrete
nature.

The algorithms presented are improvements over a
greedy algorithm by Boxrna et al. Whereas they did
not give any worst-case performance guarantees for
their algorithm, we prove our algorithms to have
worst-case bounds of, respectively, 2 and 312. We
have applied the algorithms to two manufacturing
systems taken from practice. For these two manufac-
turing systems we compare the relative error made by
the algorithm of Boxma et al. and the two algorithms
presented. The results show that the average relative
error made by the improved algorithms is substan-
tially smaller than the average relative error made by
the algorithm of Boxma et al.

Relative Error (%)

O%I- ' 1

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
T a r g e t Work- In -Process (thousands)

-Algorithm SAl

Figure 3. 	Relative error algorithm SA1 for system 2.

Relative Error (%)

12% 	 i

0%1
2.65 	 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15

Target Work-In-Process (thousands)

-Algorithm SA2 8 SA3

Figure 4. 	Relative error algorithms SA2 and SA3 for
system 2.

Although outside the scope of this paper, the above
analysis can be extended by presenting an algorithm
for which we can prove an E approximation scheme.
This indicates that the resource allocation problem
treated, although belonging to the class of NP-hard
problems, is relatively easy to solve. This is of par-
ticular interest, because the presented optimization
problem is applicable to a variety of resource alloca-
tion problems. We see it as an interesting challenge to
investigate the performance of the presented algo-
rithms for other resource allocation problems.

ACKNOWLEDGMENT

We are grateful to Charles Corbett of INSEAD,
France, for the careful reading of an earlier version

of the manuscript. Furthermore, two anonymous
referees, the associate editor, and the area editor
are gratefully acknowledged for their constructive
remarks.

REFERENCES

BOXMA,0. J., A. H. G. RINNOOYKAN AND M. VAN
VLIET.1990. Machine Allocation Problems in Man-
ufacturing Networks. Eur. J. Opnl. Res. 45, 47-54.

CSIRIK,J., J. B. G. FRENK, M. LABBE AND S. ZHANG.
1990. Heuristics for the 0-1 Knapsack Problem.
Technical Report 9013IA. Econometric Institute,
Erasmus University, Rotterdam, The Netherlands.

DALLERY,Y., AND K. E. STECKE.1990. On the Optimal
Allocation of Servers and Workloads in Closed
Queueing Network. Opns. Res. 38, 694-703.

DALLERY,Y., AND Y. FREIN. 1986. An Efficient Method
to Determine the Optimal Configuration of a Flexi-
ble Manufacturing System. In Proceedings of the
Second ORSAITIMS Conference on Flexible Man-
ujacturing Systems: Operations Research Models
and Applications, K . E. Stecke and S. Suri (eds.).
North-Holland, Amsterdam.

DYER, M. E., AND L. G. PROLL.1977. On the Validity of
Marginal Analysis for Allocating Servers in MIMIC
Queues. Mgmt. Sci. 23, 1019-1022.

Fox, B. 1966. Discrete Optimization via Marginal Anal-
ysis. Mgmt. Sci. 13, 210-216.

KELLY, F. P. 1979. Reversibility and Stochastic Net-
works. John Wiley, New York.

SHANTHIKUMAR,J. G., AND D. D. YAO. 1987. Optimal
Server Allocation in a System of Multiserver Sta-
tions. Mgmt. Sci. 33, 1173-1180.

SHANTHIKUMAR,J. G., AND D. D. YAO. 1988. On Server
Allocation in Multiple Center Manufacturing Sys-
tems. Opns. Res. 36, 333-342.

TIJMS,H. C. 1986. Stochastic Modelling and Analysis.
John Wiley, New York.

VAN VLIET, M. 1991. Optimization of Manufacturing
System Design. Ph.D Thesis, Subseries B, No. 10,
Tinbergen Institute, Erasmus University
Rotterdam, The Netherlands.

VAN VLIET, M., AND A. H. G. RINNOOYKAN. 1991.
Machine Allocation Algorithms for Job Shop Man-
ufacturing. J. Intell. Mfg.2, 83-94.

VINOD,B., AND J. J. SOLBERG. 1985. The Optimal Design
of Flexible Manufacturing Systems. Int. J. Prod.
Res. 23, 1141-1151.

