37 research outputs found

    OS-Assisted Task Preemption for Hadoop

    Full text link
    This work introduces a new task preemption primitive for Hadoop, that allows tasks to be suspended and resumed exploiting existing memory management mechanisms readily available in modern operating systems. Our technique fills the gap that exists between the two extremes cases of killing tasks (which waste work) or waiting for their completion (which introduces latency): experimental results indicate superior performance and very small overheads when compared to existing alternatives

    High Throughput and Low Latency on Hadoop Clusters Using Explicit Congestion Notification: The Untold Truth

    Get PDF
    Various extensions of TCP/IP have been proposed to reduce network latency; examples include Explicit Congestion Notification (ECN), Data Center TCP (DCTCP) and several proposals for Active Queue Management (AQM). Combining these techniques requires adjusting various parameters, and recent studies have found that it is difficult to do so while obtaining both high performance and low latency. This is especially true for mixed use data centres that host both latency-sensitive applications and high-throughput workloads such as Hadoop.This paper studies the difficulty in configuration, and characterises the problem as related to ACK packets. Such packets cannot be set as ECN Capable Transport (ECT), with the consequence that a disproportionate number of them are dropped. We explain how this behavior decreases throughput, and propose a small change to the way that non-ECT-capable packets are handled in the network switches. We demonstrate robust performance for modified AQMs on a Hadoop cluster, maintaining full throughput while reducing latency by 85%. We also demonstrate that commodity switches with shallow buffers are able to reach the same throughput as deeper buffer switches. Finally, we explain how both TCP-ECN and DCTCP can achieve the best performance using a simple marking scheme, in constrast to the current preference for relying on AQMs to mark packets.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Testing Data Transformations in MapReduce Programs

    Get PDF
    MapReduce is a parallel data processing paradigm oriented to process large volumes of information in data-intensive applications, such as Big Data environments. A characteristic of these applications is that they can have different data sources and data formats. For these reasons, the inputs could contain some poor quality data that could produce a failure if the program functionality does not handle properly the variety of input data. The output of these programs is obtained from a number of input transformations that represent the program logic. This paper proposes the testing technique called MRFlow that is based on data flow test criteria and oriented to transformations analysis between the input and the output in order to detect defects in MapReduce programs. MRFlow is applied over some MapReduce programs and detects several defect

    Testing data transformations in MapReduce programs

    Full text link

    ShenZhen transportation system (SZTS): a novel big data benchmark suite

    Get PDF
    Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads, however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose ShenZhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as HiBench and CloudRank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at the microarchitecture level, the operating system (OS) level, and the job level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and we propose a methodology for identifying representative input data sets
    corecore