5 research outputs found

    Evaluating general purpose automated theorem proving systems

    Get PDF
    AbstractA key concern of ATP research is the development of more powerful systems, capable of solving more difficult problems within the same resource limits. In order to build more powerful systems, it is important to understand which systems, and hence which techniques, work well for what types of problems. This paper deals with the empirical evaluation of general purpose ATP systems, to determine which systems work well for what types of problems. This requires also dealing with the issues of assigning ATP problems into classes that are reasonably homogeneous with respect to the ATP systems that (attempt to) solve the problems, and assigning ratings to problems based on their difficulty

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    TOOLympics 2019: An Overview of Competitions in Formal Methods

    Get PDF
    Evaluation of scientific contributions can be done in many different ways. For the various research communities working on the verification of systems (software, hardware, or the underlying involved mechanisms), it is important to bring together the community and to compare the state of the art, in order to identify progress of and new challenges in the research area. Competitions are a suitable way to do that. The first verification competition was created in 1992 (SAT competition), shortly followed by the CASC competition in 1996. Since the year 2000, the number of dedicated verification competitions is steadily increasing. Many of these events now happen regularly, gathering researchers that would like to understand how well their research prototypes work in practice. Scientific results have to be reproducible, and powerful computers are becoming cheaper and cheaper, thus, these competitions are becoming an important means for advancing research in verification technology. TOOLympics 2019 is an event to celebrate the achievements of the various competitions, and to understand their commonalities and differences. This volume is dedicated to the presentation of the 16 competitions that joined TOOLympics as part of the celebration of the 25th anniversary of the TACAS conference
    corecore